The Thomas Hunt Morgan Era in Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M.S. and Ph.D. Sequences in Neuroscience and Physiology
Neuroscience and Physiology are distinct but overlapping disciplines. • M.S. and Ph.D. students take three core Whereas Neuroscience investigates courses in neuroscience, physiology and neural substrates of behavior, Physiology biostatistics, and elective courses in more studies multiple functions. However, specific areas of these fields, as well as in M.S. and Ph.D. both seek to understand at an integrated related fields, such as cellular and level across molecules, cells, tissues, molecular biology, behavior, chemistry Sequences in whole organism, and environment. and psychology The workings of our brain and body • The curriculum provides a canonical Neuroscience and define us. When problems occur, results conceptual foundation for students can be devastating. According to the pursuing master’s and doctoral research in Physiology National Institutes of Health, neurological neuroscience and physiology and heart disease are two of the largest world health concerns and more than 50 • Our sequences provide a “cohort” million people in this country endure experience for new students, by offering a School of Biological some problem with the nervous system. cohesive curriculum for those students interested in pursuing graduate study in Sciences Our graduate sequences in Neuroscience neuroscience and physiology. and Physiology provide an exciting and Illinois State University challenging academic environment by combining research excellence with a strong commitment to education. We offer a comprehensive curriculum to graduate students interested in Neuroscience and Physiology. Both M.S. For more information, contact Dr. Paul A. and Ph.D. programs are also tightly Garris ([email protected]) or visit integrated into laboratory research. bio.illinoisstate.edu/graduate and goo.gl/9YTs4X Byron Heidenreich, Ph.D. -
書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S. -
Introduction and Historical Perspective
Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful -
Barbara Mcclintock's World
Barbara McClintock’s World Timeline adapted from Dolan DNA Learning Center exhibition 1902-1908 Barbara McClintock is born in Hartford, Connecticut, the third of four children of Sarah and Thomas Henry McClintock, a physician. She spends periods of her childhood in Massachusetts with her paternal aunt and uncle. Barbara at about age five. This prim and proper picture betrays the fact that she was, in fact, a self-reliant tomboy. Barbara’s individualism and self-sufficiency was apparent even in infancy. When Barbara was four months old, her parents changed her birth name, Eleanor, which they considered too delicate and feminine for such a rugged child. In grade school, Barbara persuaded her mother to have matching bloomers (shorts) made for her dresses – so she could more easily join her brother Tom in tree climbing, baseball, volleyball, My father tells me that at the and football. age of five I asked for a set of tools. He My mother used to did not get me the tools that you get for an adult; he put a pillow on the floor and give got me tools that would fit in my hands, and I didn’t me one toy and just leave me there. think they were adequate. Though I didn’t want to tell She said I didn’t cry, didn’t call for him that, they were not the tools I wanted. I wanted anything. real tools not tools for children. 1908-1918 McClintock’s family moves to Brooklyn in 1908, where she attends elementary and secondary school. In 1918, she graduates one semester early from Erasmus Hall High School in Brooklyn. -
Drosophila Melanogaster”
| PRIMER More than Meets the Eye: A Primer for “Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila melanogaster” Bradley M. Hersh1 Department of Biology, Allegheny College, Meadville, Pennsylvania 16335 ORCID ID: 0000-0003-2098-4417 (B.M.H.) SUMMARY A single gene might have several functions within an organism, and so mutational loss of that gene has multiple effects across different physiological systems in the organism. Though the white gene in Drosophila melanogaster was identified originally for its effect on fly eye color, an article by Xiao and Robertson in the June 2016 issue of GENETICS describes a function for the white gene in the response of Drosophila to oxygen deprivation. This Primer article provides background information on the white gene, the phenomenon of pleiotropy, and the molecular and genetic approaches used in the study to demonstrate a new behavioral function for the white gene. KEYWORDS education; Drosophila; pleiotropy; behavior TABLE OF CONTENTS Abstract 1369 Molecular Nature of the white Gene 1370 The Challenge of Pleiotropy 1370 Tissue-Specific Expression and RNA Interference (RNAi) 1371 Understanding the Experimental Details 1372 Establishing a behavioral phenotype 1372 Introgression: eliminating the trivial 1372 Dosage and position effect: complicating the story 1373 Molecular tricks: dissecting function and location of action 1373 Suggestions for Classroom Use 1374 Questions for Discussion 1374 HE white gene was the first Drosophila melanogaster the first attached-X and ring-X chromosome variants), is re- Tmutant discovered by Thomas Hunt Morgan in 1910, ported to have exclaimed “Oh, I do hope the white-eyed flyis following an exhaustive search for variant forms of the fly still alive” from her hospital bed after having just delivered (Morgan 1910). -
DNA Replication
Introduction to genome biology Sandrine Dudoit and Robert Gentleman Bioconductor short course Summer 2002 © Copyright 2002, all rights reserved Outline • Cells and cell division • DNA structure and replication •Proteins • Central dogma: transcription, translation • Pathways A brief history Gregor Mendel (1823(1823---1884)1884) Thomas Hunt Morgan (1866(1866---1945)1945) Francis Crick (1916(1916---)))) James D. Watson (1928(1928---)))) From chromosomes to proteins Cells Cells • Cells: the fundamental working units of every living organism. • Metazoa: multicellular organisms. E.g. Humans: trillions of cells. • Protozoa: unicellular organisms. E.g. yeast, bacteria. Cells • Each cell contains a complete copy of an organism’s genome, or blueprint for all cellular structures and activities. • Cells are of many different types (e.g. blood, skin, nerve cells), but all can be traced back to a single cell, the fertilized egg. Cell composition • 90% water. • Of the remaining molecules, dry weight – 50% protein – 15% carbohydrate – 15% nucleic acid – 10% lipid – 10% miscellaneous. • By element: 60% H, 25% O, 12%C, 5%N. The genome • The genome is distributed along chromosomes, which are made of compressed and entwined DNA. • A (protein-coding) gene is a segment of chromosomal DNA that directs the synthesis of a protein. Eukaryotes vs. prokaryotes Eukaryotes vs. prokaryotes • Prokaryotic cells: lack a distinct, membrane-bound nucleus. E.g. bacteria. • Eukaryotic cells: distinct, membrane- bound nucleus. Larger and more complex in structure than prokaryotic cells. E.g. mammals, yeast. The eukaryotic cell The eukaryotic cell • Nucleus: membrane enclosed structure which contains chromosomes, i.e., DNA molecules carrying genes essential to cellular function. • Cytoplasm: the material between the nuclear and cell membranes; includes fluid (cytosol), organelles, and various membranes. -
123 Author's Personal Copy
Author's personal copy Synthese DOI 10.1007/s11229-012-0147-2 Models of data and theoretical hypotheses: a case-study in classical genetics Marion Vorms Received: 17 July 2011 / Accepted: 13 October 2011 © Springer Science+Business Media B.V. 2012 Abstract Linkage (or genetic) maps are graphs, which are intended to represent the linear ordering of genes on the chromosomes. They are constructed on the basis of statistical data concerning the transmission of genes. The invention of this technique in 1913 was driven by Morgan’s group’s adoption of a set of hypotheses concerning the physical mechanism of heredity. These hypotheses were themselves grounded in Morgan’s defense of the chromosome theory of heredity, according to which chro- mosomes are the physical basis of genes. In this paper, I analyze the 1919 debate between William Castle and Morgan’s group, about the construction of genetic maps. The official issue of the debate concerns the arrangement of genes on chromosomes. However, the disputants tend to carry out the discussions about how one should model the data in order to draw predictions concerning the transmission of genes; the debate does not bear on the data themselves, nor does it focus on the hypotheses explaining these data. The main criteria that are appealed to by the protagonists are simplicity and predictive efficacy. However, I show that both parties’ assessments of the simplicity and predictive efficacy of different ways of modeling the data themselves depend on background theoretical positions. I aim at clarifying how preference for a given model and theoretical commitments articulate. -
Biography (Modified, After Festetics 1983)
Konrad Lorenz’s Biography (modified, after Festetics 1983) 1903: Konrad Zacharias Lorenz (KL) was born in Altenberg /Austria on Nov. 7 as the last of three children of Emma Lorenz and Dr. Adolf Lorenz, professor for orthopedics at the Medical branch of the University of Vienna. In the same year the representative and spacious Altenberg family home was finished. 1907: KL starts keeping animals, such as spotted newts in aquaria, raises some ducklings and is not pleased by his first experiences with a dachshound. Niko Tinbergen, his lifelong colleague and friend, is born on April 15 in Den Haag, The Netherlands. 1909: KL enters elementary school and engages in systematic studies in crustaceans. 1910: Oskar Heinroth, biologist and founder of "Vergleichende Verhaltensforschung" (comparative ethology) from Berlin and fatherlike scientific mentor of the young KL publishes his classical paper on the ethology of ducks. 1915: KL enters highschool (Schottengymnasium Wien), keeps and breeds songbirds. 1918: Wallace Craig publishes the comparative ethology of Columbidae (pigeons), a classics of late US biologist Charles O. Whitman, who was like O. Heinroth, a founding father of comparative ethology. 1921: KL excels in his final exams. Together with friend Bernhard Hellmann, he observes and experiments with aggression in a cichlid (Herichthys cyanoguttatum). This was the base for KL's psychohydraulic model of motivation. 1922: Father Adolf sends KL to New York to take 2 semesters of medicine courses at the ColumbiaUniversity, but mainly to interrupt the relationship of KL with longterm girlfriend Gretl Gebhart, his later wife. This paternal attempt to influence the mate choice of KL failed. -
Barbara Mcclintock
Barbara McClintock Lee B. Kass and Paul Chomet Abstract Barbara McClintock, pioneering plant geneticist and winner of the Nobel Prize in Physiology or Medicine in 1983, is best known for her discovery of transposable genetic elements in corn. This chapter provides an overview of many of her key findings, some of which have been outlined and described elsewhere. We also provide a new look at McClintock’s early contributions, based on our readings of her primary publications and documents found in archives. We expect the reader will gain insight and appreciation for Barbara McClintock’s unique perspective, elegant experiments and unprecedented scientific achievements. 1 Introduction This chapter is focused on the scientific contributions of Barbara McClintock, pioneering plant geneticist and winner of the Nobel Prize in Physiology or Medicine in 1983 for her discovery of transposable genetic elements in corn. Her enlightening experiments and discoveries have been outlined and described in a number of papers and books, so it is not the aim of this report to detail each step in her scientific career and personal life but rather highlight many of her key findings, then refer the reader to the original reports and more detailed reviews. We hope the reader will gain insight and appreciation for Barbara McClintock’s unique perspective, elegant experiments and unprecedented scientific achievements. Barbara McClintock (1902–1992) was born in Hartford Connecticut and raised in Brooklyn, New York (Keller 1983). She received her undergraduate and graduate education at the New York State College of Agriculture at Cornell University. In 1923, McClintock was awarded the B.S. -
Mendel, No. 14, 2005
THE MENDEL NEWSLETTER Archival Resources for the History of Genetics & Allied Sciences ISSUED BY THE LIBRARY OF THE AMERICAN PHILOSOPHICAL SOCIETY New Series, No. 14 March 2005 A SPLENDID SUCCESS As promised in this newsletter last year, the American Philosophical Society Library hosted the October 2004 conference, “Descended from IN THIS ISSUE Darwin: Insights into American Evolutionary Studies, 1925-1950”. In total, eighteen speakers and over thirty participants spent two days discussing the • The Correspondence of the Tring current state of scholarship in this area. Some papers focused on particular researchers and their theoretical projects. Others worked to place work from Museum at the Natural History the period into larger historical contexts. Professor Michael Ruse delivered Museum, London the keynote address, a popular lecture on the differences in emphasis when evolutionists present their work in public versus professional spheres. It • The Cyril Dean Darlington Papers was a capacity crowd and a roaring success. Thanks to the ‘Friends of the Library’ for the grand reception. • Joseph Henry Woodger (1894-1981) This conference had a real buzz about it. I had the sense we scholars Papers at University College London are on the brink of significant developments in our understanding of the period. Moreover, considerable progress is being made on how we might • Where to Look Next?: Agricultural relate this period to research underway in the decades before and after. New Archives as Resources for the History archives, new ideas, new opportunities. of Genetics As organiser, I’d like to express my thanks to the participants for the hard work done to prepare. -
Calvin Bridges' Experiments on Nondisjunction As Evidence for The
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Calvin Bridges’ Experiments on Nondisjunction as Evidence for the Chromosome Theory of Heredity (1913-1916) [1] By: Gleason, Kevin Keywords: Thomas Hunt Morgan [2] Drosophila [3] From 1913 to 1916, Calvin Bridges performed experiments that indicatedg enes [5] are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan [6] in New York, New York. In his experiments, Bridges studied Drosophila [7], the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm [8] and egg [9] cells. Nondisjunction, as described by Bridges, caused sperm [8] or egg [9] cells to contain abnormal amounts of chromosomes. In some cases, that caused the offspring produced by the sperm [8] or eggs to display traits that they would typically not have. His research on nondisjunction provided evidence that chromosomes carry genetic traits, including those that determine the sex of an organism. At the beginning of the twentieth century, other researchers were starting to establish the role that chromosomes play in heredity. In 1910, Morgan provided some evidence that genes [5], or the material factors that were thought to control heredity, are located on the chromosome. While Morgan was mating Drosophila [10], which typically had red eyes, Morgan found that one of the offspring flies had white eyes. He proceeded to mate the white-eyed fly with other flies, and he observed a generation of offspring in which only some of the male offspring, but only the male offspring, had white eyes. -
Alfred Henry Sturtevant (1891–1970) [1]
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Alfred Henry Sturtevant (1891–1970) [1] By: Gleason, Kevin Keywords: Thomas Hunt Morgan [2] Drosophila [3] Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In 1913, as an undergraduate, Sturtevant created one of the earliest genetic maps of a fruit fly chromosome, which showed the relative positions of genes [4] along the chromosome. At the California Institute of Technology [5] in Pasadena, California, he later created one of the firstf ate maps [6], which tracks embryonic cells throughout their development into an adult organism. Sturtevant’s contributions helped scientists explain genetic and cellular processes that affect early organismal development. Sturtevant was born 21 November 1891 in Jacksonville, Illinois, to Harriet Evelyn Morse and Alfred Henry Sturtevant. Sturtevant was the youngest of six children. During Sturtevant’s early childhood, his father taught mathematics at Illinois College in Jacksonville. However, his father left that job to pursue farming, eventually relocating seven-year-old Sturtevant and his family to Mobile, Alabama. In Mobile, Sturtevant attended a single room schoolhouse until he entered a public high school. In 1908, Sturtevant entered Columbia University [7] in New York City, New York. As a sophomore, Sturtevant took an introductory biology course taught by Morgan, who was researching how organisms transfer observable characteristics, such as eye color, to their offspring.