Tunas, Billfishes and Other Pelagic Species in the Eastern Pacific Ocean in 2016

Total Page:16

File Type:pdf, Size:1020Kb

Tunas, Billfishes and Other Pelagic Species in the Eastern Pacific Ocean in 2016 TUNAS, BILLFISHES AND OTHER PELAGIC SPECIES IN THE EASTERN PACIFIC OCEAN IN 2016 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 65 C. Skipjack tuna ..................................................................................................................................... 76 D. Bigeye tuna........................................................................................................................................ 79 E. Pacific bluefin tuna ........................................................................................................................... 90 F. Albacore tuna .................................................................................................................................... 97 G. Swordfish ........................................................................................................................................ 106 H. Blue marlin ...................................................................................................................................... 110 I. Striped marlin .................................................................................................................................. 112 J. Sailfish ............................................................................................................................................ 116 K. Updated stock status indicators for silky sharks in the eastern Pacific Ocean (1994-2016) ........... 121 L. Ecosystem considerations ............................................................................................................... 124 INTRODUCTION This report provides a summary of the fishery for tunas in the eastern Pacific Ocean (EPO), summary assessments of the major stocks of tunas and billfishes that are exploited in the fishery, updated stock status indicators for silky sharks, and an evaluation of the pelagic ecosystem in the EPO, in 2016. The report is based on data available to the IATTC staff in March 2017. As a result, some of the data tables for 2016 are incomplete, and all data for 2015 and 2016 should be considered preliminary. All weights of catches and discards are in metric tons (t). In the tables, 0 means no effort, or a catch of less than 0.5 t; - means no data collected; * means data missing or not available. The following acronyms are used: Species: TUN Unidentified tunas ALB Albacore tuna (Thunnus alalunga) YFT Yellowfin tuna (Thunnus albacares) BET Bigeye tuna (Thunnus obesus) Fishing gears: BIL Unidentified istiophorid billfishes FPN Trap BKJ Black skipjack (Euthynnus lineatus) GN Gillnet BLM Black marlin (Makaira indica) HAR Harpoon BUM Blue marlin (Makaira nigricans) LL Longline BZX Bonito (Sarda spp.) LP Pole and line CAR Chondrichthyes, cartilaginous fishes nei1 LTL Troll CGX Carangids (Carangidae) LX Hook and line DOX Dorado (Coryphaena spp.) OTR Other2 MLS Striped marlin (Kajikia audax) NK Unknown MZZ Osteichthyes, marine fishes nei PS Purse seine PBF Pacific bluefin tuna (Thunnus orientalis) RG Recreational SFA Indo-Pacific sailfish (Istiophorus TX Trawl platypterus) Ocean areas: SKJ Skipjack tuna (Katsuwonus pelamis) EPO Eastern Pacific Ocean SKX Unidentified elasmobranchs WCPO Western and Central Pacific SSP Shortbill spearfish (Tetrapturus Ocean angustirostris) Set types: SWO Swordfish (Xiphias gladius) DEL Dolphin 1 not elsewhere included 2 Used to group known gear types NOA Unassociated school S Index of spawning biomass OBJ Floating object SBR Spawning biomass ratio LOG: Flotsam SSB Spawning stock biomass FAD: Fish-aggregating device Flags: IATTC Members & cooperating non-Members BLZ Belize BOL Bolivia CAN Canada CHN China COL Colombia CRI Costa Rica ECU Ecuador EU European Union EU (CYP) Cyprus EU (ESP) Spain EU (PRT) Portugal FRA France GTM Guatemala HND Honduras IDN Indonesia JPN Japan KIR Kiribati KOR Republic of Korea LBR Liberia MEX Mexico NIC Nicaragua PAN Panama PER Peru SLV El Salvador TWN Chinese Taipei USA United States of America VEN Venezuela VUT Vanuatu Other flags CHL Chile COK Cook Islands CYM Cayman Islands NZL New Zealand RUS Russia VCT St. Vincent and the Grenadines UNK Unknown Stock assessment: B Biomass C Catch CPUE Catch per unit of effort F Rate of fishing mortality MSY Maximum sustainable yield A. THE FISHERY FOR TUNAS AND BILLFISHES IN THE EASTERN PACIFIC OCEAN 1. Catches and landings of tunas, billfishes, and associated species ....................................................... 3 1.1. Catches by species ............................................................................................................................... 4 1.2. Distributions of the catches of tunas ................................................................................................... 7 1.3. Size compositions of the catches of tunas ........................................................................................... 7 1.4. Catches of tunas and bonitos, by flag and gear ................................................................................... 9 2. Fishing effort ..................................................................................................................................... 10 2.1. Purse seine ......................................................................................................................................... 10 2.2. Longline ............................................................................................................................................ 10 3. The fleets ........................................................................................................................................... 10 3.1. Purse-seine and pole-and-line fleets .................................................................................................. 10 3.2. Other fleets of the EPO ..................................................................................................................... 12 This document summarizes the fisheries for species covered by the IATTC Convention (tunas and other fishes caught by tuna-fishing vessels) in the eastern Pacific Ocean (EPO). The most important of these are the scombrids (Family Scombridae), which include tunas, bonitos, seerfishes, and mackerels. The principal species of tunas caught are yellowfin, skipjack, bigeye, and albacore, with lesser catches of Pacific bluefin, black skipjack, and frigate and bullet tunas; other scombrids, such as bonitos and wahoo, are also caught. This document also covers other species caught by tuna-fishing vessels in the EPO: billfishes (swordfish, marlins, shortbill spearfish, and sailfish) carangids (yellowtail, rainbow runner, and jack mackerel), dorado, elasmobranchs (sharks, rays, and skates), and other fishes. Most of the catches are made by the purse-seine and longline fleets; the pole-and-line fleet and various artisanal and recreational fisheries account for a small percentage of the total catches. Detailed data are available for the purse-seine and pole-and-line fisheries; the data for the longline, artisanal, and recreational fisheries are incomplete. The IATTC Regional Vessel Register contains details of vessels authorized to fish for tunas in the EPO. The IATTC has detailed records of most of the purse-seine and pole-and-line vessels that fish for yellowfin, skipjack, bigeye, and/or Pacific bluefin tuna in the EPO. The Register is incomplete for small vessels. It contains records for most large (overall length >24 m) longline vessels that fish in the EPO and in other areas. The data in this report are derived from various sources, including vessel logbooks, observer data, unloading records provided by canners and other processors, export and import records, reports from governments and other entities, and estimates derived from the species and size composition sampling program. 1. CATCHES AND LANDINGS OF TUNAS, BILLFISHES, AND ASSOCIATED SPECIES Estimating the total catch of a species of fish is difficult, for various reasons. Some fish are discarded at sea, and the data for some gear types are incomplete. Data for fish discarded at sea by purse-seine vessels with carrying capacities greater than 363 metric tons (t) have been collected by observers since 1993, which allows for better estimation of the total amounts of fish caught by the purse-seine fleet. Estimates of the total amount of the catch that is landed (hereafter referred to as the retained catch) are based principally on data from unloadings. Beginning with Fishery Status Report 3, which reports on the fishery in 2004, the unloading data for purse-seine and pole-and-line vessels have been adjusted, based on the species composition estimates for yellowfin, skipjack, and bigeye tunas. The current species composition sampling program, described in Section 1.3.1, began in 2000, so the catch data for 2000-2016 are adjusted, based on estimates by flag for each year. The catch data for the previous years were adjusted by applying the average ratio by species from the 2000-2004 estimates, by flag, and summing over all flags. This has tended to increase the estimated catches of bigeye and decrease those of yellowfin and/or skipjack. These adjustments are all preliminary, and may be improved in the future. All of the purse-seine and pole-and-line data for 3 are all preliminary, and
Recommended publications
  • Breeding in an Oceanic Population of Pleuroncodes Planipes (Crustacea, Galatheidae) 1 ALAN R
    Breeding in an Oceanic Population of Pleuroncodes planipes (Crustacea, Galatheidae) 1 ALAN R. LONGHURST2 AND DON L. R. SEIBERT'l ABSTRACT: The pelagic population of Pleuroncodes planipes known to occur in the California Current Extension is partly recruited by drift of megalopas from neritic regions and partly, as demonstrated by EASTROPAC samples, by breeding in situ , THE DISTRIBUTION of pelagic adults and larvae samples; only size frequencies of night samples of the galatheid crab Pleuroncodes planipes in are used here. the California Current has been described re­ Adults of Pleuroncodes planipes, none of cently (Boyd, 1963, 1967; Longhurst, 1967, which had carapace lengths exceeding 15 mm, 1968). These studies showed the regular occur­ were found early in the year in northern Area 1. rence of an oceanic population of small adults This population (carapace length 9 to 13 mm) far beyond the normal neritic habitat and indi­ shifted its locus in late summer until, at the end cated how this expatriate population might be of the year, all occurrences were south of 14° recruited from megalopas derived from the N ; the second winter cruise (February-March neritic population along the west coast of Baja 1968) showed that the population had shifted California. north again to a locus between 14° to 20° N. The Eastern Tropical Pacific (EASTROPAC) In Area 2, adults were present only after Au­ expeditions (February 1967 to March 1968 gust-September, when a population of very from 20° N to 20° S and from the American small (6 to 8 mm) . adults appeared in the sam­ continent out to 126° W) afforded an oppor­ ples and remained through the end of the year.
    [Show full text]
  • HMS App a August 2003
    APPENDIX F U.S. WEST COAST HIGHLY MIGRATORY SPECIES: LIFE HISTORY ACCOUNTS AND ESSENTIAL FISH HABITAT DESCRIPTIONS (Originally Appendix A to the FMP) U.S. West Coast Highly Migratory Species Plan Development Team Pacific Fishery Management Council Originally Available January 16, 2003 HMS FMP - Appendix Fi June 2007 TABLE OF CONTENTS REVIEW OF METHODS AND DEFINITIONS.............................................F-1 1.0SHARKS ....................................................................F-1 1.1Common Thresher ...........................................................F-1 1.1.8 Essential Fish Habitat for Common Thresher ................................F-4 1.2Pelagic Thresher.............................................................F-5 1.2.8 Essential Fish Habitat for Pelagic Thresher..................................F-6 1.3Bigeye Thresher .............................................................F-7 1.3.8 Essential Fish Habitat for Bigeye Thresher ..................................F-9 1.4Shortfin Mako ...............................................................F-9 1.4.8 Essential Fish Habitat for Shortfin Mako ...................................F-12 1.5Blue Shark.................................................................F-12 1.5.8 Essential Fish Habitat for Blue Shark......................................F-16 2.0TUNAS.......................................................................F-16 2.1Albacore ..................................................................F-16 2.1.8 Essential Fish Habitat for Albacore .......................................F-20
    [Show full text]
  • The Pelagic Phase of Pleuroncodes Planipes Stimpson (Crustacea, Galatheidae) in the California Current
    THE PELAGIC PHASE OF PLEURONCODES PLANIPES STIMPSON (CRUSTACEA, GALATHEIDAE) IN THE CALIFORNIA CURRENT ALAN R. LONGHURST' Institute of Marine Resources and Scripps Institution of Oceanography La Jolla, California INTRODUCTION 140 meters with a 1-meter zooplankton net; details of the sampling procedure and of the location of sta­ The planktonic habit may be prolonged into or re­ tions are described elsewhere (e.g. Ahlstrom, 1948; cur in the adults of two species of Galatheidae. Harri­ son Matthews (1932) uses the terms "lobster-krill" CalCOFI, 1963). or "whale feed" in reference to these: Munida gre- The data consist of records of the numbers of garia (Fabricus) of southern South America and pelagic crabs removed in the laboratory from each of New Zealand, and Pleuroncodes planipes Stimpson zooplankton sample before voluming, and these num­ the red or pelagic crab of California and Mexico. bers were extracted for the present study from the Both occur at times as conspicuous concentrations of original data sheets. The actual specimens had neither apparently adult crabs on which baleen whales are been measured nor were subsequently retained except known to browse (Harrison Matthews, 1932) ; in addi­ during 8 months of 1960 when the whole catch of tion, the studies of Me Hugh (1952) and Alverson pelagic crabs was measured by Boyd (1963) who (1963) on the tuna Thunnus alalunga, Katsuwonus recorded a range in standard carapace length of from pelamis and Thunnus albacares have shown that 7 to 20 mm; it has been assumed here that the Cal­ Pleuroncodes is a significant food item during their COFI data to be discussed refer only to subadult and summer migration into the California Current; for adult crabs within this size range.
    [Show full text]
  • Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito in California Waters
    UC San Diego Fish Bulletin Title Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters Permalink https://escholarship.org/uc/item/7t5868rd Authors Pinkas, Leo Oliphant, Malcolm S Iverson, Ingrid L.K. Publication Date 1970-06-01 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 152 Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters By Leo Pinkas , Malcolm S. Oliphant, and Ingrid L. K. Iverson 1971 1 2 ABSTRACT The authors investigated food habits of albacore, Thunnus alalunga, bluefin tuna, Thunnus thynnus, and bonito, Sarda chiliensis, in the eastern North Pacific Ocean during 1968 and 1969. While most stomach samples came from fish caught commercially off southern California and Baja California, some came from fish taken in central Califor- nia, Oregon, and Washington waters. Standard procedures included enumeration of food items, volumetric analysis, and measure of frequency of occur- rence. The authors identified the majority of forage organisms to the specific level through usual taxonomic methods for whole animals. Identification of partially digested animals was accomplished through the use of otoliths for fish, beaks for cephalopods, and the exoskeleton for invertebrates. A pictorial guide to beaks of certain eastern Pacific cephalopods was prepared and proved helpful in identifying stomach contents. This guide is presented in this publication. The study indicates the prominent forage for bluefin tuna, bonito, and albacore in California waters is the northern anchovy, Engraulis mordax. 3 ACKNOWLEDGMENTS The Food Habits Study of Organisms of the California Current System, (Project 6–7-R), was an investigation estab- lished under contract between the U.S.
    [Show full text]
  • IATTC-94-01 the Tuna Fishery, Stocks, and Ecosystem in the Eastern
    INTER-AMERICAN TROPICAL TUNA COMMISSION 94TH MEETING Bilbao, Spain 22-26 July 2019 DOCUMENT IATTC-94-01 REPORT ON THE TUNA FISHERY, STOCKS, AND ECOSYSTEM IN THE EASTERN PACIFIC OCEAN IN 2018 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 50 C. Skipjack tuna ..................................................................................................................................... 58 D. Bigeye tuna ........................................................................................................................................ 64 E. Pacific bluefin tuna ............................................................................................................................ 72 F. Albacore tuna .................................................................................................................................... 76 G. Swordfish ........................................................................................................................................... 82 H. Blue marlin ........................................................................................................................................ 85 I. Striped marlin .................................................................................................................................... 86 J. Sailfish
    [Show full text]
  • Feeding Habits of the Common Thresher Shark (Alopias Vulpinus) Sampled from the California-Based Drift Gill Net Fishery, 1998-1 999
    PRETI ET AL.: FEEDING HABITS OF COMMON THRESHER SHARK CalCOFl Rep., Vol. 42, 2001 FEEDING HABITS OF THE COMMON THRESHER SHARK (ALOPIAS VULPINUS) SAMPLED FROM THE CALIFORNIA-BASED DRIFT GILL NET FISHERY, 1998-1 999 ANTONELLA PRETI SUSAN E. SMITH AND DARLENE A. RAMON California Department of Fish and Game National Marine Fisheries Service, NOM 8604 La Jolla Shores Dnve Southwest Fisheries Science Center La Jolla, California 92037 P.O. Box 271 sharksharkshark@hotniail coni La Jolla, California 92038 ABSTRACT (Compagno 1984). It is epipelagic, gregarious, and cos- The diet of common thresher shark (Alopius vulpinus) mopolitan, and in the northeastern Pacific seems to be from US. Pacific Coast waters was investigated by means most abundant within 40 miles of shore (Strasburg 1958). of frequency of occurrence, gravimetric and numerical Its known range extends from Clarion Island, Mexico, methods, and calculating the geometric index of im- north to British Columbia; it is common seasonally from portance (GII) of prey taxa taken from stoniachs col- mid-Baja California, Mexico, to Washington state.' It lected by fishery observers from the California-based is the leading commercial shark taken in California, drift gill net fishery. Sampling was done from 16 August where it is highly valued in the fresh fish trade (Holts et 1998 to 24 January 1999, a time when the California al. 1998). It is also sought by recreational anglers for its Current was undergoing rapid change from El Niiio to fighting ability as well as food value, especially in south- La Niiia conhtions. Of the 165 stomachs examined, 107 ern California.
    [Show full text]
  • Among the World's Most Popular Game Fishes, Tunas Are Also
    ÜBER-FISH Among the World’s Most Popular Game Fishes, Tunas Are Also Some of the Most Highly Evolved and Sophisticated of All the Ocean’s Predators BY DOUG OLANDER DANIEL GOEZ DANIEL 74 DECEMBER 2017 SPORTFISHINGMAG.COM 75 The Family Tree minimizes drag with a very low reduce the turbulence in the Tunas are part of the family drag coefficient,” optimizing effi- water ahead of the tail. Scombridae, which also includes cient swimming both at cruise Unlike most fishes with broad, mackerels, large and small. But and burst. While most fishes bend flexible tails that bend to scoop there are tunas, and then there their bodies side to side when water to move a fish forward, are, well, “true tunas.” moving forward, tunas’ bodies tunas derive tremendous That is, two groups don’t bend. They’re essentially thrust with thin, hard, lunate WHILE MOST FISHES BEND ( sometimes known as “tribes”) rigid, solid torpedoes. ( crescent-moon-shaped) tails dominate the tuna clan. One is And these torpedoes are that beat constantly, capable of THEIR BODIES SIDE TO SIDE Thunnini, which is the group perfectly streamlined, their 10 to 12 or more beats per second. considered true tunas, charac- larger fins fitting perfectly into That relentless thrust accounts WHEN MOVING FORWARD, terized by two separate dorsal grooves so no part of these fins for the unstoppable runs that fins and a relatively thick body. a number of highly specialized protrudes above the body surface. tuna make repeatedly when TUNAS’ BODIES DON’T BEND. The 15 species of Thunnini are features facilitate these They lack the convex eyes of hooked.
    [Show full text]
  • Descriptions of Euthynnus and Auxis Larvae from the Pacific and Atlantic Oceans and Adjacent Seas
    library THE GARLSBERG FOUNDATION’S OCEANOGRAPHIGAL EXPEDITION ROUND THE WORLD 1928—30 AND PREVIOUS “DANA”-EXPEDITIONS UNDER THE LEADERSHIP OF THE LATE PROFESSOR JOHANNES SCHMIDT DANA-BEPOBT No. 50. DESCRIPTIONS OF EUTHYNNUS AND AUXIS LARVAE FROM THE PACIFIC AND ATLANTIC OCEANS AND ADJACENT SEAS BY WALTER M. MATSUMOTO U.S. FISH AND WILDLIFE SERVICE WITH 31 FIGURES IN THE TEXT PUBLISHED BY THE CARLSBERG FOUNDATION THIS PAPER MAY BE EEFEEBED TO AS: •DANA-REPOKT No. 50, 1959« COPENHAGEN ANDR. FRED. H0ST A S 0 N PRINTED BY BIANCO LUNO A/S CONTENTS Page Introduction ...................................................................... 3 Descriptions of larvae and postlarvae................. 21 Methods.............................................................................. 4 Auxis type I ......................................................... 21 Genus E uthynnus.............................................................. 5 Auxis type I I ....................................................... 2:i Notes on adults and juveniles ............................. 5 Discussion of species dilTerences........................... 25 Descriptions of larvae and postlarvae................. 7 Geographical distribution of Euthynnus and Auxis Euthynnus tineatus.............................................. 7 larvae............................................................................ 25 Euthynnus alletteratus.......................................... 11 Spawning areas as indicated by larval catches___ 27 Euthynnus ijaito ..................................................
    [Show full text]
  • Diet of Oceanic Loggerhead Sea Turtles (Caretta Caretta) in the Central North Pacific
    Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific Item Type article Authors Parker, Denise M.; Cooke, William J.; Balazs, George H. Download date 29/09/2021 11:03:34 Link to Item http://hdl.handle.net/1834/26255 ART & EQUATIONS ARE LINKED Preflight Good 142 Abstract — Diet analysis of 52 log- gerhead sea turtles (Caretta caretta) Diet of oceanic loggerhead sea turtles collected as bycatch from 1990 to 1992 (Caretta caretta) in the central North Pacific in the high-seas driftnet fishery oper- ating between lat. 29.5°N and 43°N and between long. 150°E and 154°W Denise M. Parker demonstrated that these turtles fed Joint Institute for Marine and Atmospheric Research predominately at the surface; few 8604 La Jolla Shores Drive deeper water prey items were pres- La Jolla, California 92037 ent in their stomachs. The turtles Present address: Northwest Fisheries Science Center ranged in size from 13.5 to 74.0 cm National Marine Fisheries Service, NOAA curved carapace length. Whole tur- Newport, Oregon 97365-5275 tles (n=10) and excised stomachs E-mail address: [email protected] (n=42) were frozen and transported to a laboratory for analysis of major faunal components. Neustonic species William J. Cooke accounted for four of the five most AECOS, Inc. common prey taxa. The most common 970 N. Kalaheo Avenue, Suite C311 prey items were Janthina spp. (Gas- Kailua, Hawaii 96734 tropoda); Carinaria cithara Benson 1835 (Heteropoda); a chondrophore, Velella velella (Hydrodia); Lepas spp. George H. Balazs (Cirripedia), Planes spp. (Decapoda: Pacific Islands Fisheries Science Center, Honolulu Laboratory Grapsidae), and pyrosomas (Pyrosoma National Marine Fisheries Service spp.).
    [Show full text]
  • Metabolic Suppression in the Pelagic Crab, Pleuroncodes Planipes, in Oxygen Minimum Zones T ⁎ Brad A
    Comparative Biochemistry and Physiology, Part B 224 (2018) 88–97 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part B journal homepage: www.elsevier.com/locate/cbpb Metabolic suppression in the pelagic crab, Pleuroncodes planipes, in oxygen minimum zones T ⁎ Brad A. Seibela, , Bryan E. Luub,1, Shannon N. Tessierc,1, Trisha Towandad, Kenneth B. Storeyb a College of Marine Science, University of South Florida, 830 1st St. S., St. Petersburg, FL 33701, USA b Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada c BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA d Evergreen State College, Olympia, WA, USA ARTICLE INFO ABSTRACT Keywords: The pelagic red crab, Pleuroncodes planipes, is abundant throughout the Eastern Tropical Pacific in both benthic Protein synthesis and pelagic environments to depths of several hundred meters. The oxygen minimum zones in this region Hypoxia reaches oxygen levels as low as 0.1 kPa at depths within the crabs vertical range. Crabs maintain aerobic me- Zooplankton tabolism to a critical PO2 of ~0.27 ± 0.2 kPa (10 °C), in part by increasing ventilation as oxygen declines. At Hypometabolism subcritical oxygen levels, they enhance anaerobic ATP production slightly as indicated by modest increases in Vertical migration lactate levels. However, hypoxia tolerance is primarily mediated via a pronounced suppression of aerobic me- tabolism (~70%). Metabolic suppression is achieved, primarily, via reduced protein synthesis, which is a major sink for metabolic energy. Posttranslational modifications on histone H3 suggest a condensed chromatin state and, hence, decreased transcription.
    [Show full text]
  • Species Fact Sheets Euthynnus Affinis (Cantor, 1849)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Euthynnus affinis (Cantor, 1849) Black and white drawing: (click for more) Synonyms Euthunnus yaito Kishinouye, 1915 Wanderer wallisi Whitley, 1937 Euthunnus affinis affinis Fraser-Brunner, 1949 Euthunnus alletteratus affinis Beaufort, 1951 Euthunnus wallisi Whitley, 1964 FAO Names En - Kawakawa, Fr - Thonine orientale, Sp - Bacoreta oriental. 3Alpha Code: KAW Taxonomic Code: 1750102406 Scientific Name with Original Description Thynnus affinis Cantor, 1849, J.Asiatic Soc.Bengal, 18(2):1088-1090 (Sea of Penang, Malaysia). Diagnostic Features Gillrakers 29 to 33 on first arch; gill teeth 28 or 29; vomerine teeth absent. Anal fin rays 13 or 14. Vertebrae 39; no trace of vertebral protuberances; bony caudal keels on 33 and 34 vertebrae. Colour: dorsal makings composed of broken oblique stripes. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer Throughout the warm waters of the Indo-West Pacific, including oceanic islands and archipelagos.A few stray specimens have been collected in the eastern tropical Pacific. Habitat and Biology An epipelagic, neritic speciesinhabiting waters temperatures ranging from 18 to 29° C. Like other scombrids, E. affinis tend to form multispecies schools by size, 'i.e. with small Thunnus albacares, Katsuwonus pelamis, Auxis sp., and Megalaspis cordyla (a carangid), comprising from 100 to over 5 000 individuals. Although sexually mature fish may be encountered throughout the year, there are seasonal spawning peaks varying according to regions: i.e. March to May in Philippine waters; during the period of the NW monsoon (October-November to April-May) around the Seychelles; from the middle of the NW monsoon period to the beginning of the SE monsoon (January to July) off East Africa; and probably from August to October off Indonesia.
    [Show full text]
  • SYNOPSIS on the BIOLOGY of YELLOWFIN TUNA Thunnus (Neothunnus) Albacares (Bonnaterre)1788(PACIFIC OCEAN)
    Species Synopsis No. 16 FAO Fisheries Biology Synopsis No, 59 FIb/S59 (Distribution restricted) SAST - Tuna SYNOPSIS ON THE BIOLOGY OF YELLOWFIN TUNA Thunnus (Neothunnus) albacares (Bonnaterre)1788(PACIFIC OCEAN) Exposé synoptique sur la biologie du thon à nageoires jaunes Thunnus (Neothimnus) albacares (Bonnaterre)1788(Océan Pacifique) Sinopsis sobre la. biología dei atítn de aleta amarilla Thunnus (Neothunnus) aibacares (Bonnaterre) 1788 (Ocano Pacífico) Prepared by MILNER B, SCHAEFER, GORDON C,, BROADHEAD and CRAIG J, ORANGE Inter -American Tropical Tuna Commission La Jolla, California, U, S,, A, ISHERIES DIVISION, BIOLOGY BRANCH tOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS R,ome, 1963 538 FIb/S59 Tuna 1:1 i IDENTITY Body plump, wholly covered with scales, which differ in size and form in different parts i. iTaxonomy of the body.Corselet well deveioped but its boundary is not distinct.Tle lateral line has a 1. 1. 1Definition peculiar curve above the pectorals.Teeth rather feeble.Single series of small conical /Fo11owing Berg (1940) modified according to teeth in both jaws.They are sharp and curve Fraser-Brunner (1950)J inward.Villiform teeth on the vomers palatines and pterygoids.Many dentigerous calcareous Phylum VERTEBRATA plates are found on the palate.The denticles on Subphylum Craniata these plates are quite similar to those found on Superclass Gnathostomata the vomer, palatines and pterygoids. Thus the Series Pisces roof of the mouth-cavity is quite rough, contrary Class Teleostomi to the nearly smooth roof in the Katsuwonidae. Subclass Actinopterygii Three lobes of the liver subequal.Intestine Order Perciformes rather long, with three folds.Pyloric tubes Suborder Scombroidei developed only on the posterior convex side of Family Scombridae the duodenum.
    [Show full text]