<<

Estudios geol., 46: 217-222 (1990)

CALEDONIAN AND LATE CALEDONIAN : A WORKING HYPOTHESIS INVOLVING TWO CONTRASTED COMPRESSIONAL/EXTENSIONAL SCENARIOS

M. Doblas * y R. Oyarzun **

RESUMEN

La estructuración tectonomagmática y metamórfica del dominio caledónico europeo su­ giere que dos escenarios, compresional y extensional, mutuamente perpendiculares, se de­ sarrollaron durante el Ordovícico-Devónico. Como resultado del esquema compresional del Ordovícico medio (Grampian, caledónico s.s.), en el O de Europa continental se desarro­ lló una provincia extensional localizada al E de la faja de plegamiento caledónica. Esta si­ tuación finalizó hacia el Devónico inferior/medio, cuando la convergencia de América del Norte, Báltica y dió origen al supercontinente Pangea. Esta colisión generó un ambiente tectónico caracterizado por: 1. plegamiento y plutonismo en Europa continental occidental, y 2. extensión y volcanismo en la parte N de la faja de plegamiento caledónica (Escocia, SO de Noruega y E de Groenlandia). Este evento puede ser tentativamente de­ nominado «Tardicaledónico». En términos globales, la evolución del dominio caledónico puede ser explicada en términos de «tectónica de inversión» (s.l.), esto es, períodos de adel­ gazamiento cortical (extensionales) seguidos por períodos de engrosamiento cortical (com­ presionales) y viceversa. Palabras clave: Caledónico, Tardicaledónico, provincia extensional, tectónica de inversión.

ABSTRACT The tectonomagmatic and metamorphic structuration of the European Caledonian realm suggests that two mutually perpendicular compressional/extensional scenarios developed du­ ring the Ordovician-Devonian time-span. As a result of the mid Ordovician Grampian com­ pressional scheme (Caledonian s.s.), a major extensional province developed further east from the Caledonian foldbelt in . This scenario ended by early/mid De­ vonian, with the complete locking of , and Gondwana into a Pan­ gaea supercontinent, thus triggering a contrasted tectonic environment which might be ter­ med

Introduction ted by the fact that no specific differentiation bet­ ween Caledonian and Variscan cycles exists in sorne The western European realm has been traditio­ areas. nally ascribed to either Caledonian (western Scandi­ Another polernical question is related to the age navia and most of the ) or Variscan (sout­ of the final configuration of Pangaea (either Devo­ hern British Isles and western continental Europe) nian, or Carboniferous/Permian), an issue which is dornains. In this sense, the question of Paleozoic pre­ of vital irnportance for the overall scenario. In this Variscan events, particularly within the continental sense, the list of proposals (based on paleomagnetic sector, has been a subject of controversy, as iIlustra- and/or paleontological data) is very long. The «late

• Departamento de Geodinámica Interna. FacuItad de Ciencias Geológicas, Universidad Complutense. 28040 Madrid. Departamento de Cristalografía y Mineralogía. Facultad de Ciencias Geológicas, Universidad Complutense. 28040 Madrid. 21R M.DüBLAS.RÜYARZUN

Pangaea» hypothesis sustained by Perroud and Bon­ Europe (El). 2. «Late Caledonian», a post-early Oe­ hommet (1981) and Zonenshain el al. (1985), among vonian-pre Oinantian episode characterized by ex­ others, proposes that this supercontinent was not tensional conditions in the northern part of the Ca­ consolidated till Carboniferous or Permian time, ledonian foldbelt (E2), and compression in western when the northward drifting Gondwana was finally continental Europe (C2). The first episode (Caledo­ welded to the septentrional continental mass (Lau­ nian s.s.) is defined in continental Europe by exten­ rentia, Baltica, and Armorica). The alternative sional conditions, as revealed by the following data: «early Pangaea» scheme (McKerrow and Ziegler, epeirogenic movements, granulite facies metamorp­ 1972; Keppie, 1977; Morel and Irving, 1978; Liver­ hism, basic volcanism, plutonism and crustal thin­ more el al., 1986; Miller and Kent, 1988), suggests a ning-rifting (Behr el al., 1980; Luettig, 1980; Weber, supercontinent configuration by early to mid Devo­ 1984) in ; plutonism in France (Cogne and nian time. Wright, 1980), particularly within the axis of Moe­ In this paper, we will argue that the structuration lan-Lanvaux and Saint-George-sur-Loire, both ac­ of the European Caledonian realm is characterized companied by basic and ultrabasic rocks and alkali­ by the following points: 1. An early link between the ne intrusions (Zwart and Oornsiepen, 1980); rifting different continental masses shaping Pangaea in this along the so-called blastomylonitic graben in north­ area. 2. Two contrasted tectonic scenarios, each of western (accompanied by sorne Ordovician al­ them defined by perpendicular deformational trends: kaline granites: Zwart and Dornsiepen, 1980), as well Caledonian s.s., and «late Caledonian». 3. A globa­ as volcanism, northwest-trending basic dykes (Gu­ Iized Caledonian cycle ending by late Devonian time, miel, 1982; Hernández, 1984), rifting, block twisting, which can be c1early separated from the Variscan and peralkaline magmatism in central Spain (Pieren one. and Dallmeyer, 1989). Metallogenic processes (Saw­ kins and Burke, 1980) during this first extensional event (El) gave rise to important ore deposits, such The shaping oC the European Caledonides as those of Lahn Dill (volcanogenic BIF facies; Ger­ many) and Almadén (volcanogenic mercury deposits; The controversial issue of a Caledonian continen­ Spain, Pieren and Dallmeyer, 1989). This extensio­ tal Europe is not new, and in fact, pre-Variscan un­ nal event El was coeval with metamorphism and nap­ conformities, tectono-metamorphic events, and mag­ pe tectonics in the Moines region within the main Ca­ matism have long been recognized in this realm (Al­ ledonian foldbelt (Scotland, D1-D2 deformation, M2 varado, 1980; Autran and Peterlongo, 1980; Behr el metamorphic peak, circa 450 Ma; Soper and Barber, al., 1980; Weber, 1984; Serrano Pinto, 1987, among 1982; crustal shortening during Arenigian-L1anvir­ others). However, these phenomena have been nian time, Dewey and Shackleton, 1984). This Gram­ mostly regarded as local peculiarities, and no c1ear pian compressional event (C1) was related to other relationships to the main Caledonian foldbelt have orogenic movements within other parts of the Cale­ been established. Additionally, the existence of tec­ donian/Appalachian belt (Scandinavia: Finnrñarkian; tonic events taking place in continental Europe, whi­ Newfoundland: Humberian; Appalachians of New le the main Caledonian foldbelt was being shaped York and New : Taconic; Dewey and Shack­ westward, favours the hypothesis of an early Paleo­ leton, 1984; Park, 1988). The final configuration of zoic unified and unstable domain in the continental this compressional realm was achieved by late Silu­ European realm, thus posing serious doubts on the rian-early Devonian, when the Iapetus Ocean c10sed models based on a series of microplates adrift at dif­ (Dewey and Shackleton, 1984; Miller and Kent, ferent paleolatitudes. Prior to the Caledonian cycle, 1988). this realm was affected by the Cadomian orogenesis The extensional conditions in continental Europe (Precambrian/Cambrian), a scenario which changed prevailed till early/mid Devonian time, when the on­ in continental Europe with the onset of extensional set of the Acadian compressions (<

COMPRESSIONAL (C1)- EXTE~ COMPRESSIONAL (C2)- EXTE~ SIONAL (En CALEDONIAN SIONAL (E2) LATE CALEDO­ SCHEME NIAN SCHEME

\ \ \ --- CEca --=- - - \ -;;;.----- '--<:::" ~ //~------­ \ ///-~---=---- //--~~ \ ./;p~~ - - - yo/' + + + + \ ® / + GD" + + \ + + +\+ +

n " ~ n' --~-~---.....~.....

A 6 ~ 7 <>8 ~9 "10

Fig. l.-Simplified palinspastic sketches and cross-sections depicting the compressional and extensional events characterizing the Ca­ ledonian (A) (mid Ordovician to early/mid Devonian) and late Caledonian (B) (post-early Devonian-pre Dinantian) events. CACB: Caledonian compressional belt; CAEP: Caledonian extensional province; CECB: continental Europe compressional belt; NCEP: nort­ hern Caledonides extensional province (NCEP and section U-U' simplified and modified after McClay et al., 1986). BA: Baltica; GR: Greenland; LA: ; GD: Gondwana. 1: cratonic domains; 2: thrust belts; 3: strike-slip zones of deformation; 4: continental rifting areas; 5: extensional detachments; 6: volcanism; 7: volcanogenic mineralizations; 8: direction of regional extension; 9: direction of extensional collapse; 10: direction of regional compression.

Fig. l.-Esquemas palinspásticos simplificados y secciones mostrando los eventos compresionales y extensionales caledónicos (A) (Or­ dovícico medio a Devónico inferior/medio) y tardicaledónicos (B) (post-Devónico inferior-Dinantiense). CACB: faja compresional ca­ ledónica; CAEP: provincia extensional caledónica; CECB: faja compresional europea continental; NCEP: provincia extensional cale­ dónica norte (NCEP y sección U-Ir simplificadas y modificadas de McClay et al., 1986). BA: Báltica; GR: Groenlandia; LA: Lauren­ tia; GD: Gondwana. 1: dominios cratónicos; 2: fajas de plegamiento; 3: zonas de deformación Transcurrentes; 4: zonas de rifting con­ tinental; 5: detachments extensionales; 6: volcanismo; 7: mineralizaciones volcanogénicas; 8: dirección regional de extensión; 9: direc- ción de colápso extensional; 10: dirección regional de compresión.

sional basins in which the Old Red Sandstone facies (370 Ma, Gambles, 1984) can adequately account for were deposited and volcanics extruded (extensional the compressional event C2. Since by Devonian time, event E2). However, the stresses responsible for this the British segment of Iapetus had closed (Dewey, collapse were mainly due to intraplate unstable con­ 1982; Dewey and Shackleton, 1984), it is conceiva­ ditions triggered by the previously overthickened ble that the main stress component may have been orogenic welt. If we assume that an early or mid De­ provided by the northward drifting and collision of vonian Pangaea existed, as suggested by sorne aut­ Gondwana against Europe by early/mid Devonian hors (McKerrow and Ziegler, 1972; Keppie, 1977; time. Morel and Irving, 1978; Gambles, 1984; Livermore Finally, soon after the cessation of this «late Cale­ el al., 1986; Miller and Kent, 1988), then the finalloc­ donian» scheme, new extensional conditions prevai­ king of North America, Baltica and Gondwana led during Dinantian time in most of Europe, a si- 220 M DOBLAS.R.OYARZUN

tuation which already belongs to the Variscan cycle. layas, Tapponnier el al., 1982). Therefore, it can be During this event the following features developed: argued that El was a direct consequence of the com­ the Basin/Block province, volcanism, and the so-ca­ pressional stresses generated throughout the Caledo­ lIed lrish-type ore deposits in Britain and nian front during the Cl episode. This scheme also (Leeder, 1982; Evans, 1987); the «Basin and Swell» provides an adequate explanation for the strike-slip zones in Germany (Luettig, 1980); basic and acid vol­ zones of deformation (Dewey, 1982; Dewey and canism in France (Chauvel and Robardet, 1980); and Shackelton, 1984) observed in the northern Caledo­ rifting and bimodal volcanism in southern Portugal nian foldbelt (fig. lA), since is typical of a Himala­ and Spain (Swakins and Burke, 1980). To the latter yan-type collision/indentation model (Tapponier el is associated a major volcanosedimentary complex al., 1982) as the one suggested here. Finally, we sug­ hosting sorne of the most outstanding massive sulp­ gest that these two Caledonian s.s. compressional hide deposits of the world (e.g. Aznalcollar, Neves (Cl) and extensional (El) dornains rnight have re­ Corvo, Río Tinto). This extensional episode, the first presented unstable intercratonic corridors, differen­ of two during the Variscan cycle (a late Variscan ex­ tially deformed in between three rnajor Precambrian tensional event is also recorded in France, Germany shields (Gondwana, Baltica, and Laurentian-Green­ and Spain; Menard and Molnar, 1988; Doblas el al., land; fig. 2). Moreover, the central bending of the 1988), ended by late Visean time, when a major Va­ Caledonian compressional belt, and the eastward di­ riscan compressional episode induced folding, meta­ vergence of the extensional trends in continental Eu­ morphism and plutonism throughout continental rope, would be a final result of the continued con­ (Sudetic phase). vergence between Laurentian-Greenland, Baltica, and Gondwana. In conclusion, the Caledonian evolution of the Eu­ The extensional events: Contrasted genetic models ropean realm is characterized by two contrasted ex-

The case of the «late Caledonian» extensional event (E2; post-early Devonian-pre Dinantian) is analyzed first, as a model has already been proposed 1 1:·'::.:1 to explain it. As suggested by McClay el al. (1986), extensional detachment tectonics (as a consequence ~ of the gravitational collapse of a previously overthic­ 3 ~ kened orogenic welt) seems a plausible mechanism to account for the northern Devonian basins in which the Old Red Sandstone facies were deposited during this event. In this sense, the «late Caledonian» Basin and Range-type extensional province thus defined, bears many similarities with southern Spain and nort­ hern Africa during late Alpine time (Neogene), when the overthickened Betic-Rif orogenic edifice collap­ sed through detachment systems (Doblas and Oyar­ zun, 1989). Even if intraplate stresses arising from a gravitationally unstable crustal welt seem to be the major cause of this extension, the final locking of North America, Baltica and Gondwana (generating a northward-directed compressional stress pattern), may have been the triggering event contributing to Fig. 2.-Simplified palinspastic sketch representing the Caledo­ release the stresses generated within the Caledonian nian (s.s.) compressional (CI) and extensional (El) domains du­ foldbelt, thus allowing the extensional collapse of its ring late Silurian-early Devonian time, as unstable intercratonic areas differentially deformed in between three Precambrian northern sector. By contrast, the Ordovician-earIy shields. 1: Precambrian shields (Baltica, B; Gondwana, GD; Lau­ Devonian extensional event (El) developed as rela­ rentian-Greenland, LG); 2: Caledonian (s.s.) deformational belt; ted to different circumstances. Since no previous 3: Caledonian extensional province. overthickening can be advocated for continental wes­ Fig. 2.-Esquema palinspástico simplificado (Silúrico superior­ tern Europe, then another cause must account for Devónico inferior) representando los dominios caledónicos com­ this extension. In this sense, stresses arising frorn the presionales (Cl) y extensionales (El) como áreas intercratónicas building of collisional-type belts are known inestables, deformadas diferencialmente entre tres escudos pre­ cámbricos. 1: escudos precámbricos (Báltica, BA; Gondwana, to trigger extensional provinces in their continental GD; Laurentia-Groenlandia, LG); 2: faja deformacional caledó- forelands (e.g. , IlIies and Greiner, 1978; Hima- nica; 3: provincia extensional caledónica. CALEDONIAN AND LATE CALEDONIAN EUROPE: A WORKING HYPOTHESIS INVOLVING... 221

tensional events: 1. Caledonian S.S., with crustal Evans, A. M. (1987). An introduction to ore geology. Lon­ thinning occurring in the foreland realm (El; don, Blackwell Scientific Publications, 358 págs. fig. lA), a scenario which can be understood in terms Gambles, P. (1984). Death of an ancient ocean. Nature 312: 400-401. of interplate stresses generated as a result of an Hi­ Gumiel, P. (1982). Metalogenia de los yacimientos de anti­ malayan-type collission/indentation model (Tappon­ monio de la Península Ibérica. Unpublished Ph. D. the­ nier el al., 1982); and 2. A «late Caledonian» exten­ sis, Universidad de Salamanca. Salamanca. Spain. sional scheme (E2) related to intraplate stresses, pro­ 324 págs. bably resulting from the gravitational collapse of a Hernández, A. M. (1984). Estructura y génesis de los ya­ previously overthickened orogen, a process which cimientos de mercurio de la zona de Almadén. Serie re­ súmenes de tesis doctorales. Facultad de Ciencias. Uni­ might have been initially enhanced by the compres­ versidad de Salamanca. no. T-C-370, 64 págs. sions occurring in western continental Europe (C2; Illies, J. H. and Greiner, G. (1978). Rhinegraben and the fig. lB). Alpine system. Bull. Geol. Soco Amer. 89: 770-782. Finally, the overall evolution of the European Ca­ Keppie, J. D. (1977). PIate tectonic interpretation of Pa­ ledonides can be ascribed to an «inversion-type» leozoic world maps. Nova Scotia Department of Mines. (s.l.) tectonic model, in that, regions subject to crus­ Paper 77-3, 75 págs. tal thickenning were later thinned (e.g. northern Ca­ Leeder, M. R. (1982). Upper Palaeozoic basins of the Bri­ tish Isles-Caledonide inheritance versus Hercynian plate ledonides; Cl followed by E2) and vice versa (e.g. margin processes. J. Geol. Soco 139: 481-494. western continental Europe; El followed by C2). Livermore, R.A.; Smith, A. G. and Vine, F. J. (1986). Late Paleozoic to early Mesozoic evolution of Pangaea. Nature 322: 162-165. References Luettig, G. W. (1980). Federal Republic of Germany. Geology ofthe European countries (Austria, Federal Re­ Alvarado, M. (1980). Espagne. Géologie des pays euro­ public of Germany, Ireland, the , Switzer­ péens (Espagne, Grece, Portugal, Yougoslavie)). Paris, land, United Kingdom). Paris, France, Bordas Editeurs, France, Bordas Editeurs, 1-60. 93-102. Autran, A. and Cogne, J. (1980). La zone interne de 1'0­ McClay, K. R.; Norton, M. G.; Coney, P. and Davis, rogene varisque dans I'ouest de la France et sa place dans G. H. (1986). Collapse of the Caledonian orogen and le développement de la chaine hercynniene. Geology of the Old Red Sandstone. Nature 323: 147-149. Europe. Mémoire du Bureau de Recherches Géologi­ McKerrow, W. S. and Ziegler, A. M. (1972). Paleozoic ques et Minieres 108: 90-111. oceans. Nature 240: 92-94. Autran, A. and Peterlongo, J. M. (1980). France: Massif Menard, G. and Molnar, P. (1988). Collapse of a Hercy­ Central. Géologie des pays européens (France, Belgique, nian Tibetan plateau into a late Paleozoic European Ba­ Luxembourg). Paris, France, Bordas Editeurs, 9-124. sin and Range province. Nature 334: 235-237. Behr, H. J.; Walliser, O. H. and Weber, K. (1980). The Miller, J. D. and Kent, D. V. (1988). Paleomagnetism of development of the Rheno-hercynian and Saxo-thurin­ the Silurian-Devonian Andreas redbeds: evidence for an gian zones of the mid-European Variscides. Geology of early Devonian supercontinent? Geology 16: 195-198. Europe. Mémoire du Bureau de Recherches Géologi­ ques et Minieres 108: 77-89. Morel, P. and Irving, E. (1978). Tentative paleocontinen­ Chauvel, J. J. and Robardet, M. (1980). France: Massif tal maps for the early Phanerozoic and Proterozoic. 1. Armoricain. Géologie des pays européens (France, Bel­ Geol. 86: 535-561. gique, Luxembourg). Paris, France, Bordas Editeurs, Park, R. G. (1988). Geological structures and moving pla­ 125-178. tes. New York, Chapman and Hall, 337 págs. Cogne, J. and Wright, A. E. (1980). L'Orogene cadomien. Perroud, H. and Bonhommet, N. (1981). Paleomagnetism Vers un essai d'interprétation paléogéodinamique uni­ of the Ibero-Armorican arc and the Hercynian orogen taire des phénomenes orogéniques fini-précambriens of western Europe. Nature 292: 445-448. d'Europe moyenne et occidentale, et leur signification a Pieren, A. P. and Dallmeyer, R. D. (1989). Tectonic ins­ I'origine de la croüte et de mobilisme varisque puis al­ tability in the Ordovician-Silurian boundary of the Cen­ pino Geology ofEurope. Mémoire du Bureau de Recher­ tral-Iberian zone (Spain): new stratigraphic and radio­ ches Géologiques et Minieres 108: 29-55. metric data. Southern Appalachian Conference, P.I.c.G. Dewey, J. F. (1982). and the evolution of 233 in the Circum-Atlantic Paleozoic orogens the British Isles. J. Geol. SoCo 139: 371-414. (poster), Athens, Georgia, July 1989. Dewey, J. F. and Shackleton, R. M. (1984). A model for Sawkins, F. J. and Burke, K. (1980). Extensional tectonics the evolution of the Grampian tract in the early Caledo­ and mid-Paleozoic massive sulfide occurrences in Euro­ ni des and Appalachians. Nature 312: 115-121. pe. Geol. Rundschau 69: 349-360. Doblas, M. and Oyarzun, R. (1989). Neogene extensional Serrano Pinto, M.; Casquet, c.; Ibarrola, E.; Corretge, collapse in the western Mediterranean (Betic-Rif Alpi­ L. C. and Portugal Ferreira, M. (1987). Sintese geocro­ ne orogenic belt): Implications for the genesis of the Gi­ nológica dos granitóides do MacÍ<;o Hespérico. In: Geo­ braltar Arc and magmatic activity. Geology 17: 430-433. logía de los granitoides y rocas asociadas del Macizo Hes­ Doblas, M.; Oyarzun, R.; Lunar, R.; Mayor, N. and Mar­ périco. (F. Bea, A. Carnicero, J. C. Gonzalo, M. Ló• tínez, J. (1988). Detachment faulting and late Paleozoic pez Plaza and M. D. Rodríguez Alonso, Eds.) Madrid, epithermal Ag-base-metal mineralization in the Spanish Spain. Rueda Eds., 69-86. central system. Geology 16: 800-803. Soper, N. J. and Barber, A. J. (1982). A model for the 222 M. DüBLAS,R. üYARZUN

deep structure of the Moine thrust zone. J. Ceol. Soco Zonenshain, L. P.; Kuzmin, M. 1. and Kononov, M. V. 139: 127-138. (1985). Absolute reconstructions of the Paleozoic Tapponnier, P.; Peltzer, G.; Le Dain, A. Y.; Armijo, R. oceans. Earth Planet. Sci. Lett. 74: 103-116. and Cobbold, P. (1982). Propagating extrusion tectonics Zwart, H. J. and Dornsiepen, U. F. (1980). The Varisean in Asia: new insights from simple experiments with plas­ and pre-Varisean teetonic evolution ofCentral and Wes­ ticine. Ceology 10: 611-616. tern Europe: a tentative mode!. Mém. Bureau de Re­ Weber, K. (1984). Variscan events: early Paleozoic conti­ cherches CéoLogiques et Minieres 108: 226-232. nental rift metamorphism and late Paleozoic crustal shortening. Variscan Tectonics in the north Atlantic re­ gion. (D. H. W. Hutton and D. J. Sanderson, Eds.) Recibido el 1 de septiembre de 1990 Geo!. Soco London, Special Publication 14: 3-22. Aceptado el 29 de octubre de 1990