Högskolan I Halmstad Katholieke Hogeschool Kempen Christof Van
Total Page:16
File Type:pdf, Size:1020Kb
Högskolan i Halmstad School of Business and Engineering Katholieke Hogeschool Kempen Campus Geel Departement Industriële en Biowetenschappen Electric vehicles Market study and simulations Master in Applied Engineering: Electrotechnics Master in de Industriële wetenschappen: Elektrotechniek (Industrieel Ingenieur) Christof Van Bael Academic year 2010-2011 PREFACE After successfully ended my studies in Electrotechnics at bachelor level, I decided to do a further study to become a Master in applied engineering in the field of Electrotechnics. My master thesis are prepared at the Halmstad University, Sweden as part of a project with an electric vehicle. This is a subject with several different interesting points that are very useful in the future. I had the possibility to study abroad thanks to an Erasmus placement of the European Life Long Learning programme. The foreign experience give me a unique change to improve my technical, social and language skills. In first place I would thank my parents that they made it possible to do all this years of study and especially the foreign experience. I thank also Jonny Hylander en Göran Sidén from the Halmstad University, who guided me trough this thesis. Finnaly, I thank all my family, friends and teachers for their support during this project and my studies. Christof Van Bael Halmstad, December 2010 Electric vehicles: Market study and simulations 3 SUMMARY This text as a part of the master thesis, describes the propulsion of electric vehicles. In the context of this thesis, there is a study made that gives an overview of the market of electric and hybrid electric vehicles in Europe. One of the facts of this study is that the most manufacturers launch their first electric vehicle in the next following years. Technological is there a key difference between vehicles on the market and vehicles that are launched in the next years. The upcoming electrical vehicles use mostly a high power lithium-ion battery and an induction motor. The second part of this thesis describes the different technologies that are used to propel an electric vehicle. The third and last part of this thesis are a few simulations of an electric vehicle. Here in is a power simulation based on a drive cycle. The power curve is calculated with several losses of an electric vehicle. Based on this power curve is it possible to simulate the maximum range of an electric vehicle on one battery cycle. Electric vehicles: Market study and simulations 4 SAMENVATTING Deze thesis als onderdeel van de masterproef behandelt de aandrijving van elektrische voertuigen. In het kader hiervan is een onderzoek uitgevoerd naar de beschikbaarheid van zuiver elektrische en hybride voertuigen op de Europese markt. Uit dit onderzoek is gebleken dat de meeste producenten hun eerste elektrische wagen in de loop van de volgende jaren zullen lanceren. Op technologisch vlak is er een duidelijk onderscheid tussen reeds beschikbare voertuigen en voertuigen die de komende jaren op de markt verschijnen. De toekomstige voertuigen zullen veelal gebruik maken van hoog vermogen lithium-ion batterijen en inductie motoren. Het tweede deel van deze thesis geeft een theoretisch overzicht van de gebruikte technologieën met betrekking op de aandrijving van elektrische voertuigen. Het derde en laatste deel van deze thesis behandelt enkele simulaties van een elektrische wagen. Hierin is het vermogen gebruik nagegaan gebaseerd op een snelheidscyclus. De vermogen curve houdt hierbij rekening met tal van verliezen die optreden bij een elektrische wagen. Op basis van deze vermogen curve kan er nagegaan worden hoe ver een elektrische wagen kan rijden op één laadbeurt van de batterij. Electric vehicles: Market study and simulations 5 TABLE OF CONTENTS TABLE OF CONTENTS .......................................................................................... 5 LIST OF FIGURES AND TABLES ........................................................................... 7 LIST OF ABBREVIATIONS ................................................................................... 9 INTRODUCTION................................................................................................ 11 1 DIFFERENT ELECTRIC VEHICLES ........................................................ 15 1.1 Battery driven electric vehicle ............................................................ 15 1.2 Hybrid electric vehicle ........................................................................ 15 1.2.1 Architecture of HEV ................................................................................ 15 1.2.1.1 Series HEV ........................................................................................................................ 15 1.2.1.2 Parallel HEV ...................................................................................................................... 16 1.2.1.3 Series-parallel HEV............................................................................................................. 17 1.2.1.4 Complex HEV .................................................................................................................... 17 1.2.2 Classification of HEV based on motor power .............................................. 18 1.2.2.1 Micro hybrid ...................................................................................................................... 18 1.2.2.2 Mild hybrid ........................................................................................................................ 18 1.2.2.3 Full hybrid ......................................................................................................................... 18 1.3 Fuel cell electric vehicle ..................................................................... 19 1.4 Solar electric vehicle .......................................................................... 19 2 AVAILABILITY OF ELECTRIC VEHICLES .............................................. 20 3 BATTERIES AND RECHARGING ........................................................... 21 3.1 Battery ............................................................................................... 21 3.1.1 Lead acid .............................................................................................. 23 3.1.2 Nickel metal hydride ............................................................................... 23 3.1.3 Lithium-ion ........................................................................................... 24 3.1.4 Lithium-ion polymer ............................................................................... 26 3.1.5 Molten salt ............................................................................................ 26 3.1.6 Electric double layer capacitor ................................................................. 28 3.2 Recharging ......................................................................................... 28 3.2.1 Recharging levels ................................................................................... 28 3.2.2 Connectors ............................................................................................ 28 3.3 Electric grid ........................................................................................ 30 4 DRIVE ................................................................................................ 31 4.1 PWM ................................................................................................... 31 4.2 Field oriented control ......................................................................... 33 4.3 Direct torque control .......................................................................... 35 5 MOTOR ............................................................................................... 37 5.1 Induction motor ................................................................................. 37 5.1.1 Construction .......................................................................................... 37 5.1.2 Power ................................................................................................... 41 5.1.3 Torque .................................................................................................. 42 5.2 Permanent magnet synchronous motor ............................................. 44 6 SIMULATION SOFTWARE .................................................................... 47 6.1 Basic mathematics ............................................................................. 47 6.2 Variables ............................................................................................ 47 6.3 Graphics ............................................................................................. 49 Electric vehicles: Market study and simulations 6 7 SIMULATIONS .................................................................................... 51 7.1 The simulated vehicle ........................................................................ 51 7.2 Drive cycle ......................................................................................... 51 7.3 Basic formulas ................................................................................... 52 7.3.1 Force .................................................................................................... 52 7.3.2 Output torque ........................................................................................ 53 7.3.3 Output angular velocity ..........................................................................