Internet Engineering Jan Nikodem, Ph.D. Software Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Internet Engineering Jan Nikodem, Ph.D. Software Engineering Internet Engineering Jan Nikodem, Ph.D. Software Engineering Theengineering paradigm Software Engineering Lecture 3 The term "software crisis" was coined at the first NATO Software Engineering Conference in 1968 by: Friedrich. L. Bauer Nationality;German, mathematician, theoretical physicist, Technical University of Munich Friedrich L. Bauer 1924 3/24 The term "software crisis" was coined at the first NATO Software Engineering Conference in 1968 by: Peter Naur Nationality;Dutch, astronomer, Regnecentralen, Niels Bohr Institute, Technical University of Denmark, University of Copenhagen. Peter Naur 1928 4/24 Whatshouldbe ourresponse to software crisis which provided with too little quality, too late deliver and over budget? Nationality;Dutch, astronomer, Regnecentralen, Niels Bohr Institute, Technical University of Denmark, University of Copenhagen. Peter Naur 1928 5/24 Software should following an engineering paradigm NATO conference in Garmisch-Partenkirchen, 1968 Peter Naur 1928 6/24 The hope is that the progress in hardware will cure all software ills. The Oberon System User Guide and Programmer's Manual. ACM Press Nationality;Swiss, electrical engineer, computer scientist ETH Zürich, IBM Zürich Research Laboratory, Institute for Media Communications Martin Reiser 7/24 However, a critical observer may notethat software manages to outgrow hardware in size and sluggishness. The Oberon System User Guide and Programmer's Manual. ACM Press Nationality;Swiss, electrical engineer, computer scientist ETH Zürich, IBM Zürich Research Laboratory, Institute for Media Communications Martin Reiser 8/24 Wirth's computing adage Software is getting slower more rapidly than hardware becomes faster. Nationality;Swiss, electronic engineer, computer scientist ETH Zürich, University of California, Berkeley, Stanford University University of Zurich. Xerox PARC. Niklaus Emil Wirth 1934 9/24 A Brief History of SE I. The 1960s and the Origin of Software Engineering Computersemergencedfrom the closed laboratory of electrical engineers into the publicdomain. There was no interactivity between man and computer. N. E. Wirth 10/24 A Brief History of SE II. Programming as a Discipline High-level languagebecame an ill-understood buzzword.What, if anything, was to be “high-level”? Softwareengineers were judgedby the number of lines of code produced per hour [sic]. N. E. Wirth 11/24 A Brief History of SE III. Abstraction Computer systems are machines of large complexity. This complexity can be masteredintellectually by one tool only: Abstraction. N. E. Wirth 12/24 A Brief History of SE IV. The Advent of the Micro-Computer Computing went public. ”Testing mayshow the presence of errors, but it can never prove their absence. Software Engineering is programming for those who can’t.” E.W.Dijkstra N. E. Wirth 13/24 A Brief History of SE V. Programming as a mathematical discipline Programming was obtaining a mathematical basis. Programs were no longer justcode for controlling computers, but static texts that could be subjected to mathematicalreasoning. A solution was to lie in a disciplined manner of programming, rather than a rigorous scientific theory. N. E. Wirth 14/24 A Brief History of SE VI. The Era of the Personal Workstation Up to 1980 the commonly accepted model of computing was transforming data fromtheir given state to the result, gradually transforming input into output. This view of computing stemmed from the original task of computers: computing numerical results N. E. Wirth 15/24 A Brief History of SE VII. Abundance of Computer Power Awild growthof varieties of variants isnot ininterest of high-quality engineering andprofessionalism. The writing of complicated code and the nasty decryption by others isapparently considered easier or more economical than the careful designanddescription of clean interfaces of modules. N. E. Wirth 16/24 A Brief History of SE VIII. Wasteful Software Carefuldesign is timeconsuming,costly. But it is still cheaper than unreliable, difficult software, when thecost of “maintenance” is not factored in. N. E. Wirth 17/24 Conclusion 1 A primary effort must be education toward a sense of quality!!! •Programmers must become engaged crusaders against home-made complexity. •Thecancerous growth of complexity is not a thing to be admired; it must be foughtwherever possible. 18/24 Conclusion 1 (cont’d) A primary effort must be education toward a sense of quality!!! •Programmers must be given time and respect for work of highquality. This is crucial and ultimately more effective than better tools and rules. •Let usembark on a global effort to prevent software from becoming known as softwaste! 19/24 Conclusion 2 Systems can be designed with utmost care andprofessionalism, yet they remain error-prone if built on a complex and unreliableplatform. 20/24 Conclusion 3 We must stop thecrazy drive for more complexity. Software manuals of several hundred pagesare an unmistakable symptom of their inadequacy. 21/24 Conclusion4 Software engineering would be the primary beneficiary of a professional education in disciplined programming. Engineers in industry, supposedly must be compatible with the rest of the world, and to deviate from established standards might be fatal. 22/24 Readings • NiklausWirth, A Brief History of Software Engineering IEEE Annals of the History of Computing -Volume 30, Number 3, July-September 2008, pp. 32-39, DOI: 10.1353/ahc.0.0021 23/24 .
Recommended publications
  • Typology of Programming Languages E Early Languages E
    Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language.
    [Show full text]
  • Computing Versus Human Thinking
    By Peter Naur, recipient of ACM’s 2005 A.M. Turing Award Computing Versus Human Thinking n this presentation I shall give you an overview of efforts. Indeed, I have found that a large part of what Imy works from the past fifty years concerning the is currently said about human thinking and about sci- issue given in the title. Concerning this title I entific and scholarly activity is false and harmful to invite you to note particularly the middle word, ‘ver- our understanding. I realize that my presentation of sus’. This word points to the tendency of my efforts some of these issues may be offensive to you. This I around this theme, to wit, to clarify the contrast regret, but it cannot be avoided. between the two items, computing and human thinking. This tendency of my work has found its DESCRIPTION AS THE CORE ISSUE OF SCIENCE AND ultimate fulfilment in my latest result, which is a SCHOLARSHIP description of the nervous system showing that this The tone of critique and rejection of established system has no similarity whatever to a computer. ideas has its roots in my earliest activity, from its very It is ironic that my present award lecture is given beginning more than fifty years ago. Already in my under the title of Turing. As a matter of fact, one part work in astronomy, around 1955, a decisive item in of my work concerning computing and human think- my awareness came from Bertrand Russell’s explicit ing has been an explicit critique, or rejection, of the rejection of any notion of cause as a central issue of ideas of one prominent contribution from Alan Tur- scientific work.
    [Show full text]
  • A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book)
    A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book) R. w. BEMER Introduction This is an admittedly fragmentary chronicle of events in the develop­ ment of the algorithmic language ALGOL. Nevertheless, it seems perti­ nent, while we await the advent of a technical and conceptual history, to outline the matrix of forces which shaped that history in a political and social sense. Perhaps the author's role is only that of recorder of visible events, rather than the complex interplay of ideas which have made ALGOL the force it is in the computational world. It is true, as Professor Ershov stated in his review of a draft of the present work, that "the reading of this history, rich in curious details, nevertheless does not enable the beginner to understand why ALGOL, with a history that would seem more disappointing than triumphant, changed the face of current programming". I can only state that the time scale and my own lesser competence do not allow the tracing of conceptual development in requisite detail. Books are sure to follow in this area, particularly one by Knuth. A further defect in the present work is the relatively lesser availability of European input to the log, although I could claim better access than many in the U.S.A. This is regrettable in view of the relatively stronger support given to ALGOL in Europe. Perhaps this calmer acceptance had the effect of reducing the number of significant entries for a log such as this. Following a brief view of the pattern of events come the entries of the chronology, or log, numbered for reference in the text.
    [Show full text]
  • An Early Program Proof by Alan Turing F
    An Early Program Proof by Alan Turing F. L. MORRIS AND C. B. JONES The paper reproduces, with typographical corrections and comments, a 7 949 paper by Alan Turing that foreshadows much subsequent work in program proving. Categories and Subject Descriptors: 0.2.4 [Software Engineeringj- correctness proofs; F.3.1 [Logics and Meanings of Programs]-assertions; K.2 [History of Computing]-software General Terms: Verification Additional Key Words and Phrases: A. M. Turing Introduction The standard references for work on program proofs b) have been omitted in the commentary, and ten attribute the early statement of direction to John other identifiers are written incorrectly. It would ap- McCarthy (e.g., McCarthy 1963); the first workable pear to be worth correcting these errors and com- methods to Peter Naur (1966) and Robert Floyd menting on the proof from the viewpoint of subse- (1967); and the provision of more formal systems to quent work on program proofs. C. A. R. Hoare (1969) and Edsger Dijkstra (1976). The Turing delivered this paper in June 1949, at the early papers of some of the computing pioneers, how- inaugural conference of the EDSAC, the computer at ever, show an awareness of the need for proofs of Cambridge University built under the direction of program correctness and even present workable meth- Maurice V. Wilkes. Turing had been writing programs ods (e.g., Goldstine and von Neumann 1947; Turing for an electronic computer since the end of 1945-at 1949). first for the proposed ACE, the computer project at the The 1949 paper by Alan M.
    [Show full text]
  • Simula Mother Tongue for a Generation of Nordic Programmers
    Simula! Mother Tongue! for a Generation of! Nordic Programmers! Yngve Sundblad HCI, CSC, KTH! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Inspired by Ole-Johan Dahl, 1931-2002, and Kristen Nygaard, 1926-2002" “From the cold waters of Norway comes Object-Oriented Programming” " (first line in Bertrand Meyer#s widely used text book Object Oriented Software Construction) ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula concepts 1967" •# Class of similar Objects (in Simula declaration of CLASS with data and actions)! •# Objects created as Instances of a Class (in Simula NEW object of class)! •# Data attributes of a class (in Simula type declared as parameters or internal)! •# Method attributes are patterns of action (PROCEDURE)! •# Message passing, calls of methods (in Simula dot-notation)! •# Subclasses that inherit from superclasses! •# Polymorphism with several subclasses to a superclass! •# Co-routines (in Simula Detach – Resume)! •# Encapsulation of data supporting abstractions! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula example BEGIN! REF(taxi) t;" CLASS taxi(n); INTEGER n;! BEGIN ! INTEGER pax;" PROCEDURE book;" IF pax<n THEN pax:=pax+1;! pax:=n;" END of taxi;! t:-NEW taxi(5);" t.book; t.book;" print(t.pax)" END! Output: 7 ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad!
    [Show full text]
  • Oral History Interview with John Brackett and Doug Ross
    An Interview with JOHN BRACKETT AND DOUG ROSS OH 392 Conducted by Mike Mahoney on 7 May 2004 Needham, Massachusetts Charles Babbage Institute Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute John Brackett and Doug Ross Interview 7 May 2004 Oral History 392 Abstract Doug Ross and John Brackett focus on the background of SofTech and then its entry into the microcomputer software marketplace. They describe their original contact with the University of California at San Diego (UCSD) and licensing the p-System which had been developed there. They discuss the effort required to bring the program to production status and the difficulties in marketing it to the sets of customers. They talk about the transition from 8 bit to 16 bit machines and how that affected their market opportunities. They conclude with a review of the negotiations with IBM and their failure to get p-System to become a primary operating environment. That, and the high performance of Lotus 1-2-3, brought about the demise of the p- System. [John Brackett requested that the following information from Wikipedia, the free encyclopedia, be provided as an introduction to this oral history interview: “UCSD p-System or UCSD Pascal System was a portable, highly machine independent operating system based upon UCSD Pascal. The University of California, San Diego Institute for Information Systems developed it in 1978 to provide students with a common operating system that could run on any of the then available microcomputers as well as campus DEC PDP-11 minicomputers. UCSD p- System was one of three operating systems (along with PC-DOS and CP/M-86) that IBM offered for its original IBM PC.
    [Show full text]
  • Structured Programming A.P.I.C
    ¢ . , v'~.1 c: STRUCTURED PROGRAMMING A.P.I.C. Studies in Data Processing General Editor: C. A. R. Hoare 1. Some Commercial Autocodes. A Comparative Study E. L. WiUey, A. d'Agapeyeff, Marion Tribe, B. J. Gibbens and Michelle Clarke. 2. A Primer of ALGOL 60 Programming E. W. Dijkstra 3. Input Language for Automatic Programming A. P. Yershov, G. I. Kozhukhin and U. Voloshin 4. Introduction to System Programming Edited by Peter Wegner 5. ALGOL 60 Implementation. The translation and use of Algol 60 Programs on a Computer B. RandeU and L. J. Russell 6. Dictionary for Computer Languages Hans Breuer 7. The Alpha Automatic Programming System Edited by A. P. Yershov 8. Structured Programming O.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare In preparation Operating Systems Techniques Edited by C. A. R. Hoare and R. H. Perrott A.P.I.C. Studies in Data Processing No. 8 STRUCTURED PROGRAMMING O.-J. DAHL Universitet i Oslo, Matematisk Institut, Blindern, Oslo, Norway E. W. DIJKSTRA Department of Mathematics, Technological University, Eindhoven, The Netherlands C. A. R. HOARE Department of Computer Science, The Queen's University of Belfast, Belfast, Northern Ireland 1972 ACADEMIC PRESS LONDON AND NEW YORK ACADEMIC PRESS INC. (LONDON) LTD. 24]28 Oval Road, London NW1 United States Edition published by ACADEMIC PRESS INC. 111 Fifth Avenue New York, New York 10003 Copyright © 1972 by ACADEMIC PRESS INC. (LONDON) LTD. Second printing 1973 All Rights Reserved No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers Library of Congress Catalog Card Number: 72-84452 ISBN: 0--12-200550-3 PRINTED IN GREAT BRITAIN BY WHITSTABLE LITHO~ STRAKER BROTHERS LTD.
    [Show full text]
  • Type Extensions, Wirth 1988
    Type Extensions N. WIRTH lnstitut fijr Informatik, ETH, Zurich Software systems represent a hierarchy of modules. Client modules contain sets of procedures that extend the capabilities of imported modules. This concept of extension is here applied to data types. Extended types are related to their ancestor in terms of a hierarchy. Variables of an extended type are compatible with variables of the ancestor type. This scheme is expressed by three language constructs only: the declaration of extended record types, the type test, and the type guard. The facility of extended types, which closely resembles the class concept, is defined in rigorous and concise terms, and an efficient implementation is presented. Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-data types and structures; modules, packuges; D.3.4 [Programming Languages]: Processors-code generation General Terms: Languages Additional Key Words and Phrases: Extensible data type, Modula-2 1. INTRODUCTION Modern software development tools are designed for the construction of exten- sible systems. Extensibility is the cornerstone for system development, for it allows us to build new systems on the basis of existing ones and to avoid starting each new endeavor from scratch. In fact, programming is extending a given system. The traditional facility that mirrors this concept is the module-also called package-which is a collection of data definitions and procedures that can be linked to other modules by an appropriate linker or loader. Modern large systems consist, without exception, of entire hierarchies of such modules. This notion has been adopted successfully by modern programming languages, such as Mesa [4], Modula-2 [8], and Ada [5], with the crucial property that consistency of interfaces be verified upon compilation of the source text instead of by the linking process.
    [Show full text]
  • Ebook Download Pluralism in Software Engineering : Turing
    PLURALISM IN SOFTWARE ENGINEERING : TURING AWARD WINNER PETER NAUR EXPLAINS PDF, EPUB, EBOOK Edgar G Daylight | 134 pages | 19 Oct 2011 | Lonely Scholar | 9789491386008 | English | none Pluralism in Software Engineering : Turing Award Winner Peter Naur Explains PDF Book Ludwig Wittgenstein, by contrast, opposed a rational metaphysical view to our now digital world. By penetrating deeply into the research of William James, Naur gradually developed his own theory of how mental life is like at the neural level of the nervous system. Peter Straub Books. In he received his PhD in astronomy and in he joined the staff of Regnecentralen, specializing in high-level programming languages. Proteomics 14 , , Sort order. Refresh and try again. People in the automotive industry who have patience with my philosophical reflections often end up falling into Dreyfus's trap by saying the following:. Packaging should be the same as what is found in a retail store, unless the item is handmade or was packaged by the manufacturer in non-retail packaging, such as an unprinted box or plastic bag. The flight management system for an Airbus A is software. Want to Read saving…. Lists with This Book. Todos tus libros Pluralism in Software Engineering. Our general desire to make AI more aware of the world as a whole instead of a set of rules notwithstanding, let's remember that adding rules to the training set for every new situation is more or less what happened with evolution. Steven Chang marked it as to-read Nov 18, Help Privacy Terms. Friday, July 24, Available from Amazon and many other stores.
    [Show full text]
  • Reception of Pascal in the History of Sciences
    Reception of Pascal in the history of sciences... Camille Akmut April 27, 2020 Abstract In particular computer science and technologies. With references to the history of philosophy and the social sciences. 1 I - Crown jewel computers, and sciences The computer scientist Niklaus Wirth, creator of the Pascal programming language, has said of the origins of his creation : I named it after the French philosopher and mathematician, who in 1642 designed one of the first gadgets that might truly be called a digital calculator.1 This is how Wirth remembered Pascal, and explained his choice of the philosopher for his namesake language in 1993 as part of a large conference organized by the ACM on the history of programming languages (the second HOPL); as a pioneer in a line from which { it is either implied, or we interpret too strongly { he ultimately descended. Another notable computer scientist, Friedrich Bauer, known for the stack ADT and his participation in the making of ALGOL 602 among others, in his 'Historical notes on computer science' (one of his last books, if not the last) expressed the following judgment on Pascal and Schickard : \We would not do Schickard any justice by exaggerating : his cal- culating machine was no 4-type ["Vier-Species"] machine, like that of Leibniz, but only a 2-type like Pascal's, but with the difference of having come twenty years earlier. Kepler was said to have been most happy with it. And, perhaps its mechanism was superior. But, that would be a detail."3 [trans.] Ergo : the real machine was Leibniz's { as it could (really) do all four operations of arithmetic { and as for the earlier, partial or lesser, ones Schickard's 1Found in History of programming languages, vol.
    [Show full text]
  • Boolean Matrix in the Matrix Equation (19)
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) C f I l 1 ^o } Technical Report 69-86 March 1969 Design Automation by the Computer Design Language by Yaohan Cho Professor fr N he computer time used was supported by the National Aeronautics and Space Administration under Grant NsO 398 to the Computer Science Center of the University of Maryland. /i Abstract A Computer Design Language (CDL) has been developed for facilitating design automation of digital computers. When the functional organizatl.on and sequential operation of a digital computer are conceived and specified by the CDL, this d CDL description is called a Macro design. The macro design is highly descriptive in computer elements. it describes precisely and concisely what the computer is expected to do functionally step by step.
    [Show full text]
  • Halting Problems: a Historical Reading of a Paradigmatic Computer Science Problem
    PROGRAMme Autumn workshop 2018, Bertinoro L. De Mol Halting problems: a historical reading of a paradigmatic computer science problem Liesbeth De Mol1 and Edgar G. Daylight2 1 CNRS, UMR 8163 Savoirs, Textes, Langage, Universit´e de Lille, [email protected] 2 Siegen University, [email protected] 1 PROGRAMme Autumn workshop 2018, Bertinoro L. De Mol and E.G. Daylight Introduction (1) \The improbable symbolism of Peano, Russel, and Whitehead, the analysis of proofs by flowcharts spearheaded by Gentzen, the definition of computability by Church and Turing, all inventions motivated by the purest of mathematics, mark the beginning of the computer revolution. Once more, we find a confirmation of the sentence Leonardo jotted despondently on one of those rambling sheets where he confided his innermost thoughts: `Theory is the captain, and application the soldier.' " (Metropolis, Howlett and Rota, 1980) Introduction 2 PROGRAMme Autumn workshop 2018, Bertinoro L. De Mol and E.G. Daylight Introduction (2) Why is this `improbable' symbolism considered relevant in comput- ing? ) Different non-excluding answers... 1. (the socio-historical answers) studying social and institutional developments in computing to understand why logic, or, theory, was/is considered to be the captain (or not) e.g. need for logic framed in CS's struggle for disciplinary identity and independence (cf (Tedre 2015)) 2. (the philosophico-historical answers) studying history of computing on a more technical level to understand why and how logic (or theory) are in- troduced in the computing practices { question: is there something to com- puting which makes logic epistemologically relevant to it? ) significance of combining the different answers (and the respective approaches they result in) ) In this talk: focus on paradigmatic \problem" of (theoretical) computer science { the halting problem Introduction 3 PROGRAMme Autumn workshop 2018, Bertinoro L.
    [Show full text]