Grazing Dynamics of the Pinfish (Lagodon Rhomboides) on Thalassia Testudinum and Halimeda Incrassata Across a Temperature Gradie

Total Page:16

File Type:pdf, Size:1020Kb

Grazing Dynamics of the Pinfish (Lagodon Rhomboides) on Thalassia Testudinum and Halimeda Incrassata Across a Temperature Gradie Grazing dynamics of the pinfish (Lagodon rhomboides) on Thalassia testudinum and Halimeda incrassata across a temperature gradient in the Florida Keys and implications for Ciguatera Fish Poisoning A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfilment of the Requirement for the Degree of Master of Science By Kathryn Alissa Ribble 2019 i Florida Gulf Coast University Thesis APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Kathryn Alissa Ribble Approved: December 2, 2019 ___________________________ Michael Parsons, Ph.D., Advisor ___________________________ James Douglass, Ph.D., Committee Member ___________________________ Brian Bovard, Ph.D., Committee Member The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above-mentioned discipline. ii ACKNOWLEDGMENTS Writing these acknowledgments allows me the time to reflect on the knowledge and experience I have gained from pursuing my Master of Science degree. When I started this program, I was unaware of how immense some of the challenges and opportunities would be that came from attending graduate school. I have learned just how much effort goes into completing a masters degree and how willing people are to help you pursue your endeavors. Through hard work and with the support of many others I was able to successfully earn my Masters of Science degree! I would first like to thank my advisor Dr. Mike Parsons who initially gave me a job in his lab years ago and ultimately inspired me to get my masters degree. He has guided me through the challenges of creating a research project and enhanced my scientific writing skills in addition to providing myself and lab mates with awesome places to conduct field research and giving us the opportunities to experience and participate in scientific conferences around the country. Additionally, my committee members Dr. James Douglass and Dr. Brian Bovard were an integral part in helping me write and interpret the data I collected for this project. Funding and support were provided by the NOAA NCCOS ECOHAB program (award N1A17NOS4780181), the Florida Gulf Coast University Department of Marine and Earth Sciences, the Jean and Bill Wilshere Endowment for Innovative Research in Environmental Science scholarship, the Wanda G. Tolley Scholarship Endowed Fund, the Dan Cassani Memorial Fund for Marine Fish Research and Conservation, the Community Foundation of Sarasota County, and the Angler Action Foundation for providing me the iii funding to go back to school for my masters degree. These organizations made it financially possible for me to achieve this goal. There are many individuals who were a large part in helping me throughout this experience. Of them, Nicholas Culligan has been my rock. Whether it was helping me set up and break down the same 50-gallon seagrass tank for the 7th time, collect samples for my many attempts at setting up my experiment, making me laugh when I had a bad day, or inspiring me when I felt uninspired, he helped make the difficult parts of this experience a little less difficult. I would also like to acknowledge the help and support that my family gave me throughout this process; thank you Andrea, Steven, and Kimbra Ribble. Lastly, I would like to thank Anne Smiley, Andrea James, Adam Catasus, Jeff Zingre, and Allie Bury for being such good friends and helping me with this project in various ways. Attending graduate school has been a rewarding challenge that I would not have wanted to do without the help and support of all the people aforementioned. As the quote by Helen Keller goes, “alone we can do so little; together we can do so much”, I too believe that this project and experience would not have been as successful without the support from all of them. Thank you all so much! iv ABSTRACT Seagrass beds are an important component of coastal environments and serve as important nursery grounds for juvenile and commercially important fish species. Seagrass beds are often monospecific, composed of just one species of seagrass. However, macroalgal species such as Halimeda, Laurencia, and Dictyota (among others) can also be found in seagrass beds in quantities that vary depending on many factors including grazing pressures. This study focuses on the grazing dynamics of Lagodon rhomboides (commonly referred to as pinfish) between two different macrophytes (Thalassia testudinum and Halimeda incrassata) over a temperature gradient in a laboratory setting representative of a seagrass bed from the middle Florida Keys (Heine Grass Bed; HGB). HGB, where samples were collected for this study, is a long-term study site for Ciguatera Fish Poisoning (CFP) research as well. CFP is a form of food poisoning in humans who consume tropical reef fish that have accumulated high levels of ciguatoxins. Ciguatoxins are naturally produced lipid-soluble toxins produced by the benthic dinoflagellate, Gambierdiscus, which enter reef food webs through the consumption of these epiphytic cells by herbivorous fishes. Thalassia testudinum and Halimeda incrassata are known to harbor high quantities of toxic Gambierdiscus species within their associated epiphytic community in areas such as HGB. The overall objective of this study is to examine the grazing dynamics of pinfish on Thalassia testudinum and Halimeda incrassata under varying temperatures within a seagrass bed environment (HGB) in the middle Florida Keys. This study will also aid in determining how ciguatoxins are being introduced into the marine food web through grazing processes occurring within seagrass beds in the middle Florida Keys and assist modeling efforts for CFP outbreaks. Additionally, it will v identify if specific temperatures influence the grazing behaviors of pinfish which will lend insight into how grazing pressures change seasonally and how they may change as the climate warms. This study found that pinfish did not consume one macrophyte agar (Thalassia testudinum or Halimeda incrassata) at a significantly higher amount than the other at ambient temperature. In addition, the results also suggest that pinfish are not significantly increasing their grazing intensity on Thalassia testudinum agar across a temperature gradient (22°C – 30°C). However, the grazing intensity of pinfish on Halimeda incrassata agar did significantly increase with increasing temperature but the strength of this linear correlation is fairly weak (R2 = 0.2154). Finally, pinfish ate a marginally significantly larger amount of the Halimeda incrassata agar cubes than the Thalassia testudinum agar cubes over the temperature gradient tested (22°C – 30°C; p = 0.052). vi TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................. iii ABSTRACT .......................................................................................................................v TABLE OF CONTENTS .............................................................................................. vii LIST OF FIGURES ........................................................................................................ ix LIST OF TABLES ......................................................................................................... xii 1. INTRODUCTION .........................................................................................................1 1.1. Importance of Seagrass Ecosystems .............................................................1 1.2. Role of Grazers in Seagrass Ecosystems ......................................................3 1.3. Target Species .................................................................................................6 1.3.1. Thalassia testudinum ......................................................................6 1.3.2. Halimeda incrassata ........................................................................8 1.3.3. Lagodon rhomboides (Pinfish) ....................................................10 1.4. Ciguatera Fish Poisoning ............................................................................12 1.5. Study Overview ............................................................................................20 2. RESEARCH PURPOSE .............................................................................................21 3. METHODS ..................................................................................................................22 3.1. Study Site ......................................................................................................22 3.2. Field Collection Procedures ........................................................................23 3.3. Experimental Set Up ....................................................................................27 3.3.1. Control Trial ...................................................................................31 3.3.2. Experimental Trials .......................................................................32 3.4. Data Analysis ................................................................................................34 4. RESULTS ....................................................................................................................36 4.1. Overview .......................................................................................................36
Recommended publications
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]
  • Growth and Mortality of Lagodon Rhomboides (Pisces: Sparidae)
    GROWTH AND MORTALITY OF LAGODON RHOMBOIDES (PISCES: SPARIDAE) IN A TROPICAL COASTAL LAGOON IN NORTHWESTERN YUCATAN, MEXICO CRECIMIENTO Y MORTALIDAD DE LAGODON RHOMBOIDES (PISCES: SPARIDAE) EN UNA LAGUNA TROPICAL COSTERA EN EL NOROESTE DE YUCATÁN, MÉXICO José Luis Bonilla-Gómez1*, Jorge A. López-Rocha2, Maribel Badillo Alemán2, Juani Tzeek Tuz2 and Xavier Chiappa-Carrara2 ABSTRACT Growth and mortality were estimated for the Lagodon rhomboides pinfish inhabiting La Carbonera, a tropical coastal lagoon on the northwestern coast of the Yucatan Peninsula, Mexico. A total of 448 juvenile and adult individuals were collected monthly between April 2009 and May 2010. The length-weight relationship was calculated and the monthly variation in the condition factor was analyzed. Growth was estimated through the von Bertalanffy growth equation using a length frequency analysis. In addition, mortality was estimated and analyzed. Results showed that fish caught were between 2.1 and 20.0 cm long with an average length of 9.42 cm. The length-weight relationship showed isometric growth. The von Bertalanffy growth model parameters -1 were: L∞ = 21.0 cm, W∞ = 163.46 g, k = 1.1 year and t0 = - 0.158 years. Instantaneous mortality rates were 2.11 and 2.61 year-1 as estimated by the method used. According to the results, growth estimates of L. rhomboi- des along the northwestern coast of Yucatan are higher than those found in the population studied in Florida, suggesting a strong influence of environmental conditions in the growth pattern of this species. This study provides the first growth and mortality estimates forL. rhomboides in the Yucatan Peninsula, which is relevant for the proper implementation of conservation measures for this species.
    [Show full text]
  • Texas Abandoned Crab Trap Removal Program Texas ACTRP
    Texas Abandoned Crab Trap Removal Program Texas ACTRP • Senate Bill 1410 - Passed during 77th Legislative session (2001) – Mandated 10-day closure period in February • Conducted annually since 2002 – ~ 12,000 voluntary hours (> 3,000 volunteers) – > 1,000 vessels –> 35,000 traps! Commercial Crab Trap Tags in Texas 100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 0 92 94 96 98 178 Licenses, 200 traps per license Condition Assessment • From 2002-2003, we performed an assessment study of retrieved traps looking at location, condition, bycatch, etc. Condition Assessment of Traps • 1,703 traps studied • 12% located on seagrass beds • 46% had ID present • 63% in fishable condition • 42% degradable panel present • 33% open • Oldest confirmed trap dated 1991 • 3 Diamondback terrapins Number % of Species Observed Scientific Name Observed Total Blue crab Callinectes sapidus 314 49 Stone crab Menippe adina 179 28 Sheepshead Archosargus probatocephalus 48 7 Thinstripe hermit crab Clibanarius vittatus 30 5 Gulf toadfish Opsanus beta 28 4 Black drum Pogonias cromis 12 2 Hardhead catfish Arius felis 6 1 Striped mullet Mugil cephalus 6 1 Red drum Sciaenops ocellatus 4 1 Pinfish Lagodon rhomboides 3 <0.01 Bay whiff Citharichthys spilopterus 3 <0.01 Diamondback terrapin Malaclemys terrapin littoralis 3 <0.01 Longnose spider crab Libinia dubia 2 <0.01 Southern flounder Paralichthys lethostigma 2 <0.01 Spotted scorpionfish Scorpaena plumieri 2 <0.01 Pelecypoda Rangia spp. 1 <0.01 Musk turtle Family Kinosternidae 1 <0.01 Spotted seatrout Cynoscion
    [Show full text]
  • Key Factors Influencing the Occurrence and Frequency of Ciguatera
    ResearchOnline@JCU This file is part of the following work: Sparrow, Leanne (2017) Key factors influencing the occurrence and frequency of ciguatera. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5d48bba175630 Copyright © 2017 Leanne Sparrow. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] SPARROW, LEANNE B.Arts – Town Planning B.Sc – Marine Biology; M.App.Sc – Phycology KEY FACTORS INFLUENCING THE OCCURRENCE AND FREQUENCY OF CIGUATERA Doctor of Philosophy College of Science and Engineering James Cook University Submitted: 30 July 2017 Acknowledgements The production of this thesis is the end of a long and challenging journey. While I have endured numerous challenges, I have also gained so much more in experiences along the way – there have been so many wonderful people that I had the fortune to meet through tutoring, work and research. Firstly, I would like to acknowledge my supervisors for their support and contributions to experimental design and editorial advice. In particular I would like to thank Kirsten Heimann, apart from her intellectual guidance and support, she has provided emotional, financial, mentoring and friendship over the years prior and during this research – thank you. I would also like to thank Garry Russ and Leone Bielig for the guidance and the supportive chats that kept me sane towards the end. Out in the field the support and interest of the then managers, Kylie and Rob at Orpheus Island Research Station was greatly appreciated.
    [Show full text]
  • Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus Belizeanus
    toxins Article Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus belizeanus Àngels Tudó 1, Greta Gaiani 1, Maria Rey Varela 1 , Takeshi Tsumuraya 2 , Karl B. Andree 1, Margarita Fernández-Tejedor 1 ,Mònica Campàs 1 and Jorge Diogène 1,* 1 Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; [email protected] (À.T.); [email protected] (G.G.); [email protected] (M.R.V.); [email protected] (K.B.A.); [email protected] (M.F.-T.); [email protected] (M.C.) 2 Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan; [email protected] * Correspondence: [email protected] Received: 22 September 2020; Accepted: 27 October 2020; Published: 31 October 2020 Abstract: Ciguatera Poisoning (CP) is a human food-borne poisoning that has been known since ancient times to be found mainly in tropical and subtropical areas, which occurs when fish or very rarely invertebrates contaminated with ciguatoxins (CTXs) are consumed. The genus of marine benthic dinoflagellates Gambierdiscus produces CTX precursors. The presence of Gambierdiscus species in a region is one indicator of CP risk. The Canary Islands (North Eastern Atlantic Ocean) is an area where CP cases have been reported since 2004. In the present study, samplings for Gambierdiscus cells were conducted in this area during 2016 and 2017. Gambierdiscus cells were isolated and identified as G. australes, G. excentricus, G. caribaeus, and G.
    [Show full text]
  • Saltwater Fish Identification Guide
    Identification Guide To South Carolina Fishes Inshore Fishes Red Drum (Spottail, redfish, channel bass, puppy drum,) Sciaenops ocellatus May have multiple spots along dorsal surface.. RKW Black Drum Pogonias cromis Broad black vertical bars along body. Barbells on chin. Spotted Seatrout (Winter trout, speckled trout) Cynoscion nebulosus Numerous distinct black spots on dorsal surface. Most commonly encountered in rivers and estuaries. RKW Most commonly encountered just offshore around live bottom and artificial reefs. Weakfish (Summer trout, Gray trout) Cynoscion regalis RKW Silver coloration with no spots. Large eye Silver Seatrout Cynoscion nothus RKW Spot Leiostomus xanthurus Distinct spot on shoulder. RKW Atlantic Croaker (Hardhead) Micropogonias undulatus RKW Silver Perch (Virginia Perch) Bairdiella chrysoura RKW Sheepshead Archosargus probatocephalus Broad black vertical bars along body. RKW Pinfish (Sailors Choice) Lagodon rhomboides Distinct spot. RKW Southern Kingfish (Whiting) Menticirrhus americanus RKW Extended 1st dorsal filament Northern Kingfish SEAMAP- Menticirrhus saxatilis SA:RPW Dusky 1st dorsal-fin tip Black caudal fin tip Gulf Kingfish SEAMAP- Menticirrhus littoralis SA:RPW Southern flounder Paralichthys lethostigma No ocellated spots . RKW Summer flounder Paralichthys dentatus Five ocellated spots in this distinct pattern. B. Floyd Gulf flounder Paralichthys albigutta B. Floyd Three ocellated spots in a triangle pattern. B. Floyd Bluefish Pomatomus saltatrix RKW Inshore Lizardfish Synodus foetens RKW RKW Ladyfish Elops saurus Florida Pompano Trachinotus carolinus RKW Lookdown Selene vomer RKW Spadefish Chaetodipterus faber Juvenile RKW Juvenile spadefish are commonly found in SC estuaries. Adults, which look very similar to the specimen shown above, are common inhabitants of offshore reefs. Cobia Rachycentron canadum Adult D. Hammond Juvenile RKW D.
    [Show full text]
  • Hábitos Alimenticios Del Pez Lagodon Rhomboides (Perciformes: Sparidae) En La Laguna Costera De Chelem, Yucatán, México
    Hábitos alimenticios del pez Lagodon rhomboides (Perciformes: Sparidae) en la laguna costera de Chelem, Yucatán, México Walter Gabriel Canto-Maza & María Eugenia Vega-Cendejas Laboratorio de Taxonomía y Ecología de Peces, CINVESTAV-IPN, Unidad Mérida, km 6 antigua carretera a Progreso. AP 73 Cordemex. 97310 Mérida, Yucatán; México; [email protected] Received 13-VIII-2007. Corrected 30-VI-2008. Accepted 31-VII-2008. Abstract: Feeding habits of the fish Lagodon rhomboides (Perciformes: Sparidae) at the coastal lagoon of Chelem, Yucatán, México. Stomach contents of Lagodon rhomboides, the most abundant fish species from seagrass beds in Chelem Lagoon, Yucatan, Mexico, were analyzed. The specimens were collected using a beach seine at eight stations distributed randomly in the lagoon during July, September and November 2002. The trophic components were analyzed by means of the relative abundance (%A) and frequency of occurrence (FO) indices. The trophic similarity between different ontogenetic stages was determined using the Bray-Curtis Index. A total of 90 stomach contents were analyzed. This species is omnivorous, including vegetal and animal material and has a wide trophic spectrum with 58 alimentary items. Trophic ontogenetic variation was significant with a transition from one feeding stage to the next. Small individuals (4.0 -8.0 cm LE) preferentially consume plankton preys and microcrustaceans, while in bigger sizes, the macrocrustaceans, annelids and macrophytes were the main food. Rev. Biol. Trop. 56 (4): 1837-1846. Epub 2008
    [Show full text]
  • A Comparison of Blood Gases, Biochemistry, and Hematology to Ecomorphology in a Health Assessment of Pinfish (Lagodon Rhomboides)
    A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides) Sara Collins1, Alex Dornburg2, Joseph M. Flores2, Daniel S. Dombrowski3 and Gregory A. Lewbart4 1 College of Veterinary Medicine, University of Georgia, Athens, GA, United States 2 Research and Collections, North Carolina Museum of Natural Sciences, Raleigh, NC, United States 3 Veterinary Services Unit, North Carolina Museum of Natural Sciences, Raleigh, NC, United States 4 Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States ABSTRACT Despite the promise of hematological parameters and blood chemistry in monitoring the health of marine fishes, baseline data is often lacking for small fishes that comprise central roles in marine food webs. This study establishes blood chemistry and hematological baseline parameters for the pinfish Lagodon rhomboides, a small marine teleost that is among the most dominant members of near-shore estuarine communities of the Atlantic Ocean and Gulf of Mexico. Given their prominence, pinfishes are an ideal candidate species to use as a model for monitoring changes across a wide range of near-shore marine communities. However, pinfishes exhibit substantial morphological differences associated with a preference for feeding in primarily sea- grass or sand dominated habitats, suggesting that differences in the foraging ecology of individuals could confound health assessments. Here we collect baseline data on the blood physiology of pinfish while assessing the relationship between blood parameters and measured aspects of feeding morphology using data collected from 37 individual fish. Our findings provide new baseline health data for this important near shore Submitted 19 February 2016 fish species and find no evidence for a strong linkage between blood physiology and Accepted 26 June 2016 either sex or measured aspects of feeding morphology.
    [Show full text]
  • Molecular Identification of Gambierdiscus and Fukuyoa
    marine drugs Short Note Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae) from Environmental Samples Kirsty F. Smith 1,*, Laura Biessy 1, Phoebe A. Argyle 1,2, Tom Trnski 3, Tuikolongahau Halafihi 4 and Lesley L. Rhodes 1 1 Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand; [email protected] (L.B.); [email protected] (P.A.A.); [email protected] (L.L.R.) 2 School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Avenue, Christchurch 8041, New Zealand 3 Auckland War Memorial Museum, Private Bag 92018, Victoria Street West, Auckland 1142, New Zealand; [email protected] 4 Ministry of Fisheries, P.O. Box 871, Nuku’alofa, Tongatapu, Tonga; [email protected] * Correspondence: [email protected]; Tel.: +64-3-548-2319 Received: 30 March 2017; Accepted: 28 July 2017; Published: 2 August 2017 Abstract: Ciguatera Fish Poisoning (CFP) is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga.
    [Show full text]
  • Living Resources Report Texas A&M University-Corpus Christi Results - Open Bay Habitat
    Center for Coastal Studies CCBNEP Living Resources Report Texas A&M University-Corpus Christi Results - Open Bay Habitat B. Living Resources - Habitats Detailed community profiles of estuarine habitats within the CCBNEP study area are not available. Therefore, in the following sections, the organisms, community structure, and ecosystem processes and functions of the major estuarine habitats (Open Bay, Oyster Reef, Hard Substrate, Seagrass Meadow, Coastal Marsh, Tidal Flat, Barrier Island, and Gulf Beach) within the CCBNEP study area are presented. The following major subjects will be addressed for each habitat: (1) Physical setting and processes; (2) Producers and Decomposers; (3) Consumers; (4) Community structure and zonation; and (5) Ecosystem processes. HABITAT 1: OPEN BAY Table Of Contents Page 1.1. Physical Setting & Processes ............................................................................ 45 1.1.1 Distribution within Project Area ......................................................... 45 1.1.2 Historical Development ....................................................................... 45 1.1.3 Physiography ...................................................................................... 45 1.1.4 Geology and Soils ................................................................................ 46 1.1.5 Hydrology and Chemistry ................................................................... 47 1.1.5.1 Tides .................................................................................... 47 1.1.5.2 Freshwater
    [Show full text]
  • Growing MARINE BAITFISH a Guide to Florida’S Common Marine Baitfish and Their Potential for Aquaculture
    growing MARINE BAITFISH A guide to Florida’s common marine baitfish and their potential for aquaculture This publication was supported by the National Sea Grant College Program of the U.S. Department of Commerce’s National Oceanic and Atmospheric Administration (NOAA) under NOAA Grant No. NA10 OAR-4170079. The views expressed are those of the authors and do not necessarily reflect the views of these organizations. Florida Sea Grant University of Florida || PO Box 110409 || Gainesville, FL, 32611-0409 (352)392-2801 || www. flseagrant.org Cover photo by Robert McCall, Ecodives, Key West, Fla. growing MARINE BAITFISH A guide to Florida’s common marine baitfish and their potential for aquaculture CORTNEY L. OHS R. LEROY CRESWEll MATTHEW A. DImaGGIO University of Florida/IFAS Indian River Research and Education Center 2199 South Rock Road Fort Pierce, Florida 34945 SGEB 69 February 2013 CONTENTS 2 Croaker Micropogonias undulatus 3 Pinfish Lagodon rhomboides 5 Killifish Fundulus grandis 7 Pigfish Orthopristis chrysoptera 9 Striped Mullet Mugil cephalus 10 Spot Leiostomus xanthurus 12 Ballyhoo Hemiramphus brasiliensis 13 Mojarra Eugerres plumieri 14 Blue Runner Caranx crysos 15 Round Scad Decapterus punctatus 16 Goggle-Eye Selar crumenophthalmus 18 Atlantic Menhaden Brevoortia tyrannus 19 Scaled Sardine Harengula jaguana 20 Atlantic Threadfin Opisthonema oglinum 21 Spanish Sardine Sardinella aurita 22 Tomtate Haemulon aurolineatum 23 Sand Perch Diplectrum formosum 24 Bay Anchovy Anchoa mitchilli 25 References 29 Example of Marine Baitfish Culture: Pinfish ABOUT Florida’s recreational fishery has a $7.5 billion annual economic impact—the highest in the United States. In 2006 Florida’s recreational saltwater fishery alone had an economic impact of $5.2 billion and was responsible for 51,500 jobs.
    [Show full text]
  • Marine Baitfish Culture
    MARINE BAITFISH CULTURE Workshop Report on Candidate Species & Considerations for Commercial Culture in the Southeast U.S. December 2004 Florida Sea Grant Extension Program Maryland Sea Grant Extension Program Virginia Sea Grant Marine Advisory Program This publication was supported by funds from the National Sea Grant College Program through Virginia Sea Grant Program grant number NA96RG0025. VSG-04-12 Marine Resource Advisory No. 77 Line drawings, courtesy of the National Oceanic and Atmospheric Administration/ Department of Commerce Photo Library. Additional copies of this publication are available from Virginia Sea Grant, at: Sea Grant Communications Virginia Institute of Marine Science P.O. Box 1346 Gloucester Point, VA 23062 (804) 684-7170 www.vims.edu/adv/ Marine Baitfish Culture: Workshop Report on Candidate Species & Considerations for Commercial Culture in the Southeast U.S. Compiled and written by Michael J. Oesterling Virginia Sea Grant Marine Advisory Program Virginia Institute of Marine Science College of William and Mary Gloucester Point, Virginia Charles M. Adams Florida Sea Grant Extension Program University of Florida Gainesville, Florida Andy M. Lazur Maryland Sea Grant Extension Program Horn Point ENvironmental Laboratory University of Maryland Cambridge, Maryland This document is the result of a workshop on research, outreach, and policy needs which could lead to the expansion of marine finfish culture for use as recreational angling bait along the coasts of the eastern United States. The workshop was convened in February 2004 in Ruskin, Florida. The list of potential species and the identification of impediments discussed in this document were developed through consensus of the workshop participants. December 2004 nvestigations of new finfish species targeted for marine finfish currently being used as live bait by I marine aquaculture production should involve the recreational angling community throughout critical evaluations for culture potential based the Southeast.
    [Show full text]