The Struggle for the Range of Telephone Communication Before the Invention of the Audion Lee De Forest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Man of High Fidelity
Man of High Fidelity: EDWIN HOWARD ARMSTRONG A Biography – By Lawrence Lessing With a new forward by the author Page iii Pratt DISCLAIMER DISCLAIMER TO THIS SCANNED AND OCR PROCESSED COPY This PDF COPY is for use at Pratt Institute for Educational Purposes Only I affirm that sufficient print copies of the original Bantam Book Paperback are in stock in ARC E-08 that would more than adequately cover a full class use of the text. HOWEVER, due to the fact that the 1969 text is no longer in publication, complicated by the fact that these copies are forty-four (44) years old and in a very fragile condition, this PDF version of the text was created for student use in the Department of Mathematics and Science. - Professor Charles Rubenstein, January 2013 Man of High Fidelity: Edwin Howard Armstrong EDWIN HOWARD ARMSTRONG Was the last – and perhaps the least known – of the great American Inventors. Without his major contributions, the broadcasting industry would not be what it is today, and there would be no FM radio. But in time of mushrooming industry and mammoth corporations, the recognition of individual genius is often refused, and always minimized. This is the extraordinary true story of the discovery of high fidelity, the brilliant man and his devoted wife who battled against tremendous odds to have it adopted, and their long fight against the corporations that challenged their right to the credit and rewards. Mrs. Armstrong finally ensured that right nearly ten years after her husband’s death. Page i Cataloging Information Page This low-priced Bantam Book has been completely reset in a type face designed for easy reading, and was printed from new plates. -
Tesla's Connection to Columbia University by Dr. Kenneth L. Corum
* Tesla’s Connection to Columbia University by Kenneth L. Corum and James F. Corum, Ph.D. “The invention of the wheel was perhaps rather obvious; but the invention of an invisible wheel, made of nothing but a magnetic field, was far from obvious, and that is what we owe to Nikola Tesla.” Professor Reginald Kapp, 1956 INTRODUCTION The Electrical Engineering curriculum at Columbia University, though not the first in the US, is one of the oldest and most respected EE programs in the world. From the beginning, a conscientious effort was made to base it on a foundation of science. It has been guided by the specific philosophy stated by Professor Michael Pupin: “Professor Crocker and I maintained that there is an ‘electrical science’ which is the real soul of electrical engineering.” Arguably the most stunning and significant lecture in modern history was presented one spring evening, more than a century ago, at Columbia University. The wealth of nations turned on its merits. Weighing on the balances would be our vast cities, civilization, and quality of life. But, what was it? . .Whatever it was, its impact has been as momentous for the progress and prosperity of civilization as the invention of the wheel! . It was Tesla’s great discovery and analysis of the rotating magnetic field, and a means for the electrical distribution of energy.1 As a result of the analysis presented in this lecture, the great Falls of Niagara would soon be harnessed for the benefit of mankind and launch civilization into the “Electromagnetic Century”. The Engineering Council for Professional Development (now called ABET) has defined “Engineering” as “that profession which utilizes the resources of the planet for the benefit of mankind”. -
History of the General Radio Company 1915-1965
A History of the General Radio Company 1915-1965 A History OF THE GENERAL RADIO COMPANY BY ARTHUR E. THIESSEN WEST CONCORD, MASSACHUSETTS 1965 PDF version: 1.15 September 1, 2001 Dick Benson 18776 Wood Dell Court Saratoga CA, 95070 [email protected] Copyright 1965 by General Radio Company TABLE OF CONTENTS ............................................................................................................................... Page FOREWORD .................................................................................................. ix I. The Early Days ..................................................................................... 1 II. General Radio Gets Its Start ............................................................... 5 III. Back to Instruments ........................................................................... 15 IV. Mostly Biographical ........................................................................... 21 V. Years of Development and Growth................................................... 29 VI. The Great War.................................................................................... 49 VII. The Postwar Years ............................................................................. 53 VIII. The Past Decade ................................................................................. 65 Appendix ....................................................................................................... 93 Index ........................................................................................................... -
A History of Engineering & Science in the Bell System
A History of Engineering and Science in the Bell System The Early Years (1875-1925) A History of Engineering and Science in the deal with developments in specific areas of Bell System: The Early Years (1875-1925) offers technology that led towards its realization. a detailed view of the first fifty years of tele The evolution of station apparatus, wire and phone technology. The narrative goes well wireless (radio) transmission, switching, and beyond a simple statement of events to deal various non-voice services is described in de with the "how" and "why" of technological tail. Other chapters cover the development innovation. It examines the underlying of materials and components for these new motivations and evaluates the long-term im communications systems, the origins of portance of the engineering, scientific, and quality control techniques, and the begin organizational achievements that were the nings of scientific research in the Bell System. substance of the first five decades of re An early chapter is devoted to the corporate markable progress in telecommunications. structures of the period since these organiza While this technical history is primarily an tional arrangements provided a continuing account of Bell System achievements, the synergy of business planning and advancing treatment has not been constrained by cor technological skills. porate boundaries and thus recognizes fundamental contributions originating out side of the System. A History of Engineering and Science in the During the half-century covered by The Bell System: The Early Years (1875-1925) is Early Years, a whole new field of technology illustrated with over 500 photographs and evolved. -
Proceedings Volume 34 – 1951–1952 [PDF]
The Proceedings of the Cambridge Historical Society, Volume 34, 1951-1952 TABLE OF CONTENTS OFFICERS ........................................................................................................5 PAPERS LAWRENCE LOWELL,PRESIDENT ...............................................................7 BY JULLIAN LOWELL COOLIDGE FROM A DANA HILL WINDOW ...................................................................19 BY HELEN INGERSOLL TETLOW FOUR YEARS AT HARVARD COLLEGE: 1888-1892 .......................................37 BY CHARLES LANE HANSON MEMORIES OF NINETEENTH CENTURY CAMBRIDGE ...................................59 BY LOIS LILLEY HOWE MOUNT AUBURN"S SIXSCORE YEARS ......................................................77 BY OAKES I. AMES FREDERICK HASTINGS RINDGE ..............................................................97 BY JOHN W. WOOD CAMBRIDGE, A PIONEER HOME OF ELECTRONICS ....................................111 BY HAROLD B. RICHMOND A TRIBUTE TO SAMUEL ATKINS ELIOT .....................................................125 BY LOIS LILLEY HOWE ANNUAL REPORTS ............................................................................................127 MEMBERS .........................................................................................................137 THE CAMBRIDGE HISTORICAL SOCIETY PROCEEDINGS FOR THE YEARS 1951-52 LIST OF OFFICERS FOR THESE TWO YEARS President: Hon. Robert Walcott Vice-Presidents: Miss Lois Lilley Howe Mr. Bremer W. Pond Mr. John W. Wood Treasurer: Mr. John T. G. Nichols -
Classical Circuit Theory
Classical Circuit Theory Omar Wing Classical Circuit Theory Omar Wing Columbia University New York, NY USA Library of Congress Control Number: 2008931852 ISBN 978-0-387-09739-8 e-ISBN 978-0-387-09740-4 Printed on acid-free paper. 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. 9 8 7 6 5 4 3 2 1 springer.com To all my students, worldwide Preface Classical circuit theory is a mathematical theory of linear, passive circuits, namely, circuits composed of resistors, capacitors and inductors. -
June 2007 SOCIETY NEWS
NPS0607.qxd 5/8/07 4:03 PM Page 1 A Publication of the Institute of Electrical and Electronics Engineers Number 2 • June 2007 SOCIETY NEWS CONFERENCES NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE NSREC 2007 Honolulu, Hawaii July 23-27, 2007 he 2007 IEEE Nuclear and Space Radiation Packaging Program, NASA Living With a Star Effects Conference will be held July 23-27, Program, and the Jet Propulsion Laboratory. T2007 in Honolulu, Hawaii, at the Hilton NSREC also has new corporate supporters: BAE Hawaiian Village. The conference features a Systems, Boeing, Micro-RDC, Honeywell, ST Technical Program consisting of ten sessions of con- Microelectronics, and Aeroflex Colorado Springs. tributed papers, both poster and oral, which describe Additional information on the conference is available the latest observations and research results in radia- on the Web at http://www.nsrec.com. tion effects, an up-to-date Short Course offered on July 23, a Radiation Effects Data Workshop, and an TECHNICAL PROGRAM Industrial Exhibit. Lloyd Massengill, Vanderbilt The Technical Program Chairman, John Cressler, University, is General Chair. Georgia Tech, and his program committee, have This year’s conference will be held July 23-27, assembled an excellent set of contributed papers that 2007, at the Hilton Hawaiian Village Resort on are arranged into nine sessions of oral and poster beautiful Waikiki Beach in Honolulu, Hawaii. A papers and a Radiation Effects Data Workshop. The complete technical and social program is being Workshop consists of papers emphasizing radiation planned to maximize opportunities for information effects data on electronic devices and systems and exchange and networking in the area of radiation descriptions of new simulation and radiation test effects on microelectronic and photonic devices, cir- facilities. -
Guglielmo Marconi Wikipedia, the Free Encyclopedia Guglielmo Marconi from Wikipedia, the Free Encyclopedia
10/5/2016 Guglielmo Marconi Wikipedia, the free encyclopedia Guglielmo Marconi From Wikipedia, the free encyclopedia Guglielmo Marconi, 1st Marquis of Marconi (Italian: [ɡuʎ ˈʎɛlmo marˈkoːni]; 25 April 1874 – 20 July 1937) was an Italian Guglielmo Marconi inventor and electrical engineer known for his pioneering work on longdistance radio transmission[1] and for his development of Marconi's law and a radio telegraph system. He is often credited as the inventor of radio,[2] and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".[3][4][5] Marconi was an entrepreneur, businessman, and founder of The Wireless Telegraph & Signal Company in the United Kingdom in 1897 (which became the Marconi Company). He succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists.[6][7] In 1929, the King of Italy ennobled Marconi as a Marchese (marquis). Born Guglielmo Giovanni Maria Marconi Contents 25 April 1874 Palazzo Marescalchi, Bologna, 1 Biography Italy 1.1 Early years 1.2 Radio work Died 20 July 1937 (aged 63) 1.2.1 Developing radio telegraphy Rome, Italy 1.2.2 Transmission breakthrough Residence Italy 1.2.3 The British become interested 1.2.4 Transatlantic transmissions Nationality Italian 1.2.5 Titanic Alma mater University of Bologna 1.2.6 Continuing work 1.3 Later years Academic Augusto Righi 2 Personal life advisors 3 Legacy and honours Known for Radio 3.1 Honours and awards -
Telecommunication Basic Research: an Uncertain Future for the Bell Legacy
Telecommunication Basic Research: An Uncertain Future for the Bell Legacy A. Michael Noll Professor of Communications Annenberg School for Communication University of Southern California Los Angeles, CA 90089-0281 (213) 740-0926 February 14, 2003 Accepted for publication in Prometheus. An initial version of this paper was presented at the Telecommunications Policy Research Conference in Alexandria, Virginia on September 30, 2002. - 1 - Telecommunication Basic Research: An Uncertain Future for the Bell Legacy A. Michael Noll ABSTRACT The Bell Labs of decades ago was well recognized as a national treasure for its pioneering innovations and its creation of new knowledge. However, the breakup of the Bell System that occurred in 1984 resulted in considerable change for research and development in telecommunication. This paper reviews that history and, in anticipation of continuing uncertainty and a possible impending crisis, examines possible options for the future to assure leadership by the United States in basic research in telecommunication. KEYWORDS: research, Bell Labs, AT&T Labs, R&D, basic research, telecommunication research RESEARCH LEGACY A hundred years ago, the radio spectrum and telecommunication was developed by a number of pioneering inventors and businesses. Some of these pioneers were: Thomas Alva Edison, David Sarnoff, Nikola Tesla, Guglielmo Marconi, Samuel Finley Breese Morse, Lee de Forest (triode vacuum tube), Claude E. Shannon (information theory), Alexander Graham Bell, Allen DuMont, Philo T. Farnsworth (TV camera), Vladimir Kosma Zworykin (electronic television), Michael Pupin (loading coil), and Edwin Howard Armstrong (FM radio). Many of the businesses founded by these pioneers created their own corporate research laboratories to continue the tradition of invention. -
Battery Life and How to Improve It
Battery Life and How To Improve It Battery and Energy Technologies Technologies Battery Life (and Death) Low Power Cells High Power Cells For product designers, an understanding of the factors affecting battery life is vitally important for managing both product Chargers & Charging performance and warranty liabilities particularly with high cost, high power batteries. Offer too low a warranty period and you won't Battery Management sell any batteries/products. Overestimate the battery lifetime and you could lose a fortune. Battery Testing Cell Chemistries FAQ That batteries have a finite life is due to occurrence of the unwanted chemical or physical changes to, or the loss of, the active materials of which Free Report they are made. Otherwise they would last indefinitely. These changes are usually irreversible and they affect the electrical performance of the cell. Buying Batteries in China Battery life can usually only be extended by preventing or reducing the cause of the unwanted parasitic chemical effects which occur in the cells. Choosing a Battery Some ways of improving battery life and hence reliability are considered below. How to Specify Batteries Battery cycle life is defined as the number of complete charge - discharge cycles a battery can perform before its nominal capacity falls below Sponsors 80% of its initial rated capacity. Lifetimes of 500 to 1200 cycles are typical. The actual ageing process results in a gradual reduction in capacity over time. When a cell reaches its specified lifetime it does not stop working suddenly. The ageing process continues at the same rate as before so that a cell whose capacity had fallen to 80% after 1000 cycles will probably continue working to perhaps 2000 cycles when its effective capacity will have fallen to 60% of its original capacity. -
Who Was the Real Dr. Nikola Tesla?
Antenna Measurement Techniques Association POSTER PAPER October 22-25, 2001 1 Who Was The Real Dr. Nikola Tesla? (A Look At His Professional Credentials) by W.C. Wysock*, J.F. Corum, J.M. Hardesty** and K.L. Corum “We think of his contribution much oftener than that of Ampere and Ohm . the induction motor and our power system are enduring monuments to Nikola Tesla.” Dr. E.F.W. Alexanderson1 (keywords: electrical history) Unlike with so many narrowly specialized journals, societies and even “web-rings” have been pioneers in electrical history, the query as to who created as media exclusively devoted to the Nikola Tesla really was has many responses, discussion of his activities. While volumes could depending upon the perspective of the questioner. (and have) been written about the gentleman, the Despite the fact that many of his technical present authors will view his work from our publications are still accessible, that several perspectives as scientists and engineers. biographies are available, and that he has had a Tesla received his formal education at the rather widespread impact (not only upon the Polytechnic Institute at Graz, Austria (he electrical engineering profession but also society at matriculated with degrees in mathematics, large) few people today actually have a balanced mechanical engineering and electrical engineering) grasp of who he was and what he did. This is and at the University of Prague (where he performed particularly true of his seminal contributions to RF graduate studies in Physics). After a period of technology. A remarkable number of items have professional practice at Budapest (where, in 1882, been composed for the general public about Tesla - he conceived the idea of a rotating magnetic field to probably as many as any other single scientist in drive electrical machinery), Strasbourg (where he history. -
Ieee Edison Medal Recipients
IEEE EDISON MEDAL RECIPIENTS 2021 KENICHI IGA (LFIEEE)— "For pioneering contributions to the concept, Professor Emeritus, Tokyo physics, and development of the vertical-cavity Institute of Technology, surface-emitting laser.” Tokyo, Japan 2020 FREDE BLAABJERG "For contributions to and leadership in power Professor, Department of electronics, developing a sustainable society.” Energy Technology, Aalborg University, Aalborg, Denmark 2019 URSULA KELLER "For pioneering and fundamental contributions Director of NCCR MUST (Swiss to and leadership in useable, compact ultrafast National Centre of laser technology, enabling applications in Competence for Research in metrology, sensing, and biophotonics.” Molecular Ultrafast Science and Technology)—ETH Zurich, Zurich, Switzerland 2018 ELI YABLONOVITCH "For leadership, innovations, and Professor, Electrical entrepreneurial achievements in photonics, Engineering & Computer semi-conductor lasers, antennas, and solar- Sciences Department, cells.” University of California, Berkeley, USA 2017 MAGNUS GEORGE CRAFORD “For a lifetime of pioneering contributions to Solid State Lighting Fellow, the development and commercialization of Philips Lumileds Lighting visible LED materials and devices.” Company, San Jose, CA, USA 2016 ROBERT W. BRODERSON “For contributions to integrated systems for Professor Emeritus, University wired and wireless communications, including of California, Berkeley, wireless connectivity of personal devices.” Berkeley, CA, USA 2015 JAMES JULIUS SPILKER, JR. “For contributions to the