Rocket Troops and Artillery in a Front Offensive Operation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issue 8, Volume 59, April 30 1985 Ckland University Students' Association EDITORIAL
ngs duldoon 23-27 APR! 1 & 6 PM S2 & S4 Issue 8, Volume 59, April 30 1985 ckland University Students' Association EDITORIAL Craccum is edited by Pam Goode and Birgitta On Sunday, 21 April a woman was viciously raped in a manner whi imitated a rape scene screened on TVNZ the previous evening. And all 1 I Noble. The following people helped on this issue: week past, I have been subjected to the sensationalist accounts of first f Ian Grant, Andrew Jull, Karin Bos, Henry Knapp blaming the traffic officers (who would not allow the woman to 1 Harrison, Darius, Cornelius Stone, Dylan home, because of her blood alcohol level and would not drive her home) fori Horrocks, Robyn Hodge, Wallis, John Bates, occurence of the rape and then the PSA excusing the actions of the office Mark Allen & Janet Cole. alluding to the lack of staff. For their contributions thanks to: Bidge Smith, Whilst there is no doubt the traffic officers are partially to blame, thei Jonathan Blakeman, Colin Patterson, Adam Ross, reason for the rape has been ignored both by the press and in the statementi the various people concerned. Implicit in the argument surrounding | Kupe, Cornelius Stone. For photography thanks to Andrew Jull. culpability of the traffic officers is the assumption that the streets are nots And a special thank you to Janina Adamiak and J o at night for women, and therefore the woman concerned should not havel eft alone. But this assumption blames the victim, the woman for assertir Imrie. right to be wherever she wishes. -
Limiting Terrorist Use of Advanced Conventional Weapons
THE ARTS This PDF document was made available CHILD POLICY from www.rand.org as a public service of CIVIL JUSTICE the RAND Corporation. EDUCATION ENERGY AND ENVIRONMENT Jump down to document6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS The RAND Corporation is a nonprofit NATIONAL SECURITY research organization providing POPULATION AND AGING PUBLIC SAFETY objective analysis and effective SCIENCE AND TECHNOLOGY solutions that address the challenges SUBSTANCE ABUSE facing the public and private sectors TERRORISM AND HOMELAND SECURITY around the world. TRANSPORTATION AND INFRASTRUCTURE Support RAND WORKFORCE AND WORKPLACE Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Homeland Security Program View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND PDFs to a non-RAND Web site is prohibited. RAND PDFs are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This product is part of the RAND Corporation monograph series. RAND monographs present major research findings that address the challenges facing the public and private sectors. All RAND mono- graphs undergo rigorous peer review to ensure high standards for research quality and objectivity. Stealing theSword Limiting Terrorist Use of Advanced Conventional Weapons James Bonomo Giacomo Bergamo David R. -
Operation Dauntless
Operation Dauntless Unit Preview: Self-Propelled Artillery Both the British and German players have a small number of self-propelled artillery units available in Operation Dauntless. This unit preview will briefly examine these sparse but handy units. British Self-Propelled Artillery The British 147th (Essex Yeomanry) Field Regiment consists of three batteries of four each "Sexton" self-propelled 25-pounder guns (shown below). As part of the 8th Armoured Brigade in Operation Dauntless, these are the only artillery units which are always available to the British player. These SP guns had a maximum gun elevation of 35 degrees, yielding a maximum range of 11,000 yards (about 25-26 Operation Dauntless map hexes). Unlike traditional artillery, these units can both move and fire in a single turn, with a respectable 12 Movement Allowance (up to 24 road hexes per turn). "The 147th fought as a self-propelled artillery unit using 25-pounder field guns mounted on Sherman tank chassis." (from the Essex Yeomanry Association website at http://www.essex-yeomanry.org.uk/in-the-news/69-military-units-of-essex-4.html ). "147 (Essex Yeomanry) Regiment was converted to 25 pounder guns and landed on D Day to fight through Germany." (from the History section of the British Army website at http://www.army.mod.uk/signals/organisation/8830.aspx ). Note that there are 3 variants of the Sexton, but only the Sexton II was based on a Grizzly (M4A1 Sherman) hull, so these vehicles were the Sexton II's. First built in 1943, Sextons were available in the field from June '44 onward. -
Radar Detection of Artillery Rockets Page 1 (38) [email protected]
Robert Humeur Radar detection of artillery rockets Page 1 (38) [email protected] Författare Förband Kurs Robert Humeur Luftvärnsregementet 1CP018 Handledare Övlt Michael Reberg, övlt Mattias Elfström Radarupptäckt av artilleriraketer Sammanfattning: Denna rapport behandlar en radarsensors förmåga att upptäcka 107 mm raketer beroende på hur sensorn positioneras i förhållande till skyddsobjektet. Fältförsök, underrättelser och stridserfarenheter har visat att dessa raketer är vanligt förekommande samt svåra att detektera med radarsensorer. En modell för hur räckviddsökning beror på olika sensorpositioner har skapats genom att använda dokument från USA och forna Sovjetunionen beskrivande ballistik tillsammans med teorier för hur räckvidd påverkas av radarmålarea (RCS) samt en beskrivning av RCS tillhandahållen av FOI. Resultat från körningar i MATLAB visar att sensorpositioner inom 300 meter från skyddsobjektet är fördelaktiga vid en skottvidd av 3000 meter. Som tumregel för att uppnå maximal sensorprestanda bör strävan vara att placera sensorn på ett avstånd från skyddsobjektet understigande 10% av förväntad skottvidd. Nyckelord: C-RAM, raket, artilleri, radar, radarmålarea, upptäckt. Robert Humeur Radar detection of artillery rockets Page 2 (38) [email protected] Author Unit Course Robert Humeur The Swedish GBAD 1CP018 Regiment Supervisor LtCol Michael Reberg, LtCol Mattias Elfström Radar detection of artillery rockets Abstract: This report examines how a radar sensor’s ability to detect 107 mm rockets depends on sensor positioning in relation to the protected asset. Field trials, intelligence and combat experience have shown that these rockets are commonly used and among the most difficult to detect with radar sensors. By using U.S. and U.S.S.R. documentation on rocket ballistics together with existing theories of detection range dependence on radar cross section (RCS) and a RCS description provided by FOI, a model for range gain for various sensor positions is constructed. -
The Law of Submarine Warfare Today
Jacobson 205 Chapter VIII The Law of Submarine Warfare Today by Jon L. Jacobson* Introduction he roles of military submarines have evolved throughout the twentieth T century. In wartime, these roles have included coastal defense, harassment of enemy fleets, and, especially in World War II, hunting and destroying the seaborne commerce that supported the enemy's war efforts. Today, two principal roles for u.s. submarines, at least in any future war with the Soviet Union, are probably as anti-submarine weapons (attack submarines) and as strategic weapons platforms (ballistic missile submarines). Other missions, however, could include coastal defense, attacks on the enemy's surface fleet, projection of force ashore, and commerce warfare.1 The laws of war have never been comfortable with the submarine's unique combination of stealth and vulnerability. As will be explained below, it is this peculiar mix of strength and weakness that can be blamed as the root cause of the legal dilemma, particularly as it relates to the submarine's role as a commerce raider. The legal responses to this twentieth-century weapons platform have ranged from early proposals for its abolition to justification of its use under the rules of reprisal to tolerance of it as an effective war machine with characteristics that regrettably require some adjustments in the traditional laws of war. The U.s. Navy's new Commander's Handbook on the Law of Naval Operations (NWP 9) includes references to the laws of naval warfare that specifically address the submarine weapons system and also rules that apply, or can apply, to submarines and their roles in wartime. -
Have Adversary Missiles Become a Revolution in Military Affairs? William F
Feature Have Adversary Missiles Become a Revolution in Military Affairs? William F. Bell he United States last had relative parity with the missile forces of potential adversaries in the early 1990s.1 Since then, the gap between our air and missile defense (AMD) capabilities and Tthose of threat missile forces has continued to widen. Initially, this oc- curred because of the ability of our adversaries’ rapidly increasing numbers of ballistic and cruise missiles and long-range rockets to over- whelm US forward-based AMD systems. For the most part, threat bal- Disclaimer: The views and opinions expressed or implied in the Journal are those of the authors and should not be construed as carry- ing the official sanction of the Department of Defense, Air Force, Air Education and Training Command, Air University, or other agencies or departments of the US government. This article may be reproduced in whole or in part without permission. If it is reproduced, theAir and Space Power Journal requests a courtesy line. September–October 2014 Air & Space Power Journal | 47 Feature Bell Have Adversary Missiles Become a Revolution in Military Affairs? listic missiles were unsophisticated variants of modified and improved SCUD missiles.2 The late 1990s saw China, Russia, Iran, North Korea, and others fielding more sophisticated ballistic missiles that utilized solid fuel, inertial and Global Positioning System guidance, greater warhead lethality, extended ranges, improved mobility, and onboard and standoff countermeasures. These weapons were supported by in- creasingly advanced command and control (C2), doctrine, training, and targeting capabilities. At the same time, our opponents have seen the great success the United States has enjoyed with precision attack Tomahawk cruise missiles. -
Static Rocket Launchers F Ication S
GERMAN F O R Static Rocket Launchers TI F ICATION Other divisions in Normandy and on the Eastern Front can also field the Static Rocket Launchers as used by the Festungskompanie in Earth & Steel. Grenadierkompanies and Fallschirmjägerkompanies from Fortress Europe and Grey Wolf can field a Static Rocket Launcher Battery instead of a Divisional Support Rocket Launcher Battery (page 53 of Fortress Europe and page 169 of Grey Wolf). S STATIC ROCKET LAUNCHER BATTERY BUNKER Leutnant 4 28cm sWG41 Nest 160 points Leutnant 3 28cm sWG41 Nest 120 points 2 28cm sWG41 Nest 80 points 28cm sWG41 28cm sWG41 28cm sWG41 28cm sWG41 1 28cm sWG41 Nest 40 points Nest Nest Nest Nest OPTIONS • Add Trench Line for +5 points. Barbed Wire Entanglement Trench Line Bunker • Add Barbed Wire Entanglement for +10 points. Static Rocket Launcher Battery These rocket launchers are not the mobile Nebelwerfer STATIC ROCKET LAUNCHER launchers of most rocket artillery units, but static 28cm An entire heavy rocket battery was emplaced behind Omaha schweres Wurfgerät 41 heavy rocket launchers like those fitted Beach, sited to fire on the troops as they landed. to the Panzerpionier Sd Kfz 251 ‘Stuka zu Fuss’ half-tracks. 28cm sWG41 Nests use the Stuka zu Fuss special rule (page Unlike their vehicle mounted cousins though, there are 245 of the rulebook), but have only four rockets instead only four rockets on each launcher, potentially lessening the of six. As a result, they only have four attempts to range impact. These weapons use the Static Rocket Launcher rules in. Treat them as Trained troops when rolling To Hit after below. -
Anti-Access/Area-Denial (A2/AD)
C en t er f o R S t ra t egic and B udge t ary A ssessmen t S Outside-In Operating from Range to Defeat Iran’s Anti-Access and Area-Denial Threats BY MARK GUNZINGER With Chris Dougherty Outside-in: Operating frOm range tO defeat iran’s anti-access and area-denial threats BY MARK GUNZINGER With Chris Dougherty 2011 © 2011 Center for Strategic and Budgetary Assessments. All rights reserved. about the center for strategic and Budgetary assessments The Center for Strategic and Budgetary Assessments (CSBA) is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s goal is to enable policymakers to make informed decisions on matters of strategy, security policy and resource allocation. CSBA provides timely, impartial and insightful analyses to senior decision mak- ers in the executive and legislative branches, as well as to the media and the broader national security community. CSBA encourages thoughtful participation in the de- velopment of national security strategy and policy, and in the allocation of scarce human and capital resources. CSBA’s analysis and outreach focus on key questions related to existing and emerging threats to U.S. national security. Meeting these challenges will require transforming the national security establishment, and we are devoted to helping achieve this end. about the authors Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces Transformation and Resources. He is the principal author or co-author of multi- ple Defense Planning Guidance directives, key strategic planning guidance documents that shape DoD force planning. -
The People's Liberation Army's 37 Academic Institutions the People's
The People’s Liberation Army’s 37 Academic Institutions Kenneth Allen • Mingzhi Chen Printed in the United States of America by the China Aerospace Studies Institute ISBN: 9798635621417 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 Design by Heisey-Grove Design All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI Twitter: https://twitter.com/CASI_Research | @CASI_Research Facebook: https://www.facebook.com/CASI.Research.Org LinkedIn: https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal, academic, or governmental use only, as long as it is unaltered and complete however, it is requested that reproductions credit the author and China Aerospace Studies Institute (CASI). -
ASROC with Systems
Naval Nuclear Weapons Chapter Eight Naval Nuclear Weapons The current program to modernize and expand U.S. deployed within the Navy (see Table 8.1) include anti- Naval forces includes a wide variety of nuclear weapons submarine warfare rockets (both surface (ASROC with systems. The build-up, according to the Department of W44) and subsurface launched (SUBROC with W55)), Defense, seeks "increased and more diversified offensive anti-air missiles (TERRIER with W45), and bombs and striking power.. increased attention to air defense . depth charges (B43, B57, and B61) used by a variety of [and] improvements in anti-submarine warfare."' The aircraft and helicopters, both carrier and land based (see plan is to build-up to a "600-ship Navy" concentrating Chapters Four and Se~en).~ on "deployable battle forces." Numerous new ships will The various nuclear weapons systems that are under be built, centered around aircraft carrier battle groups, development or are being considered for tactical naval surface groups, and attack submarines. New, more capa- nuclear warfare include: ble anti-air warfare ships, such as the TICONDEROGA (CG-47) class cruiser and BURKE (DDG-51) class  A new surface-to-air missile nuclear war- destroyers, will be deployed. New nuclear weapons and head (W81) for the STANDARD-2 missile, launching systems, as well as nuclear capable aircraft soon to enter production, carrier based forces, form a major part of the program. A long-range, land-attack nuclear armed As of March 1983, the nuclear armed ships of the U.S. Sea-Launched -
National Security and Nuclear Weapons in the 21St Century
National Security and Nuclear Weapons in the 21st Century September 2008 Foreword In July 2007, along with Secretary of State Condoleezza Rice, we issued a statement that summarized the need for maintaining a credible U.S. nuclear deterrent and urged bipartisan Congressional support for the Reliable Replacement Warhead program. This paper, National Security and Nuclear Weapons in the 21st Century, expands on the July 2007 statement by addressing in greater detail the considerations behind U.S. requirements for nuclear weapons. The paper also describes the relationship among strategic nuclear force structure, the stockpile of nuclear warheads, and the nuclear warhead research and production infrastructure. We believe the logic presented here provides a sound basis on which this and future administrations can consider further adjustments to U.S. nuclear weapons policy, strategy, and force structure. Many of the policy issues and strategic capabilities discussed in this paper are based on the December 2001 Nuclear Posture Review and represent continuity with decisions made by prior administrations. For example, the Clinton Administration developed the “lead and hedge” strategy as a way to reduce the size of the deployed strategic nuclear force, while also ensuring that the United States would be able to respond to future challenges that could be more stressing than estimated at that time. Under this strategy the United States would take the “lead” in nuclear reductions, but would “hedge” through an inventory of non-deployed nuclear warheads and a force structure capable of deploying those warheads. The current administration seeks to build on that approach by relying, over time, more heavily on a responsive nuclear weapons design and manufacturing infrastructure to manage risk, and less on an inventory of non-deployed warheads. -
Selected Foreign Counterparts of U.S. Army Ground Combat Systems and Implications for Combat Operations and Modernization
Selected Foreign Counterparts of U.S. Army Ground Combat Systems and Implications for Combat Operations and Modernization Andrew Feickert Specialist in Military Ground Forces Updated January 18, 2017 Congressional Research Service 7-.... www.crs.gov R44741 Selected Foreign Counterparts of U.S. Army Ground Combat Systems Summary Many nations maintain armies whose ultimate responsibility is to defeat other nations’ combat formations on the battlefield. In order to accomplish this, nations indigenously develop, maintain, and improve a variety of ground combat systems or purchase them from other nations. Ground combat system development and improvement is informed by existing and emerging technologies and budgetary factors as well as observations from current land conflicts. As this process is also intended to address potential future battlefield threats, beliefs as to what the future combat operational environment will look like, as well as what future technologies might be available for military use, also influence a nation’s developmental efforts. The U.S. Army’s current fleet of main battle tanks (MBTs), tracked infantry fighting vehicles (IFVs), tracked self-propelled (SP) artillery, and multiple launch rocket systems (MLRS), which constitutes the nucleus of the Army’s armored ground forces, were developed in the 1970s and fielded in the 1980s to counter the Soviet Union’s and Warsaw Pact’s numerically superior ground forces. The combat performance of these vehicles against Iraqi forces during Operation Desert Storm in 1991 reaffirmed