Simula Mother Tongue for a Generation of Nordic Programmers

Total Page:16

File Type:pdf, Size:1020Kb

Simula Mother Tongue for a Generation of Nordic Programmers Simula! Mother Tongue! for a Generation of! Nordic Programmers! Yngve Sundblad HCI, CSC, KTH! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Inspired by Ole-Johan Dahl, 1931-2002, and Kristen Nygaard, 1926-2002" “From the cold waters of Norway comes Object-Oriented Programming” " (first line in Bertrand Meyer#s widely used text book Object Oriented Software Construction) ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula concepts 1967" •# Class of similar Objects (in Simula declaration of CLASS with data and actions)! •# Objects created as Instances of a Class (in Simula NEW object of class)! •# Data attributes of a class (in Simula type declared as parameters or internal)! •# Method attributes are patterns of action (PROCEDURE)! •# Message passing, calls of methods (in Simula dot-notation)! •# Subclasses that inherit from superclasses! •# Polymorphism with several subclasses to a superclass! •# Co-routines (in Simula Detach – Resume)! •# Encapsulation of data supporting abstractions! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula example BEGIN! REF(taxi) t;" CLASS taxi(n); INTEGER n;! BEGIN ! INTEGER pax;" PROCEDURE book;" IF pax<n THEN pax:=pax+1;! pax:=n;" END of taxi;! t:-NEW taxi(5);" t.book; t.book;" print(t.pax)" END! Output: 7 ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Teaching basic computer science from 1970 Data structures" on firm theoretical footing by Ole-Johan Dahl, Tony Hoare, Niklaus Wirth (Algorithms+Datastructues=Programs)! Simula excellent tool, example:! Binary tree node with post order scan method! CLASS node(left, right); REF(node) left, right;! BEGIN ! PROCEDURE scan(x); REF(node) x;! INSPECT x DO BEGIN! scan(left);! scan(right);! visit(THIS node);! END of scan;! END of node;! Built in Simula framework (class) for set handling, Simset! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Teaching basic computer science from 1970 Program structuring" In Simula Ole-Johan Dahl and Kristen Nygaard invented structuring into objects as instances of classes and subclasses," complementing the then current procedural structures.! This encourages encapsulation and inheritance for modularisation and reuse and tree structuring of program elements, supporting overview and maintainability of programs.! Structured Programming with Style was put on firm theoretical and practical foundation in the early 1970s by" Ole-Johan Dahl, Edsger Dijkstra & Niklaus Wirth (Structured Programming book), Brian Kernighan & P.J. Plauger (The Elements of Programming Style book), Donald Knuth and Kristen Nygaard ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Teaching basic computer science from 1970 Program structures: Coroutines & Simulation" The advanced Simula constructions (procedures)! Detach! Resume(x)! Call(x)! allows an object under execution to stop and hand over control to another detached object, which then continues its execution, or the main program.! This quasi-parallellism is the basis for the discrete event simulation facilities in the framework (class) Simulation.! This can be used for emulation of real parallellism and was taught to the most advanced students.! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Teaching basic computer science from 1970 Computer Graphics and Interaction" Object-oriented structures, class and subclass hierarchy and objects with methods, are very natural when describing graphical entities on the screen with interaction.! In our first graphics courses basic structuring and algorithmic concepts such as display lists, hidden surface algorithms, finding object clicked on etc., were described and implemented in Simula.! In the 1980s Smalltalk, much more elaborated, and a graphic environment in itself, took over this role.! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula programming tools from the 1970s Around Simula were developed (in Simula) tools to facilitate structuring, debugging, analysing and safeguarding programs:! SIMED – structuring source code with indentation, capitalising Simula keyword etc.! SIMDDT – debugging with setting halt point, inspecting variables at those points, etc. ! FQC – getting statistics on number of executions of each statement! SAFEIO – Input routines that check validity of type of input, within prescribed interval, etc. ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula dialog programming environment DEC-10 and DEC-20" A deciding factor for the success of Simula in education and research was the implementation for the DEC-systems, our first advanced dialog time-sharing environment, from early 1970s (Arnborg, Jones, Noble, Weston & al, FOA)! At KTH it was extensively used" 1976-1988, on three dedicated" DEC20-computers, " Nadja, Vera & Venus.! Here (June 2010) is Nadja, " which started directly after" 22 years of stand-still.! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula heritage in Programming languages:! •# 1970s: Smalltalk (Alan Kay, Adele Goldberg), " Modula-2 (Niklaus Wirth), LOOPS (Dan Bobrow)! •# 1980s: Eiffel (Bertrand Meyer), " C++ (Bjarne Stroustrup), Objective C (Brad Cox), " Object Pascal (Niklaus Wirth, Anders Hejlsberg)! •# 1990s: Python (Guido van Rossum), " Java (Jim Gosling), Objective Ada (Jean Ichbiah), " C# (Anders Hejlsberg)! All are based on concepts in Simula, the “Latin” of object oriented programming languages, that “modern” languages build on! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula heritage in programming environments! Smalltalk-80, the generic! program development browser" “Then there was Simula. It was a great concept and I was lucky enough to see it as almost a new thing.”! “If you combine Simula and Lisp—Lisp didn$t have data structures, it had instances of objects—you would have a dynamic type system that would give you the range of expression you need.”! “It is not too much of an exaggeration to say that most of my ideas from then on took their roots from Simula--but not as an attempt to improve it. It was the promise of an entirely new way to structure computations that took my fancy. As it turned out, it would take quite a few years to understand how to use the insights and to devise efficient mechanisms to execute them.”! Citations from Alan Kay and Adele Goldberg on the ideas behind Smalltalk! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Post-Simula in our education:! Until 1986 all first programming courses at KTH used Simula, majors the full object-oriented concepts, minors the Algol part.! From 1984 Smalltalk was introduced in second course on graphics and interaction, on Sun, Tektronix, Macintosh.! First course for majors from 1986 is Abelson-Sussman: Structure and Interpretation of Computer Programs, based on “pure” Lisp dialect Scheme. ! Minors start with Java, then elective Python.! The NADA Stockholm University major Computer Science education used Simula on Macintoshes until 1997, then Abelson-Sussman.! Computer Science in Lund also used Simula in education until 1997 and keeps up the heritage by providing compilers.! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Thanks! NADA (CSC), KTH:! FOA (FOI):! Stefan Arnborg! Kalle Mäkilä! Serafim Dahl! Mats Ohlin ! Örjan Leringe! Jacob Palme! Kjell Lindqvist! Lund University:! Staffan Romberger! Sten Henriksson! Boris Magnusson! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula in education:! Questions?! Similar or different experiences?! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad!.
Recommended publications
  • Typology of Programming Languages E Early Languages E
    Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language.
    [Show full text]
  • QATAR ASW ONLINE SCRIPT V.8.0 Pages
    “DEXIGN THE FUTURE: Innovation for Exponential Times” ARNOLD WASSERMAN COMMENCEMENT ADDRESS VIRGINIA COMMONWEALTH UNIVERSITY IN QATAR 2 MAY 2016 مساء الخير .Good afternoon It is an honor to be invited to address you on this important day. Today you artists and designers graduate into the future. Do you think about the future? Of course you do. But how do you think about the future? Is the future tangible - or is it intangible ? Is it a subject for rational deliberation? Or is it an imagined fantasy that forever recedes before us? Is the future simply whatever happens to us next? Or is it something we deliberately create? Can we Dexign the Future? What I would like us to think about for the next few moments is how creative professionals like yourselves might think about the future. What I have to say applies as much to art as it does to design. Both are technologies of creative innovation. I will take the liberty here of calling it all design. My speech is also available online. There you can follow a number of links to what I will talk about here. The future you are graduating into is an exponential future. What that means is that everything is happening faster and at an accelerating rate. For example, human knowledge is doubling every 12 months. And that curve is accelerating. An IBM researcher foresees that within a few years knowledge will be doubling every 12 hours as we build out the internet of things globally. This acceleration of human knowledge implies that the primary skill of a knowledge worker like yourself is research, analysis and synthesis of the not-yet-known.
    [Show full text]
  • Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
    INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier.
    [Show full text]
  • Object-Oriented Programming Basics with Java
    Object-Oriented Programming Object-Oriented Programming Basics With Java In his keynote address to the 11th World Computer Congress in 1989, renowned computer scientist Donald Knuth said that one of the most important lessons he had learned from his years of experience is that software is hard to write! Computer scientists have struggled for decades to design new languages and techniques for writing software. Unfortunately, experience has shown that writing large systems is virtually impossible. Small programs seem to be no problem, but scaling to large systems with large programming teams can result in $100M projects that never work and are thrown out. The only solution seems to lie in writing small software units that communicate via well-defined interfaces and protocols like computer chips. The units must be small enough that one developer can understand them entirely and, perhaps most importantly, the units must be protected from interference by other units so that programmers can code the units in isolation. The object-oriented paradigm fits these guidelines as designers represent complete concepts or real world entities as objects with approved interfaces for use by other objects. Like the outer membrane of a biological cell, the interface hides the internal implementation of the object, thus, isolating the code from interference by other objects. For many tasks, object-oriented programming has proven to be a very successful paradigm. Interestingly, the first object-oriented language (called Simula, which had even more features than C++) was designed in the 1960's, but object-oriented programming has only come into fashion in the 1990's.
    [Show full text]
  • Internet Engineering Jan Nikodem, Ph.D. Software Engineering
    Internet Engineering Jan Nikodem, Ph.D. Software Engineering Theengineering paradigm Software Engineering Lecture 3 The term "software crisis" was coined at the first NATO Software Engineering Conference in 1968 by: Friedrich. L. Bauer Nationality;German, mathematician, theoretical physicist, Technical University of Munich Friedrich L. Bauer 1924 3/24 The term "software crisis" was coined at the first NATO Software Engineering Conference in 1968 by: Peter Naur Nationality;Dutch, astronomer, Regnecentralen, Niels Bohr Institute, Technical University of Denmark, University of Copenhagen. Peter Naur 1928 4/24 Whatshouldbe ourresponse to software crisis which provided with too little quality, too late deliver and over budget? Nationality;Dutch, astronomer, Regnecentralen, Niels Bohr Institute, Technical University of Denmark, University of Copenhagen. Peter Naur 1928 5/24 Software should following an engineering paradigm NATO conference in Garmisch-Partenkirchen, 1968 Peter Naur 1928 6/24 The hope is that the progress in hardware will cure all software ills. The Oberon System User Guide and Programmer's Manual. ACM Press Nationality;Swiss, electrical engineer, computer scientist ETH Zürich, IBM Zürich Research Laboratory, Institute for Media Communications Martin Reiser 7/24 However, a critical observer may notethat software manages to outgrow hardware in size and sluggishness. The Oberon System User Guide and Programmer's Manual. ACM Press Nationality;Swiss, electrical engineer, computer scientist ETH Zürich, IBM Zürich Research Laboratory, Institute for Media Communications Martin Reiser 8/24 Wirth's computing adage Software is getting slower more rapidly than hardware becomes faster. Nationality;Swiss, electronic engineer, computer scientist ETH Zürich, University of California, Berkeley, Stanford University University of Zurich. Xerox PARC.
    [Show full text]
  • Submission Data for 2020-2021 CORE Conference Ranking Process International Symposium on Formal Methods (Was Formal Methods Europe FME)
    Submission Data for 2020-2021 CORE conference Ranking process International Symposium on Formal Methods (was Formal Methods Europe FME) Ana Cavalcanti, Stefania Gnesi, Lars-Henrik Eriksson, Nico Plat, Einar Broch Johnsen, Maurice ter Beek Conference Details Conference Title: International Symposium on Formal Methods (was Formal Methods Europe FME) Acronym : FM Rank: A Data and Metrics Google Scholar Metrics sub-category url: https://scholar.google.com.au/citations?view_op=top_venues&hl=en&vq=eng_theoreticalcomputerscienceposition in sub-category: 20+Image of top 20: ACM Metrics Not Sponsored by ACM Aminer Rank 1 Aminer Rank: 28Name in Aminer: World Congress on Formal MethodsAcronym or Shorthand: FMh-5 Index: 17CCF: BTHU: âĂŞ Top Aminer Cites: http://portal.core.edu.au/core/media/conf_submissions_citations/extra_info1804_aminer_top_cite.png Other Rankings Not aware of any other Rankings Conferences in area: 1. Formal Methods Symposium (FM) 2. Software Engineering and Formal Methods (SEFM), Integrated Formal Methods (IFM) 3. Fundamental Approaches to Software Engineering (FASE), NASA Formal Methods (NFM), Runtime Verification (RV) 4. Formal Aspects of Component Software (FACS), Automated Technology for Verification and Analysis (ATVA) 5. International Conference on Formal Engineering Methods (ICFEM), FormaliSE, Formal Methods in Computer-Aided Design (FMCAD), Formal Methods for Industrial Critical Systems (FMICS) 6. Brazilian Symposium on Formal Methods (SBMF), Theoretical Aspects of Software Engineering (TASE) 7. International Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA) Top People Publishing Here name: Frank de Boer justification: h-index: 42 ( https://www.cwi.nl/people/frank-de-boer) Frank S. de Boer is senior researcher at the CWI, where he leads the research group on Formal Methods, and Professor of Software Correctness at Leiden University, The Netherlands.
    [Show full text]
  • Design and Implementation of an Optionally-Typed Functional Programming Language
    Design and Implementation of an Optionally-Typed Functional Programming Language Shaobai Li Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2017-215 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-215.html December 14, 2017 Copyright © 2017, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design and Implementation of an Optionally-Typed Functional Programming Language by Patrick S. Li A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering { Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Koushik Sen, Chair Adjunct Professor Jonathan Bachrach Professor George Necula Professor Sara McMains Fall 2017 Design and Implementation of an Optionally-Typed Functional Programming Language Copyright 2017 by Patrick S. Li 1 Abstract Design and Implementation of an Optionally-Typed Functional Programming Language by Patrick S. Li Doctor of Philosophy in Engineering { Electrical Engineering and Computer Sciences University of California, Berkeley Professor Koushik Sen, Chair This thesis describes the motivation, design, and implementation of L.B. Stanza, an optionally- typed functional programming language aimed at helping programmers tackle the complexity of architecting large programs and increasing their productivity across the entire software development life cycle.
    [Show full text]
  • Oral History Interview with John Brackett and Doug Ross
    An Interview with JOHN BRACKETT AND DOUG ROSS OH 392 Conducted by Mike Mahoney on 7 May 2004 Needham, Massachusetts Charles Babbage Institute Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute John Brackett and Doug Ross Interview 7 May 2004 Oral History 392 Abstract Doug Ross and John Brackett focus on the background of SofTech and then its entry into the microcomputer software marketplace. They describe their original contact with the University of California at San Diego (UCSD) and licensing the p-System which had been developed there. They discuss the effort required to bring the program to production status and the difficulties in marketing it to the sets of customers. They talk about the transition from 8 bit to 16 bit machines and how that affected their market opportunities. They conclude with a review of the negotiations with IBM and their failure to get p-System to become a primary operating environment. That, and the high performance of Lotus 1-2-3, brought about the demise of the p- System. [John Brackett requested that the following information from Wikipedia, the free encyclopedia, be provided as an introduction to this oral history interview: “UCSD p-System or UCSD Pascal System was a portable, highly machine independent operating system based upon UCSD Pascal. The University of California, San Diego Institute for Information Systems developed it in 1978 to provide students with a common operating system that could run on any of the then available microcomputers as well as campus DEC PDP-11 minicomputers. UCSD p- System was one of three operating systems (along with PC-DOS and CP/M-86) that IBM offered for its original IBM PC.
    [Show full text]
  • The Standard Model for Programming Languages: the Birth of A
    The Standard Model for Programming Languages: The Birth of a Mathematical Theory of Computation Simone Martini Department of Computer Science and Engineering, University of Bologna, Italy INRIA, Sophia-Antipolis, Valbonne, France http://www.cs.unibo.it/~martini [email protected] Abstract Despite the insight of some of the pioneers (Turing, von Neumann, Curry, Böhm), programming the early computers was a matter of fiddling with small architecture-dependent details. Only in the sixties some form of “mathematical program development” will be in the agenda of some of the most influential players of that time. A “Mathematical Theory of Computation” is the name chosen by John McCarthy for his approach, which uses a class of recursively computable functions as an (extensional) model of a class of programs. It is the beginning of that grand endeavour to present programming as a mathematical activity, and reasoning on programs as a form of mathematical logic. An important part of this process is the standard model of programming languages – the informal assumption that the meaning of programs should be understood on an abstract machine with unbounded resources, and with true arithmetic. We present some crucial moments of this story, concluding with the emergence, in the seventies, of the need of more “intensional” semantics, like the sequential algorithms on concrete data structures. The paper is a small step of a larger project – reflecting and tracing the interaction between mathematical logic and programming (languages), identifying some
    [Show full text]
  • A Model of Inheritance for Declarative Visual Programming Languages
    An Abstract Of The Dissertation Of Rebecca Djang for the degree of Doctor of Philosophy in Computer Science presented on December 17, 1998. Title: Similarity Inheritance: A Model of Inheritance for Declarative Visual Programming Languages. Abstract approved: Margaret M. Burnett Declarative visual programming languages (VPLs), including spreadsheets, make up a large portion of both research and commercial VPLs. Spreadsheets in particular enjoy a wide audience, including end users. Unfortunately, spreadsheets and most other declarative VPLs still suffer from some of the problems that have been solved in other languages, such as ad-hoc (cut-and-paste) reuse of code which has been remedied in object-oriented languages, for example, through the code-reuse mechanism of inheritance. We believe spreadsheets and other declarative VPLs can benefit from the addition of an inheritance-like mechanism for fine-grained code reuse. This dissertation first examines the opportunities for supporting reuse inherent in declarative VPLs, and then introduces similarity inheritance and describes a prototype of this model in the research spreadsheet language Forms/3. Similarity inheritance is very flexible, allowing multiple granularities of code sharing and even mutual inheritance; it includes explicit representations of inherited code and all sharing relationships, and it subsumes the current spreadsheet mechanisms for formula propagation, providing a gradual migration from simple formula reuse to more sophisticated uses of inheritance among objects. Since the inheritance model separates inheritance from types, we investigate what notion of types is appropriate to support reuse of functions on different types (operation polymorphism). Because it is important to us that immediate feedback, which is characteristic of many VPLs, be preserved, including feedback with respect to type errors, we introduce a model of types suitable for static type inference in the presence of operation polymorphism with similarity inheritance.
    [Show full text]
  • Reading List
    EECS 101 Introduction to Computer Science Dinda, Spring, 2009 An Introduction to Computer Science For Everyone Reading List Note: You do not need to read or buy all of these. The syllabus and/or class web page describes the required readings and what books to buy. For readings that are not in the required books, I will either provide pointers to web documents or hand out copies in class. Books David Harel, Computers Ltd: What They Really Can’t Do, Oxford University Press, 2003. Fred Brooks, The Mythical Man-month: Essays on Software Engineering, 20th Anniversary Edition, Addison-Wesley, 1995. Joel Spolsky, Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove of Interest to Software Developers, Designers, and Managers, and to Those Who, Whether by Good Fortune or Ill Luck, Work with Them in Some Capacity, APress, 2004. Most content is available for free from Spolsky’s Blog (see http://www.joelonsoftware.com) Paul Graham, Hackers and Painters, O’Reilly, 2004. See also Graham’s site: http://www.paulgraham.com/ Martin Davis, The Universal Computer: The Road from Leibniz to Turing, W.W. Norton and Company, 2000. Ted Nelson, Computer Lib/Dream Machines, 1974. This book is now very rare and very expensive, which is sad given how visionary it was. Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography, Anchor, 2000. Douglas Hofstadter, Goedel, Escher, Bach: The Eternal Golden Braid, 20th Anniversary Edition, Basic Books, 1999. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003.
    [Show full text]
  • Type Extensions, Wirth 1988
    Type Extensions N. WIRTH lnstitut fijr Informatik, ETH, Zurich Software systems represent a hierarchy of modules. Client modules contain sets of procedures that extend the capabilities of imported modules. This concept of extension is here applied to data types. Extended types are related to their ancestor in terms of a hierarchy. Variables of an extended type are compatible with variables of the ancestor type. This scheme is expressed by three language constructs only: the declaration of extended record types, the type test, and the type guard. The facility of extended types, which closely resembles the class concept, is defined in rigorous and concise terms, and an efficient implementation is presented. Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-data types and structures; modules, packuges; D.3.4 [Programming Languages]: Processors-code generation General Terms: Languages Additional Key Words and Phrases: Extensible data type, Modula-2 1. INTRODUCTION Modern software development tools are designed for the construction of exten- sible systems. Extensibility is the cornerstone for system development, for it allows us to build new systems on the basis of existing ones and to avoid starting each new endeavor from scratch. In fact, programming is extending a given system. The traditional facility that mirrors this concept is the module-also called package-which is a collection of data definitions and procedures that can be linked to other modules by an appropriate linker or loader. Modern large systems consist, without exception, of entire hierarchies of such modules. This notion has been adopted successfully by modern programming languages, such as Mesa [4], Modula-2 [8], and Ada [5], with the crucial property that consistency of interfaces be verified upon compilation of the source text instead of by the linking process.
    [Show full text]