ODQN 16-3, July 2012

Total Page:16

File Type:pdf, Size:1020Kb

ODQN 16-3, July 2012 National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 16, Issue 3 July 2012 Dr. John W. Lyver, IV, Retires as NASA Inside... Program Executive for Orbital Debris Status of Three Major Dr. John W. Lyver, IV, retired from NASA’s Debris Clouds 2 Office of Safety and Mission Assurance (OSMA) Development of at the end of June this year. John had served as DRAGONS – an NASA’s Program Executive for the Micrometeoroid MMOD Impact and Orbital Debris (MMOD) program since 2005. Sensor System 2 In this role, he coordinated MMOD requirements and the project elements, budget, and interfaces 15th Annual NASA/ with NASA spaceflight programs. He also served DoD OD Working as NASA’s Manager for Nuclear Flight Safety Group Meeting 3 Assurance and managed NASA’s documents and The First NASA Orbital standards developed by the NASA Safety and Debris Workshop 4 Mission Assurance Technical Authority. John began his career with the U.S. Navy, Coring the WFPC2 graduating from the U.S. Naval Academy with Dr. John Lyver (right) is presented with a signed picture by Radiator for Impact an Engineering-Physics degree in 1978. Always Wilson Harkins (left) and the OSMA staff in recognition of his years of service with NASA and the MMOD program. Trace Residue stretching his boundaries, he recently received his Assessment 4 Ph.D. in Computational Science and Informatics In his spare time, which he now has more of, Abstracts from the from George Mason University. John is a very active Boy Scout Leader and holds the NASA Orbital Debris Working at NASA was a dream of John’s from Silver Beaver Award, the Vigil Honor, and multiple Program Office 6 the time he watched John Glenn’s Mercury flight Woodbadge beads. orbit the Earth. He joined NASA after retiring from John remains a very strong advocate for the Meeting Report 7 the Navy and worked on the Space Station Freedom MMOD program and his contributions will be Space Missions and Project in Reston, VA. sorely missed. ♦ Satellite Box Score 8 New Version of DAS Now Available A minor revision of the Debris Assessment used in the assessment of reentry casualty risk Software (DAS) 2.0 has been released. DAS 2.0.2 (Requirement 4.7-1), has been revised to improve includes some code changes as well as an updated nomenclatures. Note that old (DAS 2.0.1) projects software installer and User’s Guide. The features of that use any of the 10 corrected materials will need DAS have not changed with this release. to be updated with the new material names. The two changes most apparent to the user Other important changes include improved will be the new software installer and the corrected collision risk assessments. A publication of materials list. The new installer (NSIS) is compatible DAS 2.0.2 also includes several minor changes. the NASA Orbital with current Microsoft Windows operating systems, The orbit propagation time-step, previously set to Debris Program Office both 32- and 64-bit versions. The materials list, continued on page 2 Orbital Debris Quarterly News New Version of DAS continued from page 1 different values in different computational software installation and removal procedures, nasa.gov/mitigate/das.html. modules, has been set to a single value of and to clearly state the assumptions behind the DAS users should discontinue using 2 days. The unused input “Retraction Year” has assessment of tethers. Lastly, the solar flux data version 2.0.1 and install the new version 2.0.2. been removed from the GUI for assessment file is updated to the version of 4 April 2012. By default, the new version will install over of Collision Hazards of Space Tethers A list of the changes is in the “Release Notes” the previous version, or users may remove the (Requirement 4.8-1). The software User’s file, which is installed with DAS and is available previous version using the Windows Control Guide has been updated to include the new on the DAS web page: http://orbitaldebris.jsc. Panel “Add/Remove Software” feature. ♦ Status of Three Major Debris Clouds The U.S. Space Surveillance Network 1 July a total of more than 5500 debris had been that the debris from Fengyun-1C and Cosmos continues to catalog debris from the two most officially cataloged with these breakups, 90% of 2251 now completely encircle the planet. Since prolific events in Earth orbit: the intentional which were still in orbit about the Earth. These Iridium 33 was in a nearly polar inclination destruction of the Chinese Fengyun-1C debris represent 36% of all objects residing in (86.4 degrees), the orbital planes of its debris spacecraft in January 2007 and the accidental or passing through low Earth orbit, i.e., less are taking longer to diverge as a result of lower collision of the Russian Cosmos 2251 and the than 2000 km altitude. differential precession rates. ♦ U.S. Iridium 33 spacecraft in February 2009. By The illustrations below clearly indicate Fengyun-1C debris orbits Cosmos 2251 debris orbits Iridium 33 debris orbits Development of DRAGONS – An MMOD Impact Detection Sensor System Due to the high impact speed in the low has been supporting the development of a acoustic sensors, to maximize information that Earth orbit (LEO) region, with an average of new particle impact detection system, Debris can be extracted from particle impacts. A basic 10 km/sec, orbital debris (OD) larger than Resistive/Acoustic Grid Orbital Navy Sensor RGS unit has dimensions of 25 cm by 25 cm. about 200 µm are a safety concern for human (DRAGONS), since 2007. The effort is led The surface consists of 75 µm-wide resistive space activities and robotic missions. Similar by the U.S. Naval Academy (USNA), with lines, lying in parallel and separated by 75 µm risks also come from small micrometeoroids. additional collaboration from the U.S. Naval gaps, on a 25 µm-thick Kapton thin film. Four To define the OD environment to cover the Research Laboratory (NRL), the University PVDF sensors are attached to the backside of entire spectrum of the population, different of Kent at Canterbury in Great Britain, and the thin film. A second Kapton layer, with observational approaches are needed. In-situ Virginia Tech (VT). another four PVDF sensors attached to the measurements are the best option to collect DRAGONS combines two different impact backside, is placed 10 cm below the first layer. data for particles a few millimeters and smaller. detection technologies – resistive grid sensors When a particle a few hundred micrometers or The NASA Orbital Debris Program Office (RGS) and polyvinylidene fluoride (PVDF) continued on page 3 2 www.orbitaldebris.jsc.nasa.gov DRAGONS continued from page 2 larger strikes the top layer, it will penetrate the speed and impact angle. at the USNA on 13 June. The PDR included thin film and sever some resistive lines. By The short-term goal of DRAGONS is to a project status overview by the Principal measuring the resistance increase of the layer, advance the Technology Readiness Level to 9 Investigator Professor A. Sadilek (USNA), the number of destroyed resistive lines and an and to demonstrate the system capabilities of an electronics system review by Professor C. estimate of the impacting particle’s size can be detecting and characterizing sub-millimeter Anderson (USNA), a system interface status determined. The PVDF acoustic sensors on the micrometeoroid and orbital debris (MMOD) by Professor R. Bruninga (USNA), an acoustic top film provide the impact timing and location impacts on the International Space Station. The system review by Dr. R. Corsaro (NRL), and information using the measured acoustic signal long-term goal is to deploy a large detection an RGS system review and hypervelocity arrival times at the four sensor locations. After area (>1 m2) DRAGONS to 700-1000 km impact testing at Kent by Dr. F. Giovane (VT). the particle hits the bottom film, the impact altitude to collect sufficient data for better In addition, Dr. P. Ballard from the DoD’s timing and impact location information on the environment definition of orbital debris in the Space Test Program (STP) also described a film are also provided by the acoustic sensors. 0.5-to-1-mm size regime. The DRAGONS potential STP flight opportunity to deploy The combination of acoustic data from the two project reached a major milestone when the and demonstrate a 0.5 m2 DRAGONS on the layers can then be used to estimate the impact Preliminary Design Review (PDR) was held International Space Station in 2014. ♦ 15th Annual NASA/DoD Orbital Debris Working Group Meeting The 15th meeting of the NASA/DoD slow the deployment of MCAT. length at human spaceflight altitudes. Orbital Debris Working Group (ODWG) was Dr. J.-C. Liou completed the NASA Mr. Tim Payne made two additional held on 17-18 April 2012. Although NASA’s presentations with three reports including status presentations; one on the status of a Windows Orbital Debris Program Office (ODPO) of the Debris Resistive/Acoustic Grid Orbital compatible version of SATRAK, and the was the official host of the meeting, most Navy Sensor (DRAGONS) collaboration with second on recommendations for a new satellite participation was accomplished virtually via the U.S. Naval Academy, the Mid-size Satellite catalog for the Joint Space Operations Center – telecon. The ODWG was formed based on Impact Test collaboration with the Air Force’s the Extrapolation SGP4, or eGP. recommendations by interagency panels, who Space and Missile Systems Center, and a brief Similar to the meeting format in 2011, reviewed U.S. Government orbital debris preview of the second day’s activities on Active the agenda on the second day was dedicated (OD) activities in the late 1980s and 1990s.
Recommended publications
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • June, 2013 Mayumi Matsuura JAXA Flight Director Space Vehicle Technology Center Japan Aerospace Exploration Agency (JAXA) Congratulations on 50Th Anniversary
    June, 2013 Mayumi Matsuura JAXA Flight Director Space Vehicle Technology Center Japan Aerospace Exploration Agency (JAXA) Congratulations on 50th Anniversary 1963.6.16 2008.3.11 The fist part of Japanese Experiment Module was launched International Space Station 1984: US President Ronald Reagan proposed developing a permanently-occupied space station 1988: Governments of Canada, ESA member countries, US and Japan signed the Intergovernmental Agreement on a cooperative framework for the space station 1993: Russia joined the program 1998: Beginning of on-orbit station assembly 2000: Beginning of continuous stay of the astronauts 2008: Beginning of assembly of Japanese Experiment Module 2011: Completion of station assembly Present: In the utilization phase International Partners ISS is truly an International space collaboration effort, with the participation of many countries. (C) NASA The First Piece of ISS ISS assembly sequence started in 1998 with the Russian module, Zarya (sunrise), launched by a Russian Proton rocket vehicle. Nov. 20, 1998 Zarya provides battery power, fuel storage and rendezvous and docking capability for Soyuz and Progress space vehicles. (C) NASA ISS Under Construction...(1998-2011) Dec. 2000 Dec. 1998 Dec. 1998 Dec. 2006 (C) NASA ISS Assembly Completion July 2011, Space shuttle Atlantis, on its final spaceflight of the Space Shuttle Program, carried the Raffaello multipurpose logistics module. 2011.7@STS-135 (C) NASA Japanese Experimental Module (JEM) - Kibo Experiment Logistic Module - Pressurized Section (2008.Mar) ・ 8 racks can be installed Pressurized Module (2008. Jun) ・ Cargo storage area ・ The largest pressurized module on ISS ・ 10 payload racks can be installed ・ Various resources provided Remote Manipulator System (power, communication, thermal control, gas supply and exhaust) (2008.
    [Show full text]
  • International Space Exploration Coordination Group (ISECG) Provides an Overview of ISECG Activities, Products and Accomplishments in the Past Year
    Annual Report 2012 of the International Space Exploration Coordination Group INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP ISECG Secretariat Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands +31 (0) 71 565 3325 [email protected] ISECG publications can be found on: http://www.globalspaceexploration.org/ 2 Table of Contents 1. Introduction 4 2. Executive Summary 4 3. Background 5 4. Activities 4.1. Overview 7 4.2. Activities on ISECG Level 7 4.3. Working Group Activities 8 4.3.1. Exploration Roadmap Working Group (ERWG) 8 4.3.2. International Architecture Working Group (IAWG) 9 4.3.3. International Objectives Working Group (IOWG) 10 4.3.4. Strategic Communications Working Group (SCWG) 10 Annex: Space Exploration Highlights of ISECG Member Agencies 12 1. Agenzia Spaziale Italiana (ASI), Italy 13 2. Centre National d’Etudes Spatiales (CNES), France 15 3. Canadian Space Agency (CSA), Canada 17 4. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany 21 5. European Space Agency (ESA) 23 6. Japan Aerospace Exploration Agency (JAXA), Japan 28 7. Korea Aerospace Research Institute (KARI), Republic of Korea 30 8. National Aeronautics and Space Administration (NASA), USA 31 9. State Space Agency of Ukraine (SSAU), Ukraine 33 10. UK Space Agency (UKSA), United Kingdom 35 3 1 Introduction The 2012 Annual Report of the International Space Exploration Coordination Group (ISECG) provides an overview of ISECG activities, products and accomplishments in the past year. In the annex many of the ISECG participating agencies report on national space exploration highlights in 2012. 2 Executive Summary ISECG was established in response to the “The Global Exploration Strategy: The Framework for Coordination” (GES) developed by 14 space agencies1 and released in May 2007.
    [Show full text]
  • Space Security Index 2013
    SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space.
    [Show full text]
  • HUMAN ADAPTATION to SPACEFLIGHT: the ROLE of FOOD and NUTRITION Second Edition
    National Aeronautics and Human Space Administration Adaptation to Spaceflight: The Role of Food and Nutrition Second Edition Scott M. Smith Sara R. Zwart Grace L. Douglas Martina Heer National Aeronautics and Space Administration HUMAN ADAPTATION TO SPACEFLIGHT: THE ROLE OF FOOD AND NUTRITION Second Edition Scott M. Smith Grace L. Douglas Nutritionist; Advanced Food Technology Lead Scientist; Manager for Nutritional Biochemistry Manager for Exploration Food Systems Nutritional Biochemistry Laboratory Space Food Systems Laboratory Biomedical Research and Human Systems Engineering and Environmental Sciences Division Integration Division Human Health and Performance Human Health and Performance Directorate Directorate NASA Johnson Space Center NASA Johnson Space Center Houston, Texas USA Houston, Texas USA Sara R. Zwart Martina Heer Senior Scientist; Nutritionist; Deputy Manager for Nutritional Program Director Nutritional Sciences Biochemistry IU International University of Nutritional Biochemistry Laboratory Applied Sciences Biomedical Research and Bad Reichenhall, Germany Environmental Sciences Division & Human Health and Performance Adjunct Professor of Nutrition Physiology Directorate Institute of Nutritional and Food Sciences NASA Johnson Space Center University of Bonn, Germany Houston, Texas USA & Preventive Medicine and Population Health University of Texas Medical Branch Galveston, Texas USA Table of Contents Preface .........................................................................................................................
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • → Programmes in Progress Status at End December 2008
    → pROGRAMMes IN PROGRess status at end December 2008 2005 2006 2007 2008 2009 2010 2011 2012 COMMENTS HUBBLE LAUNCHED APRIL 1990 ULYSSES LAUNCHED OCTOBER 1990 SOHO LAUNCHED DEC 1995 / OPS EXTENDED UNTIL 31 DEC 2009 XMM-NEWTON LAUNCHED DEC 1999 / OPS EXTENDED UNTIL 31 DEC 2012 CLUSTER LAUNCHED MID-2000 INTEGRAL LAUNCHED OCTOBER 2002 MARS EXPRESS LAUNCHED JUNE 2003 SMART-1 LAUNCHED SEPTEMBER 2003, IMPACTED MOON 2006 ORATION DOUBLE STAR TC-1 LAUNCHED DEC 2003 / TC-2 LAUNCHED JULY 2004 ROSETTA LAUNCHED MARCH 2004 TIC EXPL VENUS EXPRESS LAUNCHED NOVEMBER 2005 HERSCHEL/PLANCK LAUNCH 16 APRIL 2009 PROGRAMME LISA PATHFINDER LAUNCH EARLY 2011 MICROSCOPE LAUNCH EARLY 2011 GAIA LAUNCH DECEMBER 2011 SCIENCE & ROBO JWST LAUNCH JUNE 2013 EXOMARS LAUNCH 2016 BEPICOLOMBO LAUNCH AUGUST 2014 SOLAR ORBITER LAUNCH JANUARY 2017 LISA LAUNCH END 2017 METEOSAT-5/6/7 M5 LAUNCHED 1991, M6 1993, M7 1997 ERS-2 LAUNCHED APRIL 1995 / OPS EXTENDED TO MID-2011 ENVISAT LAUNCHED MARCH 2002 / POSSIBLE EXTENSION BEYOND 2010 MSG MSG-3 LAUNCH 2011, MSG-4 LAUNCH 2013 MTG LAUNCH MTG-I-1 END 2015 / MTG-S-1 2017 METOP METOP-A LAUNCH OCT 2006 / METOP-B 2011 / METOP-C 2013 CRYOSAT LAUNCH FAILURE OCT 2005 / CRYOSAT-2 LAUNCH NOV 2009 GOCE LAUNCH 16 MARCH 2009 SMOS LAUNCH JULY 2009 PROGRAMME TH OBSERVATION ADM-AEOLUS LAUNCH APRIL 2011 EAR SWARM LAUNCH 2010 EARTHCARE LAUNCH MID-2013 SENTINEL-1 LAUNCH NOVEMBER 2011 SENTINEL-2 LAUNCH OCTOBER 2012 SENTINEL-3 LAUNCH NOVEMBER 2012 ARTEMIS LAUNCHED JULY 2001, OPERATIONS EXTENDED ALPHABUS ALPHASAT LAUNCH JUNE 2012 SMALL GEO SAT. LAUNCH MID 2012 GNSS-1/EGNOS OPERATIONS START 2008 PROGRAMMES TELECOMMS/NAV.
    [Show full text]
  • TTSIQ #2 Page 1 JANUARY 201
    TTSIQ #2 page 1 JANUARY 201 Its all about Earth, re-explored from the vantage point of space, and connecting to our “neighborhood.” NEWS SECTION pp. 3-26 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports, 1 article p. 17 Mars and the Asteroids - 6 reports p. 21 Other Planets and Moons - 2 reports p. 23 Starbound - 7 reports ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 28-42 - 8 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 43-58 - 9 articles & essays (full list on last page) This new space suit has many new features, But improvement #1 is that it does away with the traditional airlock See the article on page 5 1 TTSIQ #2 page 2 JANUARY 201 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Spacex CRS-1 Mission Press Kit
    www.nasa.gov SpaceX CRS-1 Mission Press Kit CONTENTS 3 Mission Overview 7 Mission Timeline 9 Cargo Manifest 13 Graphics – Rendezvous, Grapple and Berthing, Departure and Re-Entry 15 International Space Station Overview 17 SpaceX Overview 19 SpaceX Leadership 21 SpaceX Facilities 23 Falcon 9 Overview 26 Dragon Overview 28 45th Space Wing Fact Sheet SPACEX MEDIA CONTACT Katherine Nelson VP, Marketing and Communications 310-463-0794 (c) [email protected] [email protected] NASA PUBLIC AFFAIRS CONTACTS Trent Perrotto Kelly Humphries George Diller Public Affairs Officer Public Affairs Officer Public Affairs Officer Human Exploration and Operations News Chief Launch Operations NASA Headquarters NASA Johnson Space Center NASA Kennedy Space Center 202-358-1100 281-483-5111 321-867-2468 Jenny Knotts Josh Byerly Public Affairs Officer Public Affairs Officer International Space Station International Space Station NASA Johnson Space Center NASA Johnson Space Center 281-483-5111 281-483-5111 1 HIGH RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-resolution photographs can be downloaded from: spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB For SpaceX coverage, visit: For NASA coverage, visit: spacex.com www.nasa.gov/station twitter.com/elonmusk www.nasa.gov/nasatv twitter.com/spacex twitter.com/nasa facebook.com/spacex facebook.com/ISS plus.google.com/+SpaceX plus.google.com/+NASA youtube.com/spacex youtube.com/nasatelevision WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at spacex.com/webcast, and NASA's Kennedy Space Center at www.nasa.gov/nasatv.
    [Show full text]
  • China's Ambitions in Space
    SECTION 3: CHINA’S AMBITIONS IN SPACE: CONTESTING THE FINAL FRONTIER Key Findings • China’s goal to establish a leading position in the economic and military use of outer space, or what Beijing calls its “space dream,” is a core component of its aim to realize the “great re- juvenation of the Chinese nation.” In pursuit of this goal, China has dedicated high-level attention and ample funding to catch up to and eventually surpass other spacefaring countries in terms of space-related industry, technology, diplomacy, and mil- itary power. If plans hold to launch its first long-term space station module in 2020, it will have matched the United States’ nearly 40-year progression from first human spaceflight to first space station module in less than 20 years. • China views space as critical to its future security and economic interests due to its vast strategic and economic potential. More- over, Beijing has specific plans not merely to explore space, but to industrially dominate the space within the moon’s orbit of Earth. China has invested significant resources in exploring the national security and economic value of this area, including its potential for space-based manufacturing, resource extraction, and power generation, although experts differ on the feasibility of some of these activities. • Beijing uses its space program to advance its terrestrial geopo- litical objectives, including cultivating customers for the Belt and Road Initiative (BRI), while also using diplomatic ties to advance its goals in space, such as by establishing an expanding network of overseas space ground stations. China’s promotion of launch services, satellites, and the Beidou global navigation system un- der its “Space Silk Road” is deepening participants’ reliance on China for space-based services.
    [Show full text]
  • Commercial Space Transportation: 2011 Year in Review
    Commercial Space Transportation: 2011 Year in Review COMMERCIAL SPACE TRANSPORTATION: 2011 YEAR IN REVIEW January 2012 HQ-121525.INDD 2011 Year in Review About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/ AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://www.faa.gov/about/office_org/headquarters_offices/ast/. Cover: Art by John Sloan (2012) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation CONTENTS Introduction . .1 Executive Summary . .2 2011 Launch Activity . .3 WORLDWIDE ORBITAL LAUNCH ACTIVITY . 3 Worldwide Launch Revenues . 5 Worldwide Orbital Payload Summary . 5 Commercial Launch Payload Summaries . 6 Non-Commercial Launch Payload Summaries . 7 U .S . AND FAA-LICENSED ORBITAL LAUNCH ACTIVITY . 9 FAA-Licensed Orbital Launch Summary . 9 U .S . and FAA-Licensed Orbital Launch Activity in Detail .
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France UNITED NATIONS Tel: +33 1 45 67 42 60 75039 Paris Cedex 01, France E-mail: : [email protected] Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 URL: www.iislweb.com E-mail: [email protected] Fax. + 33 1 44 76 74 37 OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL: http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 V.11-80947—March*1180947* 2011—475 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]