STATE of the CALIFORNIA CURRENT 2018–19: a NOVEL ANCHOVY REGIME and a NEW MARINE HEATWAVE? Calcofi Rep., Vol

Total Page:16

File Type:pdf, Size:1020Kb

STATE of the CALIFORNIA CURRENT 2018–19: a NOVEL ANCHOVY REGIME and a NEW MARINE HEATWAVE? Calcofi Rep., Vol STATE OF THE CALIFORNIA CURRENT 2018–19: A NOVEL ANCHOVY REGIME AND A NEW MARINE HEATWAVE? CalCOFI Rep., Vol. 60, 2019 STATE OF THE CALIFORNIA CURRENT 2018–19: A NOVEL ANCHOVY REGIME AND A NEW MARINE HEAT WAVE? ANDREW R. THOMPSON* MATI KAHRU EDWARD D. WEBER National Marine Fisheries Service AND RALF GOERICKE AND WILLIAM WATSON Southwest Fisheries Science Center Scripps Institution of Oceanography National Marine Fisheries Service 8901 La Jolla Shores Drive University of California, San Diego Southwest Fisheries Science Center La Jolla, CA, 92037-1509 La Jolla, CA 92093 8901 La Jolla Shores Drive [email protected] La Jolla, CA 92037-1509 CLARE E. PEABODY ISAAC D. SCHROEDER1,2, National Marine Fisheries Service JESSICA M. PORQUEZ1, STEVEN J. BOGRAD1, ELLIOTT L. HAZEN1, Southwest Fisheries Science Center JANE DOLLIVER1, MICHAEL G. JACOX1,3, ANDREW LEISING1, 8901 La Jolla Shores Drive DONALD E. LYONS1,2, AND AND BRIAN K. WELLS4 La Jolla, CA 92037-1509 RACHAEL A. ORBEN1 1Southwest Fisheries Science Center 1Department of Fisheries and Wildlife National Marine Fisheries Service TIMOTHY R. BAUMGARTNER, Oregon State University 99 Pacific Street, Suite 255A BERTHA E. LAVANIEGOS, Hatfield Marine Science Center Monterey, CA 93940-7200 LUIS E. MIRANDA, Newport, OR 97365 ELIANA GOMEZ-OCAMPO, 2Institute of Marine Sciences 2National Audubon Society University of California AND JOSE GOMEZ-VALDES 104 Nash Hall Santa Cruz, CA Oceanology Division Corvallis, OR 97331 and Centro de Investigación Científica y Southwest Fisheries Science Center Educación Superior de Ensenada JEANNETTE E. ZAMON NOAA Carretera Ensenada-Tijuana No. 3918 Northwest Fisheries Science Center Monterey, CA Zona Playitas C.P. 22860 Point Adams Research Station Ensenada, Baja California, Mexico 3Earth System Research Laboratory 520 Heceta Place Hammond, OR 97121 NOAA TOBY D. AUTH1, Boulder, CO 80305 ELIZABETH A. DALY2, PETE WARZYBOK 4 Southwest Fisheries Science Center CHERYL A. MORGAN2, AND AND JAIME JAHNCKE National Marine Fisheries Service 3 BRIAN J. BURKE Point Blue Conservation Science NOAA 1Pacific States Marine Fisheries Commission Santa Cruz, CA 95064 3820 Cypress Drive, Suite 11 Hatfield Marine Science Center Petaluma, CA 94954 JOHN LARGIER 2030 Marine Science Drive Newport, OR 97365 JARROD A. SANTORA1, Bodega Bay Marine Laboratory 2Cooperative Institute for SARAH ANN THOMPSON2, University of California, Davis BRIAN HOOVER2, AND Bodega Bay, CA 94923 Marine Resources Studies Oregon State University WILLIAM SYDEMAN2 JENNIFER L. FISHER1,2, Hatfield Marine Science Center 1Department of KYM C. JACOBSON2, AND Newport, OR 97365 Applied Mathematics and Statistics SAMANTHA M. ZEMAN1 3Fish Ecology Division Center for Stock Assessment Research University of California, Santa Cruz 1Cooperative Institute for Northwest Fisheries Science Center Marine Resources Studies National Marine Fisheries Service Santa Cruz, CA 95060 Oregon State University National Oceanic and 2Farallon Institute for Hatfield Marine Science Center Atmospheric Administration Advanced Ecosystem Research Newport, OR 97365 2725 Montlake Boulevard E Petaluma, CA 94952 2 Seattle, WA 98112 Northwest Fisheries Science Center SHARON R. MELIN Hatfield Marine Science Center JOHN C. FIELD AND Newport, OR 97365 National Marine Fisheries Service KEITH M. SAKUMA Alaska Fisheries Science Center ERIC P. BJORKSTEDT1 AND Southwest Fisheries Science Center Marine Mammal Laboratory ROXANNE R. ROBERTSON2 National Marine Fisheries Service NOAA NOAA 7600 Sand Point Way N. E. 1Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz, CA 95064 Seattle, WA 98115 NOAA Santa Cruz, CA 95064 2Cooperative Institute for Marine Ecosystems and Climate Humboldt State University 1 STATE OF THE CALIFORNIA CURRENT 2018–19: A NOVEL ANCHOVY REGIME AND A NEW MARINE HEATWAVE? CalCOFI Rep., Vol. 60, 2019 ABSTRACT of young-of-the-year flatfish, a prey item known to be The California Current Ecosystem (CCE) has been conducive to chick survival. Despite the prevalence of in a primarily warm state since 2014, and this pattern northern anchovy in central California, common murre largely continued into 2019. The CCE experienced a and Brand’s cormorant production was low in Southeast mild El Niño from late 2018 into 2019, and basin-scale Farallon Island as these birds were unable to feed opti- indicators reflected this condition (elevatedOceanic mally on northern anchovy, and there was a scarcity of Niño Index and Pacific Decadal Oscillation; table 1). more appropriate prey such as young-of-the-year flat- Despite the El Niño, spring upwelling was above average fishes or rockfishes. between southern California and Washington but below California sea lions (Zalophus californianus), by contrast, average in Baja California. Sea surface temperature (SST) benefitted greatly from the large northern anchovy for- was mostly near the long-term average between Wash- age base. In 2018, live pup count, weight, and growth ington and southern California, while surface chloro- rate were anomalously high, and northern anchovy phyll a was above average in Oregon/Washington and remains occurred in >85% of scat samples. Humpback slightly below average in most of California in spring/ whale (Megaptera novaeangliae) sightings were also very early summer 2019. SST changed dramatically by fall high in 2019, likely because humpback whales congre- 2019, however, as a marine heat wave (MHW) that gated near shore to feed on northern anchovy. formed in May 2019 in the Gulf of Alaska impinged upon the West Coast of the United States. The expan- INTRODUCTION sion of the 2019 MHW followed a similar pattern to The past 6 years were extraordinarily warm in the the 2014–15 MHW. California Current Ecosystem (CCE) (Thompson et al. Off Oregon, the zooplankton assemblage was in a 2018). The warming began in the Gulf of Alaska in late mixed state as southern copepods were close to aver- 2013 when slack winds resulted in strong stratification and age while northern copepod abundances were positively anomalous heating of surface waters. This “blob” of warm anomalous in 2019. Off northern California, Euphausia water expanded south throughout 2014 and impinged on pacifica body size was smaller than average. Euphausid the southern parts of the California Current by late 2014 abundances were well below average in both central and (Bond et al. 2015). The warm pattern continued into southern California in 2019. 2015 when a strong El Niño brought warm water to both In the north, winter 2019 larval fish abundances were shallow and deep areas throughout the CCE (Jacox et al. high and dominated by offshore taxa that are associated 2016). Conditions remained warm throughout most of with warm conditions; spring larval and post-larval bio- 2016, and 2014–16 turned out to be the warmest 3-year mass were close to average; and spring surface trawls period in the CCE since records began in 1920 (Jacox et observed record-high market squid (Doryteuthis opales- al. 2018a). This 3-year stretch was termed a “marine heat cens) abundances. The single most important finding in wave” (MHW) (Frölicher et al. 2018). Conditions in 2017 2019 was that northern anchovy (Engraulis mordax) adults reverted to more of an average state, but many biological and larvae were at record-high abundances in central and remnants of the MHW lingered throughout much of the southern California. In central California, market squid CCE (Wells et al. 2017; Thompson et al. 2018). In 2018, and Pacific sardine (Sardinops sagax) were also abundant. oceanographic conditions north of Point Conception In southern California warm-water mesopelagic fishes remained close to average, but anomalously warm water have been very abundant since 2014, and this trend con- returned to the southern CCE in summer, and the sin- tinued into 2019. gle warmest daily water temperature since measurements Indicators for future salmon returns were mixed in began in 1931 occurred at the Scripps Pier on August 1, 2019. The abundance of northern copepods, which 2018 (Thompson et al. 2018). From a broad perspective, correlate positively with returns, was high. However, the Pacific Decadal Oscillation Index (PDO) was almost abundances of yearling Chinook salmon (Oncorhynchus exclusively positive and the North Pacific Gyre Oscilla- tshawytscha) and coho salmon (O. kisutch), which also tion negative since 2014; both measurements are consis- correlate positively with returns, were slightly below tent with warm conditions in the eastern north Pacific average. Winter ichthyoplankton was comprised mostly (Thompson et al. 2018). of southern or offshore taxa, which bodes poorly for The post-2013 record-high water temperatures future salmon returns. induced some major ecological surprises. For example, a Seabird (common murre [Uria aalge]; Brandt’s cor- near-paradigm based on data from roughly 1950 to 2002 morant [Phalacrocorax penicillatus]; and pelagic cormorant was that Pacific sardine (Sardinops sagax; Sardine) thrive [Phalacrocorax pelagicus]) productivity off Oregon was the under warm and northern anchovy (Engraulis mordax) highest in years in both 2018 and 2019. In 2018, com- under cool ocean conditions (Chavez et al. 2003). How- mon murre chicks in Oregon consumed large amounts ever, northern anchovy recruitment was very high and 2 STATE OF THE CALIFORNIA CURRENT 2018–19: A NOVEL ANCHOVY REGIME AND A NEW MARINE HEATWAVE? CalCOFI Rep., Vol. 60, 2019 TABLE 1 Overview of conditions throughout the California Current in 2019. For basin indices and physical
Recommended publications
  • Emerging Risks from Marine Heat Waves
    COMMENT DOI: 10.1038/s41467-018-03163-6 OPEN Emerging risks from marine heat waves Thomas L. Frölicher1,2 & Charlotte Laufkötter 1,2 Recent marine heat waves have caused devastating impacts on marine ecosystems. Sub- stantial progress in understanding past and future changes in marine heat waves and their risks for marine ecosystems is needed to predict how marine systems, and the goods and 1234567890():,; services they provide, will evolve in the future. Extreme climate and weather events shape the structure of terrestrial biological systems and affect the biogeochemical functions and services they provide for society in a fundamental manner1. There is overwhelming evidence that atmospheric heat waves over land are changing under global warming, increasing the risk of severe, pervasive and in some cases irreversible impacts on natural and socio-economic systems2. In contrast, we know little how extreme events in the ocean, especially those associated with warming will change under global warming, and how they will impact marine organisms. This knowledge gap is of particular concern as some of the recent observed marine heat waves (MHWs) demonstrated the high vulnerability of marine organisms and ecosystems services to such extreme climate events. Definition, observations, and key processes A marine heat wave is usually defined as a coherent area of extreme warm sea surface tem- perature (SST) that persists for days to months3. MHWs have been observed in all major ocean basins over the recent decade, but only a few MHWs have been documented and analyzed extensively (Fig. 1). One of the first MHW that has been characterized in the literature occurred in 2003 in the northwestern Mediterranean Sea with SSTs reaching 3–5 °C above the 1982–2016 reference period4.
    [Show full text]
  • Breeding in an Oceanic Population of Pleuroncodes Planipes (Crustacea, Galatheidae) 1 ALAN R
    Breeding in an Oceanic Population of Pleuroncodes planipes (Crustacea, Galatheidae) 1 ALAN R. LONGHURST2 AND DON L. R. SEIBERT'l ABSTRACT: The pelagic population of Pleuroncodes planipes known to occur in the California Current Extension is partly recruited by drift of megalopas from neritic regions and partly, as demonstrated by EASTROPAC samples, by breeding in situ , THE DISTRIBUTION of pelagic adults and larvae samples; only size frequencies of night samples of the galatheid crab Pleuroncodes planipes in are used here. the California Current has been described re­ Adults of Pleuroncodes planipes, none of cently (Boyd, 1963, 1967; Longhurst, 1967, which had carapace lengths exceeding 15 mm, 1968). These studies showed the regular occur­ were found early in the year in northern Area 1. rence of an oceanic population of small adults This population (carapace length 9 to 13 mm) far beyond the normal neritic habitat and indi­ shifted its locus in late summer until, at the end cated how this expatriate population might be of the year, all occurrences were south of 14° recruited from megalopas derived from the N ; the second winter cruise (February-March neritic population along the west coast of Baja 1968) showed that the population had shifted California. north again to a locus between 14° to 20° N. The Eastern Tropical Pacific (EASTROPAC) In Area 2, adults were present only after Au­ expeditions (February 1967 to March 1968 gust-September, when a population of very from 20° N to 20° S and from the American small (6 to 8 mm) . adults appeared in the sam­ continent out to 126° W) afforded an oppor­ ples and remained through the end of the year.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • HMS App a August 2003
    APPENDIX F U.S. WEST COAST HIGHLY MIGRATORY SPECIES: LIFE HISTORY ACCOUNTS AND ESSENTIAL FISH HABITAT DESCRIPTIONS (Originally Appendix A to the FMP) U.S. West Coast Highly Migratory Species Plan Development Team Pacific Fishery Management Council Originally Available January 16, 2003 HMS FMP - Appendix Fi June 2007 TABLE OF CONTENTS REVIEW OF METHODS AND DEFINITIONS.............................................F-1 1.0SHARKS ....................................................................F-1 1.1Common Thresher ...........................................................F-1 1.1.8 Essential Fish Habitat for Common Thresher ................................F-4 1.2Pelagic Thresher.............................................................F-5 1.2.8 Essential Fish Habitat for Pelagic Thresher..................................F-6 1.3Bigeye Thresher .............................................................F-7 1.3.8 Essential Fish Habitat for Bigeye Thresher ..................................F-9 1.4Shortfin Mako ...............................................................F-9 1.4.8 Essential Fish Habitat for Shortfin Mako ...................................F-12 1.5Blue Shark.................................................................F-12 1.5.8 Essential Fish Habitat for Blue Shark......................................F-16 2.0TUNAS.......................................................................F-16 2.1Albacore ..................................................................F-16 2.1.8 Essential Fish Habitat for Albacore .......................................F-20
    [Show full text]
  • The Pelagic Phase of Pleuroncodes Planipes Stimpson (Crustacea, Galatheidae) in the California Current
    THE PELAGIC PHASE OF PLEURONCODES PLANIPES STIMPSON (CRUSTACEA, GALATHEIDAE) IN THE CALIFORNIA CURRENT ALAN R. LONGHURST' Institute of Marine Resources and Scripps Institution of Oceanography La Jolla, California INTRODUCTION 140 meters with a 1-meter zooplankton net; details of the sampling procedure and of the location of sta­ The planktonic habit may be prolonged into or re­ tions are described elsewhere (e.g. Ahlstrom, 1948; cur in the adults of two species of Galatheidae. Harri­ son Matthews (1932) uses the terms "lobster-krill" CalCOFI, 1963). or "whale feed" in reference to these: Munida gre- The data consist of records of the numbers of garia (Fabricus) of southern South America and pelagic crabs removed in the laboratory from each of New Zealand, and Pleuroncodes planipes Stimpson zooplankton sample before voluming, and these num­ the red or pelagic crab of California and Mexico. bers were extracted for the present study from the Both occur at times as conspicuous concentrations of original data sheets. The actual specimens had neither apparently adult crabs on which baleen whales are been measured nor were subsequently retained except known to browse (Harrison Matthews, 1932) ; in addi­ during 8 months of 1960 when the whole catch of tion, the studies of Me Hugh (1952) and Alverson pelagic crabs was measured by Boyd (1963) who (1963) on the tuna Thunnus alalunga, Katsuwonus recorded a range in standard carapace length of from pelamis and Thunnus albacares have shown that 7 to 20 mm; it has been assumed here that the Cal­ Pleuroncodes is a significant food item during their COFI data to be discussed refer only to subadult and summer migration into the California Current; for adult crabs within this size range.
    [Show full text]
  • Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito in California Waters
    UC San Diego Fish Bulletin Title Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters Permalink https://escholarship.org/uc/item/7t5868rd Authors Pinkas, Leo Oliphant, Malcolm S Iverson, Ingrid L.K. Publication Date 1970-06-01 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 152 Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters By Leo Pinkas , Malcolm S. Oliphant, and Ingrid L. K. Iverson 1971 1 2 ABSTRACT The authors investigated food habits of albacore, Thunnus alalunga, bluefin tuna, Thunnus thynnus, and bonito, Sarda chiliensis, in the eastern North Pacific Ocean during 1968 and 1969. While most stomach samples came from fish caught commercially off southern California and Baja California, some came from fish taken in central Califor- nia, Oregon, and Washington waters. Standard procedures included enumeration of food items, volumetric analysis, and measure of frequency of occur- rence. The authors identified the majority of forage organisms to the specific level through usual taxonomic methods for whole animals. Identification of partially digested animals was accomplished through the use of otoliths for fish, beaks for cephalopods, and the exoskeleton for invertebrates. A pictorial guide to beaks of certain eastern Pacific cephalopods was prepared and proved helpful in identifying stomach contents. This guide is presented in this publication. The study indicates the prominent forage for bluefin tuna, bonito, and albacore in California waters is the northern anchovy, Engraulis mordax. 3 ACKNOWLEDGMENTS The Food Habits Study of Organisms of the California Current System, (Project 6–7-R), was an investigation estab- lished under contract between the U.S.
    [Show full text]
  • Tube-Nosed Seabirds) Unique Characteristics
    PELAGIC SEABIRDS OF THE CALIFORNIA CURRENT SYSTEM & CORDELL BANK NATIONAL MARINE SANCTUARY Written by Carol A. Keiper August, 2008 Cordell Bank National Marine Sanctuary protects an area of 529 square miles in one of the most productive offshore regions in North America. The sanctuary is located approximately 43 nautical miles northwest of the Golden Gate Bridge, and San Francisco California. The prominent feature of the Sanctuary is a submerged granite bank 4.5 miles wide and 9.5 miles long, which lay submerged 115 feet below the ocean’s surface. This unique undersea topography, in combination with the nutrient-rich ocean conditions created by the physical process of upwelling, produces a lush feeding ground. for countless invertebrates, fishes (over 180 species), marine mammals (over 25 species), and seabirds (over 60 species). The undersea oasis of the Cordell Bank and surrounding waters teems with life and provides food for hundreds of thousands of seabirds that travel from the Farallon Islands and the Point Reyes peninsula or have migrated thousands of miles from Alaska, Hawaii, Australia, New Zealand, and South America. Cordell Bank is also known as the albatross capital of the Northern Hemisphere because numerous species visit these waters. The US National Marine Sanctuaries are administered and managed by the National Oceanic and Atmospheric Administration (NOAA) who work with the public and other partners to balance human use and enjoyment with long-term conservation. There are four major orders of seabirds: 1) Sphenisciformes – penguins 2) *Procellariformes – albatross, fulmars, shearwaters, petrels 3) Pelecaniformes – pelicans, boobies, cormorants, frigate birds 4) *Charadriiformes - Gulls, Terns, & Alcids *Orders presented in this seminar In general, seabirds have life histories characterized by low productivity, delayed maturity, and relatively high adult survival.
    [Show full text]
  • Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 1-2021 Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks Lillian R. Aoki Karen J. McGlathery Patricia L. Wiberg Matthew P. J. Oreska Amelie C. Berger See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Aoki, Lillian R.; McGlathery, Karen J.; Wiberg, Patricia L.; Oreska, Matthew P. J.; Berger, Amelie C.; Berg, Peter; and Orth, Robert J., Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks (2021). Frontiers in Marine Science, 7, 576784.. doi: 10.3389/fmars.2020.576784 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors Lillian R. Aoki, Karen J. McGlathery, Patricia L. Wiberg, Matthew P. J. Oreska, Amelie C. Berger, Peter Berg, and Robert J. Orth This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/2036 fmars-07-576784 December 23, 2020 Time: 12:35 # 1 ORIGINAL RESEARCH published: 07 January 2021 doi: 10.3389/fmars.2020.576784 Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks Lillian R. Aoki1*†, Karen J. McGlathery1, Patricia L. Wiberg1, Matthew P. J. Oreska1, Amelie C. Berger1, Peter Berg1 and Robert J. Orth2 1 Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States, 2 Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, United States Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries.
    [Show full text]
  • Feeding Habits of the Common Thresher Shark (Alopias Vulpinus) Sampled from the California-Based Drift Gill Net Fishery, 1998-1 999
    PRETI ET AL.: FEEDING HABITS OF COMMON THRESHER SHARK CalCOFl Rep., Vol. 42, 2001 FEEDING HABITS OF THE COMMON THRESHER SHARK (ALOPIAS VULPINUS) SAMPLED FROM THE CALIFORNIA-BASED DRIFT GILL NET FISHERY, 1998-1 999 ANTONELLA PRETI SUSAN E. SMITH AND DARLENE A. RAMON California Department of Fish and Game National Marine Fisheries Service, NOM 8604 La Jolla Shores Dnve Southwest Fisheries Science Center La Jolla, California 92037 P.O. Box 271 sharksharkshark@hotniail coni La Jolla, California 92038 ABSTRACT (Compagno 1984). It is epipelagic, gregarious, and cos- The diet of common thresher shark (Alopius vulpinus) mopolitan, and in the northeastern Pacific seems to be from US. Pacific Coast waters was investigated by means most abundant within 40 miles of shore (Strasburg 1958). of frequency of occurrence, gravimetric and numerical Its known range extends from Clarion Island, Mexico, methods, and calculating the geometric index of im- north to British Columbia; it is common seasonally from portance (GII) of prey taxa taken from stoniachs col- mid-Baja California, Mexico, to Washington state.' It lected by fishery observers from the California-based is the leading commercial shark taken in California, drift gill net fishery. Sampling was done from 16 August where it is highly valued in the fresh fish trade (Holts et 1998 to 24 January 1999, a time when the California al. 1998). It is also sought by recreational anglers for its Current was undergoing rapid change from El Niiio to fighting ability as well as food value, especially in south- La Niiia conhtions. Of the 165 stomachs examined, 107 ern California.
    [Show full text]
  • Dean Oz/Μ: ;Z: Date
    The evolutionary history of reproductive strategies in sculpins of the subfamily oligocottinae Item Type Thesis Authors Buser, Thaddaeus J. Download date 26/09/2021 18:39:58 Link to Item http://hdl.handle.net/11122/4549 THE EVOLUTIONARY HISTORY OF REPRODUCTIVE STRATEGIES IN SCULPINS OF THE SUBFAMILY OLIGOCOTTINAE By Thaddaeus J. Buser RECOMMENDED: Dr. Anne Beaudreau Dr. J. Andres Lopez Advisory Committee Chair Dr. Shannon Atkinson Fisheries Division Graduate Program Chair APPROVED: Dr. Michael Castellini ·. John Eichel erger Dean oZ/µ:_;z: Date THE EVOLUTIONARY HISTORY OF REPRODUCTIVE STRATEGIES IN SCULPINS OF THE SUBFAMILY OLIGOCOTTINAE A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of Title Page MASTER OF SCIENCE By Thaddaeus J. Buser, B.Sc. Fairbanks, Alaska May 2014 v Abstract The sculpin subfamily Oligocottinae is a group of 17 nearshore species and is noteworthy for the fact that it contains both intertidal and subtidal species, copulating and non- copulating species, and many species with very broad geographic ranges. These factors, as well as the consistency with which the constituent genera have been grouped together historically, make the Oligocottinae an ideal group for the study of the evolution of a reproductive mode known as internal gamete association (IGA), which is unique to sculpins. I conducted a phylogenetic study of the oligocottine sculpins based on an extensive molecular dataset consisting of DNA sequences from eight genomic regions. From the variability present in those sequences, I inferred phylogenetic relationships using parsimony, maximum likelihood, and Bayesian inference. Results of these phylogenetic analyses show that some historical taxonomy and classifications require revision to align taxonomy with evolutionary relatedness.
    [Show full text]
  • Film Flight: Lost Production and Its Economic Impact on California
    I MILKEN INSTITUTE California Center I July 2010 Film Flight: Lost Production and Its Economic Impact on California by Kevin Klowden, Anusuya Chatterjee, and Candice Flor Hynek Film Flight: Lost Production and Its Economic Impact on California by Kevin Klowden, Anusuya Chatterjee, and Candice Flor Hynek ACKnowLEdgmEnts The authors gratefully acknowledge Armen Bedroussian and Perry Wong for their expert assistance in preparing this study. We also thank our editor, Lisa Renaud. About tHE mILKEn InstItutE The Milken Institute is an independent economic think tank whose mission is to improve the lives and economic conditions of diverse populations in the United States and around the world by helping business and public policy leaders identify and implement innovative ideas for creating broad-based prosperity. We put research to work with the goal of revitalizing regions and finding new ways to generate capital for people with original ideas. We focus on: human capital: the talent, knowledge, and experience of people, and their value to organizations, economies, and society; financial capital: innovations that allocate financial resources efficiently, especially to those who ordinarily would not have access to them, but who can best use them to build companies, create jobs, accelerate life-saving medical research, and solve long-standing social and economic problems; and social capital: the bonds of society that underlie economic advancement, including schools, health care, cultural institutions, and government services. By creating ways to spread the benefits of human, financial, and social capital to as many people as possible— by democratizing capital—we hope to contribute to prosperity and freedom in all corners of the globe.
    [Show full text]
  • Full Document (Pdf 2154
    White Paper Research Project T1803, Task 35 Overwater Whitepaper OVERWATER STRUCTURES: MARINE ISSUES by Barbara Nightingale Charles A. Simenstad Research Assistant Senior Fisheries Biologist School of Marine Affairs School of Aquatic and Fishery Sciences University of Washington Seattle, Washington 98195 Washington State Transportation Center (TRAC) University of Washington, Box 354802 University District Building 1107 NE 45th Street, Suite 535 Seattle, Washington 98105-4631 Washington State Department of Transportation Technical Monitor Patricia Lynch Regulatory and Compliance Program Manager, Environmental Affairs Prepared for Washington State Transportation Commission Department of Transportation and in cooperation with U.S. Department of Transportation Federal Highway Administration May 2001 WHITE PAPER Overwater Structures: Marine Issues Submitted to Washington Department of Fish and Wildlife Washington Department of Ecology Washington Department of Transportation Prepared by Barbara Nightingale and Charles Simenstad University of Washington Wetland Ecosystem Team School of Aquatic and Fishery Sciences May 9, 2001 Note: Some pages in this document have been purposefully skipped or blank pages inserted so that this document will copy correctly when duplexed. TECHNICAL REPORT STANDARD TITLE PAGE 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. WA-RD 508.1 4. TITLE AND SUBTITLE 5. REPORT DATE Overwater Structures: Marine Issues May 2001 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO. Barbara Nightingale, Charles Simenstad 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Washington State Transportation Center (TRAC) University of Washington, Box 354802 11. CONTRACT OR GRANT NO. University District Building; 1107 NE 45th Street, Suite 535 Agreement T1803, Task 35 Seattle, Washington 98105-4631 12.
    [Show full text]