MOVE! Nutrition Handout N14: Carbohydrate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation During Exercise
nutrients Article Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise Jorn Trommelen 1, Cas J. Fuchs 1, Milou Beelen 1, Kaatje Lenaerts 1, Asker E. Jeukendrup 2, Naomi M. Cermak 1 and Luc J. C. van Loon 1,* 1 NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; [email protected] (J.T.); [email protected] (C.J.F.); [email protected] (M.B.); [email protected] (K.L.); [email protected] (N.M.C.) 2 School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; [email protected] * Correspondence: [email protected]; Tel.: +31-43-388-1397 Received: 6 January 2017; Accepted: 16 February 2017; Published: 20 February 2017 Abstract: Peak exogenous carbohydrate oxidation rates typically reach ~1 g·min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. −1 −1 Ten trained male cyclists (VO2peak: 65 ± 2 mL·kg ·min ) cycled on four different occasions for −1 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g·min of glucose (GLU), 1.2 g·min−1 glucose + 0.6 g·min−1 fructose (GLU + FRU), 0.6 g·min−1 glucose + 1.2 g·min−1 sucrose (GLU + SUC), or water (WAT). -
Carbohydrate Food List
Carbohydrate Food List 1. Breads, grains, and pasta Portion Size Carbs (g) Bread 1 slice 10-20 Cornbread 1 piece (deck of 30 cards) Cornmeal (Dry) 2 Tbsp 12 Cream of wheat, cooked with water ½ cup 15 Croutons ½ cup 12 Flour, all-purpose, dry 2 Tbsp 12 Oatmeal, cooked with water ½ cup 12-15 Pasta, cooked 1 cup 45 Pita bread 6” to 9” pita 30-45 Rice, cooked 1 cup 45 Tortilla corn 6” tortilla 12 Tortilla flour 6” tortilla 15 2. Nuts and Legumes Portion size Carbs (g) Beans (black, pinto, refried) and ½ cup 18-22 lentils, as prepared Hummus ½ cup 15-20 Nuts, mixed ½ cup 15 3. Starchy Vegetables Portion size Carbs (g) Corn on the cob 6” to 9” ear 20-30 Corn, cooked or canned ½ cup 15 Peas ½ cup 12 Potato, baked 1 medium (6 oz) 40 Adult Diabetes Education Program - 1 - Potato, mashed ½ cup 15-20 Sweet potato/yams 1 medium (5 oz) 25 Winter squash (butternut, acorn, 1 cup 15-30 hubbard), cooked 4. Milk and yogurts Portion size Carbs (g) Almond milk (plain, unsweetened) 1 cup <1 Cow’s milk (fat-free, 1%, 2%, whole) 1 cup 12 Soy milk (plain, unsweetened) 1 cup 3 Yogurt (plain) 1 cup 14 Yogurt, Greek (plain) 1 cup 10 5. Fruits Portion Size Carbs (g) Apple 1 medium 15-30 (tennis ball) Applesauce (unsweetened) ½ cup 15 Apricots, dried 7 pieces 15 Banana 6”-9” 30-45 Blackberries, blueberries 1 cup 20 Cherries 12 15 Dates, dried 5-6 dates 30 Fruit cocktail, canned (in own juice) ½ cup 15 Grapefruit ½ large 15 Grapes 15 15 Kiwi 1 small (egg) 15 Mango, cubed and frozen ½ cup 15 Melons, cantaloupe or honeydew 1 cup 15 Orange 1 medium 15 (tennis ball) Adult Diabetes Education Program Carbohydrates Food List - 2 - Peaches, canned (in own juice) ½ cup 15 Pear 6 oz 20 Pineapple (fresh) 1 cup, diced 20 Plum 1 plum 10 Prunes, dried 3 prunes 15 Raisins 2 Tbsp 15 Raspberries 1 cup 15 Strawberries 1 cup halves 12 Watermelon 1 cup diced 12 6. -
Carbohydrate Counting
Carbohydrate Counting What is Carbohydrate Counting? Carbohydrate counting is a meal-planning tool that many people use to manage their blood sugar. Carbohydrate counting, or ‘carb counting’, is done by tracking the amount of carbohydrates eaten at meals and snacks. Carbohydrates are a type of nutrient found in starchy and sweet foods. When starchy or sweet foods are eaten, the body breaks the carbohydrates in the foods down into glucose. This glucose is released into the blood. Another name for glucose in the blood is blood sugar. There are four steps in carbohydrate Foods with carbohydrates: counting: • Soda pop, juice, Tang, Kool-Aid, and other sweet drinks • Starchy vegetables like potatoes, corn, squash, beans and peas 1. Timing • Rice, noodles, oatmeal, cereals, breads, crackers 2. Amount • Milk and yogurt 3. Balance • Beans 4. Monitoring • Chips, cookies, cakes, ice cream Step 1: Timing • Fruit and fruit juice A moderate amount of carbohydrate foods gets broken down into a moderate In diabetes meal planning, one choice of carbohydrates has about 15 grams of amount of blood sugar. carbohydrates. For most people trying to keep their blood sugars in a healthy range, eating about 3 or 4 choices of carbohydrate foods (45-60 grams) at a meal is a good place to start. A good amount of carbohydrates for snacks is usually around 1-2 carb + = Blood sugar 140 choices (or 15-30 grams). Food List of Carbohydrate Choices Two hours after eating one sandwich, this person’s blood sugar is 140. Each serving has about 15 grams of Carbohydrates Choose 3-4 choices (or 45-60 grams) of these foods per meal Choose 1-2 choices (or 15-30 grams) of these foods per snack + = Blood sugar 210 Starches Bread or large pilot bread 1 piece Cooked rice or noodles 1/3 cup Oatmeal, cooked 1/2 cup Two hours after eating two sandwiches, the same person’s blood sugar is 210. -
Carbohydrates: Structure and Function
CARBOHYDRATES: STRUCTURE AND FUNCTION Color index: . Very important . Extra Information. “ STOP SAYING I WISH, START SAYING I WILL” 435 Biochemistry Team *هذا العمل ﻻ يغني عن المصدر المذاكرة الرئيسي • The structure of carbohydrates of physiological significance. • The main role of carbohydrates in providing and storing of energy. • The structure and function of glycosaminoglycans. OBJECTIVES: 435 Biochemistry Team extra information that might help you 1-synovial fluid: - It is a viscous, non-Newtonian fluid found in the cavities of synovial joints. - the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement O 2- aldehyde = terminal carbonyl group (RCHO) R H 3- ketone = carbonyl group within (inside) the compound (RCOR’) 435 Biochemistry Team the most abundant organic molecules in nature (CH2O)n Carbohydrates Formula *hydrate of carbon* Function 1-provides important part of energy Diseases caused by disorders of in diet . 2-Acts as the storage form of energy carbohydrate metabolism in the body 3-structural component of cell membrane. 1-Diabetesmellitus. 2-Galactosemia. 3-Glycogen storage disease. 4-Lactoseintolerance. 435 Biochemistry Team Classification of carbohydrates monosaccharides disaccharides oligosaccharides polysaccharides simple sugar Two monosaccharides 3-10 sugar units units more than 10 sugar units Joining of 2 monosaccharides No. of carbon atoms Type of carbonyl by O-glycosidic bond: they contain group they contain - Maltose (α-1, 4)= glucose + glucose -Sucrose (α-1,2)= glucose + fructose - Lactose (β-1,4)= glucose+ galactose Homopolysaccharides Heteropolysaccharides Ketone or aldehyde Homo= same type of sugars Hetero= different types Ketose aldose of sugars branched unBranched -Example: - Contains: - Contains: Examples: aldehyde group glycosaminoglycans ketone group. -
Oat Bran Beta-Glucan : the New Go-To Nutrition Ingredient
OAT BRAN BETA-GLUCAN : THE NEW GO-TO NUTRITION INGREDIENT Cholesterol Reduction | Glycaemic Response Weight Management | Digestive Health A NEW FORCE IN HEALTH & WELLBEING Oat bran leads the way $ Rich in beta-glucan, which is 442 ILLION Around an exceptionally healthy soluble B fiber, oat bran has emerged as The global weight % management market 8.5 a powerful force in the nutrition will be worth industry. Natural, easy to process, $442 billion in 2020, up from of adults aged 18 and 1 over had and offering multiple health $215 billion in 2016 raised blood glucose in 20142 benefits, it is rapidly becoming a go-to ingredient for health and wellness brands and manufacturers The global market for digestive health and health-conscious consumers solutions is worth $5.7bn – including worldwide. $2.7bn in North America, $1.2bn in Europe and $1.5bn in Asia3 The number of new product launches containing oat bran increased by 120% bn between 2012 and 2017, according to data $2.7 $1.5bn $1.2bn from Mintel. Several major companies have developedRIPRIP products made with oat fiber bran. Its popularity is no surprise. Oat beta-glucan has been shown to reduce cholesterol, maintain healthy blood sugar levels after eating and to promote gut health. As a result, it is the natural choice of ingredient for 31% of all deaths globally cholesterol reduction and reducing the risk of are caused by CVD cardiovascular disease (CVD), and to deliver % That’s equivalent to 17.7 benefits for glycaemic control and digestive 31 million deaths4 health. Approved health claims Oat beta-glucan is the subject of approved health claims In addition, EFSA recognized the high level of evidence in most countries that offer detailed nutritional guidelines linking oat beta-glucan with glycaemic control and to their populations. -
Chem 331 Biochemistry Carbohydrates Learning Objectives, Study Guides
Chem 331 Biochemistry Carbohydrates Learning Objectives, Study Guides Key concepts: Monosaccharides are defined as polyhydroxyls, ether as aldehydes or ketones. Sugars that contain 4 or more carbons exist primarily as ring structures known as hemiacetals (aldehydes ) or hemiketals (ketones). Monosaccharides are single sugars examples are glucose, fructose and ribose. Disaccharides are two liked sugars examples are sucrose, lactose, cellobiose and maltose. Oligosaccharides are polymers of simple sugars linked together by O and N linked glycosidic bonds. Examples are cellulose, glycogen and glycosaminoglycans. Learning Objectives • Define carbohydrate and the groups of saccharides in chemical and descriptive terms • DRAW fructose, glucose, galactose, sucrose and lactose • Understand the concepts of enantiomers, diastereomers and epimers of simple sugars. Know the definitions of these terms • Know how the ring structures of aldehyde and ketone sugars are formed • Describe the role that mutarotation plays in intraconversion between the alpha and beta anomers. • Know the glycosidic bonds for the acetal and ketal bonds. Know the different positions for the alpha and beta linkage conformations. • Be able to convert the straight chain structure of any 5 or 6 carbon containing monosaccharide to its corresponding ring structure • Be able to recognize the structures of the modifications of sugars: • glycosides, sugar alcohols, sugar acids, phosphate esters, deoxy sugars and amino sugars. • Understand the role saccharides play in biology • Tell the difference between the major sugar polymers in biochemistry • Know the differences between glycoprotein and proteoglycans. • Know the biochemical functions and differences between the various heteropolysaccharides • Be able to recognize the N and O linked polysaccharides • Know how dietary polysaccharides are digested by humans Study Notes from Dr P: This is a pretty straight forward chapter. -
Part 1 in Our Series of Carbohydrate Lectures. in This Section, You Will Learn About Monosaccharide Structure
Welcome to Part 1 in our series of Carbohydrate lectures. In this section, you will learn about monosaccharide structure. The building blocks of larger carbohydrate polymers. 1 First, let’s review why learning about carbohydrates is important. Carbohydrates are used by biological systems as fuels and energy resources. Carbohydrates typically provide quick energy and are one of the primary energy storage forms in animals. Carbohydrates also provide the precursors to other major macromolecules within the body, including the deoxyribose and ribose required for nucleic acid biosynthesis. Carbohydrates can also provide structural support and cushioning/shock absorption, as well as cell‐cell communication, identification, and signaling. 2 Carbohydrates, as their name implies, are water hydrates of carbon, and they all have the same basic core formula (CH2O)n and are always found in the ratio of 1 carbon to 2 hydrogens to 1 oxygen (1:2:1) making them easy to identify from their molecular formula. 3 Carbohydrates can be divided into subcategories based on their complexity. The simplest carbohydrates are the monosaccharides which are the simple sugars required for the biosynthesis of all the other carbohydrate types. Disaccharides consist of two monosaccharides that have been joined together by a covalent bond called the glycosidic bond. Oligosaccharides are polymers that consist of a few monosaccharides covalently linked together, and Polysaccharides are large polymers that contain hundreds to thousands of monosaccharide units all joined together by glycosidic bonds. The remainder of this lecture will focus on monosaccharides 4 Monosaccharides all have alcohol functional groups associated with them. In addition they also have one additional functional group, either an aldehyde or a ketone. -