Transforming Thermal Images to Visible Spectrum Images Using Deep Learning

Total Page:16

File Type:pdf, Size:1020Kb

Transforming Thermal Images to Visible Spectrum Images Using Deep Learning Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2018 Transforming Thermal Images to Visible Spectrum Images using Deep Learning Adam Nyberg Master of Science Thesis in Electrical Engineering Transforming Thermal Images to Visible Spectrum Images using Deep Learning Adam Nyberg LiTH-ISY-EX–18/5167–SE Supervisor: Abdelrahman Eldesokey isy, Linköpings universitet David Gustafsson FOI Examiner: Per-Erik Forssén isy, Linköpings universitet Computer Vision Laboratory Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2018 Adam Nyberg Abstract Thermal spectrum cameras are gaining interest in many applications due to their long wavelength which allows them to operate under low light and harsh weather conditions. One disadvantage of thermal cameras is their limited visual inter- pretability for humans, which limits the scope of their applications. In this the- sis, we try to address this problem by investigating the possibility of transforming thermal infrared (TIR) images to perceptually realistic visible spectrum (VIS) im- ages by using Convolutional Neural Networks (CNNs). Existing state-of-the-art colorization CNNs fail to provide the desired output as they were trained to map grayscale VIS images to color VIS images. Instead, we utilize an auto-encoder ar- chitecture to perform cross-spectral transformation between TIR and VIS images. This architecture was shown to quantitatively perform very well on the problem while producing perceptually realistic images. We show that the quantitative differences are insignificant when training this architecture using different color spaces, while there exist clear qualitative differences depending on the choice of color space. Finally, we found that a CNN trained from day time examples generalizes well on tests from night time. iii Acknowledgments First I would like to thank FOI for providing me with the opportunity to do my master thesis at FOI. A big thanks to my supervisors David Gustafsson at FOI and Abdelrahman Eldesokey at Linköping University for supporting me with both technical details and the thesis writing. I would also like to thank my exam- iner who was responsive, supportive and believed in the thesis. An extra thanks goes to Henrik Petersson, David Bergström and Jonas Nordlöf at FOI for being supportive and helping me with the hardware and other issues. A final thanks is addressed to my fellow master thesis students at FOI who helped make the time at FOI wonderful. Linköping, June 2018 Adam Nyberg v Contents 1 Introduction 1 1.1 Motivation . 1 1.2 Problem formulation . 2 1.3 Research questions . 3 1.4 Related work . 3 1.5 Limitations . 5 1.6 Thesis outline . 5 2 Background 7 2.1 Camera calibration . 7 2.2 Image registration . 8 2.3 Image representation . 9 2.4 Artificial Neural Network (ANN) . 10 2.5 Convolutional Neural Network (CNN) . 11 2.5.1 Convolutional layer . 11 2.5.2 Pooling layer . 12 2.5.3 Objective function . 12 2.5.4 Training a CNN . 13 2.5.5 Dropout layer . 13 2.5.6 Batch normalization . 14 3 Method 15 3.1 Data acquisition system . 15 3.1.1 Camera calibration . 15 3.1.2 Image registration . 16 3.1.3 Data collection . 16 3.1.4 Data split . 18 3.2 CNN models . 18 3.2.1 Gray to color model . 18 3.2.2 Thermal to color model . 18 3.3 Pansharpening . 18 4 Experiments 23 vii viii Contents 4.1 Evaluation metrics . 23 4.2 Experimental setup . 24 4.3 Experiments . 24 4.3.1 Pretrained colorization model on TIR images . 24 4.3.2 Pretrained TIR to VIS transformation . 24 4.3.3 Color space comparison . 25 4.3.4 Night time generalization . 25 4.4 Quantitative results . 25 4.5 Qualitative analysis . 25 5 Discussion 33 5.1 Method . 33 5.2 Results . 34 6 Conclusions 37 6.1 Future work . 37 Bibliography 39 1 Introduction Thermal infrared (TIR) cameras are becoming increasingly popular due to their long wavelengths which allow them to work under low-light conditions. TIR cameras require no active illumination as they sense emitted heat from objects. This opens up for many applications such as driving in complete darkness or bad weather. However, one disadvantage of TIR cameras is their limited visual inter- pretability for humans. In this thesis, we investigate the problem of transforming TIR images, specifically long-wavelength infrared (LWIR), to visible spectrum (VIS) images. Figure 1.1 shows an example of a TIR and the corresponding VIS image. The problem of transforming TIR images to VIS images is inherently chal- lenging as they do not contain the same information in the electromagnetic spec- trum. Therefore, one TIR image can correspond to multiple different VIS images, e.g. blue and green balls of the same material and temperature would look almost identical in a LWIR image but very different in a VIS image. 1.1 Motivation Transforming TIR images to VIS images can open up a wide variety of applica- tions, for example enhanced night vision while driving in the dark. Another possible application is detecting objects in the transformed TIR images that are difficult to see in regular TIR images. This thesis was conducted at the Swedish Defence Research Agency (FOI) and is has three main applications for transfor- mation of TIR images: – Enhanced night vision where users should be able to detect and classify targets by looking at the transformed TIR images. – Detection of Improvised Explosive Devices (IED) in natural environments 1 2 1 Introduction (a) A LWIR image. (b) A visible spectrum image. Figure 1.1: A pair of thermal and visible spectrum images from the KAIST- MS dataset. [24] such as fields, forests or along roads. The transformed TIR images can po- tentially improve the user ability to detect IEDs. – Improve user ability to drive at night by increasing the ability to find stones and other obstacles that are hard to see using only VIS. The intended use may be while driving off-road or on roads with little traffic. 1.2 Problem formulation FOI has developed a co-axial imaging system that makes it possible to capture both TIR and VIS images with pixel-to-pixel correspondence. Figure 1.2 shows the principle of this co-axial imaging system. The dichroic filter is a very accu- rate color filter that selectively refracts one range in the electromagnetic spec- trum while reflecting other ranges. This thesis investigates different supervised learning methods to do the transformation from TIR images to VIS images. To achieve this, we investigate the process of geometric calibration and image regis- tration between the thermal and visible spectrum camera so that a pixel-to-pixel correspondence is possible between the image pairs. The robustness of calibra- tion and registration are crucial for the learning process, therefore, we evaluate them using a special calibration board that is visual in both visible and infrared spectrum. Furthermore, we develop a GUI application that can be used when collecting image pairs and transforming a stream of TIR images into VIS images. Finally, since collecting VIS images for training under low-light conditions is not feasible, we investigate the generalization capabilities of the proposed methods by training them on image pairs from daytime and evaluating on images from night time. 1.3 Research questions 3 (a) Top down view of the system. (b) View from behind with system mounted in a car. Figure 1.2: A co-axial imaging system with one LWIR camera and one visible spectrum camera with the same optical axis. The thermal light is being re- flected and the visible light is being passed through a hot mirror, also called dichroic filter. A hot mirror is designed to refract visible wavelengths and reflect the thermal spectrum wavelengths. 1.3 Research questions In this thesis, we investigate the following research questions: 1. How would an existing pretrained CNN model for colorizing grayscale im- ages perform on the task of transforming TIR images to VIS images? 2. Which color space is more suitable for the task of TIR to VIS transforma- tion? 3. Does a model trained on thermal images from daytime generalize well on images from night time? 1.4 Related work Colorizing grayscale images has been extensively investigated in the literature. Scribbles [22] require the user to manually apply strokes of color to different regions of a grayscale image and the algorithm makes the assumption that neigh- boring pixels with the same luminance should be the same color. Transfer tech- niques [33] use the color palette from a reference image and apply that palette to a grayscale image by matching luminance and texture. For example when coloriz- ing a grayscale image of a forest, typically the user would have to provide another image of a forest with an appropriate color palette. Both scribbles and transfer techniques require manual input for colorization. Other colorization methods are based on automatic transformation, i.e. the only input to the method is the 4 1 Introduction Figure 1.3: Illustration of the relative positions of visible spectrum, NIR, short-wavelength infrared (SWIR) and LWIR in the electromagnetic spec- trum. greyscale image without explicit information about colors. Recently, promising results have been published in the area of automatic transformation by using Con- volutional Neural Networks (CNNs) because of CNNs ability to model semantic representation in images [5, 13, 19, 34]. In the infrared spectrum, less research has been done specifically on trans- forming of TIR images to VIS images. Limmer and Lensch [23] proposed a CNN to transform near-infrared (NIR) images into VIS images by training on a dataset that contains images of highway roads and surroundings. Their method was shown to perform well as the NIR and VIS images are highly correlated.
Recommended publications
  • American Meteorological Society Early Online
    AMERICAN METEOROLOGICAL SOCIETY Bulletin of the American Meteorological Society EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/BAMS-D-13-00155.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. © 2014 American Meteorological Society Generated using version 3.2 of the official AMS LATEX template 1 Somewhere over the rainbow: How to make effective use of colors 2 in meteorological visualizations ∗ 3 Reto Stauffer, Georg J. Mayr and Markus Dabernig Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 4 Achim Zeileis Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria ∗Reto Stauffer, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, A{6020 Innsbruck E-mail: reto.stauff[email protected] 1 5 CAPSULE 6 Effective visualizations have a wide scope of challenges. The paper offers guidelines, a 7 perception-based color space alternative to the famous RGB color space and several tools to 8 more effectively convey graphical information to viewers. 9 ABSTRACT 10 Results of many atmospheric science applications are processed graphically.
    [Show full text]
  • Tracking and Automation of Images by Colour Based
    Vol 11, Issue 8,August/ 2020 ISSN NO: 0377-9254 TRACKING AND AUTOMATION OF IMAGES BY COLOUR BASED PROCESSING N Alekhya 1, K Venkanna Naidu 2 and M.SunilKumar 3 1PG student, D.N.R College of Engineering, ECE, JNTUK, INDIA 2 Associate Professor D.N.R College of Engineering, ECE, JNTUK, INDIA 3Assistant Professor Sir CRR College of Engineering , EEE, JNTUK, INDIA [email protected], [email protected] ,[email protected] Abstract— Now a day all application sectors are mostly image analysis involves maneuver the moving for the automation processing and image data to conclude exactly the information sensing . for example image processing in compulsory to help to answer a computer imaging medical field ,in industrial process lines , object problem. detection and Ranging application, satellite Digital image processing methods stems from two imaging Processing ,Military imaging etc, In principal application areas: improvement of each and every application area the raw images pictorial information for human interpretation, and are to be captured and to be processed for processing of image data for tasks such as storage, human visual inspection or digital image transmission, and extraction of pictorial processing systems. Automation applications In information this proposed system the video is converted into The remaining paper is structured as follows. frames and then it is get divided into sub bands Section 2 deals with the existing method of Image and then background is get subtracted, then the Processing. Section 3 deals with the proposed object is get identified and then it is tracked in method of Image Processing. Section 4 deals the the framed from the video .This work presents a results and discussions.
    [Show full text]
  • Verfahren Zur Farbanpassung F ¨Ur Electronic Publishing-Systeme
    Verfahren zur Farbanpassung f ¨ur Electronic Publishing-Systeme Von dem Fachbereich Elektrotechnik und Informationstechnik der Universit¨atHannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Wolfgang W¨olker geb. am 7. Juli 1957, in Herford 1999 Referent: Prof. Dr.-Ing. C.-E. Liedtke Korreferent: Prof. Dr.-Ing. K. Jobmann Tag der Promotion: 18.01.1999 Kurzfassung Zuk ¨unftigePublikationssysteme ben¨otigenleistungsstarke Verfahren zur Farb- bildbearbeitung, um den hohen Durchsatz insbesondere der elektronischen Me- dien bew¨altigenzu k¨onnen. Dieser Beitrag beschreibt ein System f ¨urdie automatisierte Farbmanipulation von Einzelbildern. Die derzeit vorwiegend manuell ausgef ¨uhrtenAktionen wer- den durch hochsprachliche Vorgaben ersetzt, die vom System interpretiert und ausgef ¨uhrtwerden. Basierend auf einem hier vorgeschlagenen Grundwortschatz zur Farbmanipulation sind Modifikationen und Erweiterungen des Wortschat- zes durch neue abstrakte Begriffe m¨oglich.Die Kombination mehrerer bekannter Begriffe zu einem neuen abstrakten Begriff f ¨uhrtdabei zu funktionserweitern- den, komplexen Aktionen. Dar ¨uberhinaus pr¨agendiese Erg¨anzungenden in- dividuellen Wortschatz des jeweiligen Anwenders. Durch die hochsprachliche Schnittstelle findet eine Entkopplung der Benutzervorgaben von der technischen Umsetzung statt. Die farbverarbeitenden Methoden lassen sich so im Hinblick auf die verwendeten Farbmodelle optimieren. Statt der bisher ¨ublichenmedien- und ger¨atetechnischbedingten Farbmodelle kann nun z.B. das visuell adaptierte CIE(1976)-L*a*b*-Modell genutzt werden. Die damit m¨oglichenfarbverarbeiten- den Methoden erlauben umfangreiche und wirksame Eingriffe in die Farbdar- stellung des Bildes. Zielsetzung des Verfahrens ist es, unter Verwendung der vorgeschlagenen Be- nutzerschnittstelle, die teilweise wenig anschauliche Parametrisierung bestimm- ter Farbmodelle, durch einen hochsprachlichen Zugang zu ersetzen, der den An- wender bei der Farbbearbeitung unterst ¨utztund den Experten entlastet.
    [Show full text]
  • Measuring Perceived Color Difference Using YIQ NTSC Transmission Color Space in Mobile Applications
    Programación Matemática y Software (2010) Vol.2. Num. 2. Dirección de Reservas de Derecho: 04-2009-011611475800-102 Measuring perceived color difference using YIQ NTSC transmission color space in mobile applications Yuriy Kotsarenko, Fernando Ramos TECNOLÓGICO DE DE MONTERREY, CAMPUS CUERNAVACA. Resumen. En este trabajo varias formulas están introducidas que permiten calcular la medir la diferencia entre colores de forma perceptible, utilizando el espacio de colores YIQ. Las formulas clásicas y sus derivados que utilizan los espacios CIELAB y CIELUV requieren muchas transformaciones aritméticas de valores entrantes definidos comúnmente con los componentes de rojo, verde y azul, y por lo tanto son muy pesadas para su implementación en dispositivos móviles. Las formulas alternativas propuestas en este trabajo basadas en espacio de colores YIQ son sencillas y se calculan rápidamente, incluso en tiempo real. La comparación está incluida en este trabajo entre las formulas clásicas y las propuestas utilizando dos diferentes grupos de experimentos. El primer grupo de experimentos se enfoca en evaluar la diferencia perceptible utilizando diferentes formulas, mientras el segundo grupo de experimentos permite determinar el desempeño de cada una de las formulas para determinar su velocidad cuando se procesan imágenes. Los resultados experimentales indican que las formulas propuestas en este trabajo son muy cercanas en términos perceptibles a las de CIELAB y CIELUV, pero son significativamente más rápidas, lo que los hace buenos candidatos para la medición de las diferencias de colores en dispositivos móviles y aplicaciones en tiempo real. Abstract. An alternative color difference formulas are presented for measuring the perceived difference between two color samples defined in YIQ color space.
    [Show full text]
  • Color Spaces YCH and Ysch for Color Specification and Image Processing in Multi-Core Computing and Mobile Systems
    Programación Matemática y Software (2012) Vol. 4. No 2. ISSN: 2007-3283 Recibido: 14 de septiembre del 2011 Aceptado: 3 de enero del 2012 Publicado en línea: 8 de enero del 2013 Color spaces YCH and YScH for color specification and image processing in multi-core computing and mobile systems Yuriy Kotsarenko, Fernando Ramos Tecnológico de Monterrey, Campus Cuernavaca [email protected], [email protected] Resumen. En este trabajo dos nuevos espacios de color se describen para especificación de colores y procesamiento de imágenes utilizando la forma cilíndrica del espacio de color YIQ. Los espacios de colores clásicos tales como HSL y HSV no toman en cuenta la visión humana y son perceptualmente inexactos. Los espacios de colores perceptualmente uniformes como CIELAB y CIELUV son muy costosos computacionalmente para aplicaciones interactivas de tiempo real y son difíciles de implementar. Las alternativas propuestas, por otro lado, tienen un balance entre uniformidad perceptual, desempeño y simplicidad de cálculo. Estos espacios modelan colores de forma más exacta y son rápidos de calcular. Los resultados experimentales en este trabajo comparan espacios de colores clásicos con los propuestos en términos de uniformidad, riqueza de colores y desempeño, incluyendo numerosas pruebas de rapidez en procesadores de varios núcleos y sistemas móviles tales como ultra portátiles y los tablets tipo iPad. Los resultados evidencian que los espacios de colores propuestos son mejores alternativas para la industria de computación donde actualmente se utilicen los espacios de colores clásicos. Abstract. Two novel color spaces are described for color specification and image processing using cylindrical variants of YIQ color space.
    [Show full text]
  • Fiery Color Reference C9800 OKI Americas Inc
    2Copyright Copyright ES3640e MFP Color Reference Guide P/N 59377001, Revision 1.0 June, 2005 Every effort has been made to ensure that the information in this document is complete, accurate, and up-to-date. Oki assumes no responsibility for the results of errors beyond its control. Oki also cannot guarantee that changes in software and equipment made by other manufacturers and referred to in this guide will not affect the applicability of the information in it. Mention of software products manufactured by other companies does not necessarily constitute endorsement by Oki. While all reasonable efforts have been made to make this document as accurate and helpful as possible, we make no warranty of any kind, expressed or implied, as to the accuracy or completeness of the information contained herein. The most up-to-date drivers and manuals are available from the Oki web site: http://my.okidata.com Copyright © 2005 Oki Data Americas, Inc. and Electronics for Imaging, Inc. All rights reserved. This publication is protected by copyright, and all rights are reserved. No part of it may be reproduced or transmitted in any form or by any means for any purpose without express prior written consent from Electronics for Imaging, Inc. Information in this document is subject to change without notice and does not represent a commitment on the part of Electronics for Imaging, Inc. This publication is provided in conjunction with an EFI product (the “Product”) which contains EFI software (the “Software”). The Software is furnished under license and may only be used or copied in accordance with the terms of the Software license set forth below.
    [Show full text]
  • Color-Proposal.Pdf
    Colors in Snap! -bh proposal, draft, do not distribute Your computer monitor can display millions of colors, but you probably can’t distinguish that many. For example, here’s red 57, green 180, blue 200: And here’s red 57, green 182, blue 200: You might be able to tell them apart if you see them side by side: … but maybe not even then. Color space—the collection of all possible colors—is three-dimensional, but there are many ways to choose the dimensions. RGB (red-green-blue), the one most commonly used, matches the way TVs and displays produce color. Behind every dot on the screen are three tiny lights: a red one, a green one, and a blue one. But if you want to print colors on paper, your printer probably uses a different set of three colors: CMY (cyan-magenta-yellow). You may have seen the abbreviation CMYK, which represents the common technique of adding black ink to the collection. (Mixing cyan, magenta, and yellow in equal amounts is supposed to result in black ink, but typically it comes out a not-very-intense gray instead.) Other systems that try to mimic human perception are HSL (hue-saturation-lightness) and HSV (hue-saturation-value). If you are a color professional—a printer, a web designer, a graphic designer, an artist—then you need to understand all this. It can also be interesting to learn about. For example, there are colors that you can see but your computer display can’t generate. If that intrigues you, look up color theory in Wikipedia.
    [Show full text]
  • Color Control of LED Luminaires by Robert Bell
    Color control of LED luminaires BY ROBERT BELL Why it is not as easy as you might think. Another description is by hue, saturation, not create every color your eye can see. Below A bit about additive and luminance, HSL. (Some say “intensity” is a hypothetical locus of an RGB system color mixing or “lightness” instead of “luminance.”) rendered on the entire visible light spectrum. WITH RECENT MASS ACCEPTANCE Equally valid is hue, saturation, and value, of solid-state LED lighting, it’s time HSV. Value is sometimes referred to as for an explanation of this technology’s brightness and is similar to luminance. complexities and ways in which it can be However, saturation in HSL and HSV differ tamed. LED luminaires use the output of dramatically. For simplicity, I define hue multiple sources to achieve different colors as color and saturation as the amount of and intensities. Additive color mixing is color. I also try to remember if “L” is set to nothing new to our industry. We’ve done 100%, that is white, 0% is black, and 50% it for years on cycloramas with gelled is pure color when saturation is 100%. As luminaires hitting the same surface, but for “V”, 0% is black and 100% is pure color, control can be tricky. The first intelligent and the saturation value has to make up the luminaire I used was a spotlight that had difference. That over simplifies it, but let’s three MR16 lamps, fitted with red, green, carry on, as we’re not done yet. and blue filters.
    [Show full text]
  • Color Image Segmentation Using Perceptual Spaces Through Applets for Determining and Preventing Diseases in Chili Peppers
    African Journal of Biotechnology Vol. 12(7), pp. 679-688, 13 February, 2013 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1198 ISSN 1684–5315 ©2013 Academic Journals Full Length Research Paper Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers J. L. González-Pérez1 , M. C. Espino-Gudiño2, J. Gudiño-Bazaldúa3, J. L. Rojas-Rentería4, V. Rodríguez-Hernández5 and V.M. Castaño6 1Computer and Biotechnology Applications, Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 2Faculty of Psychology, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 3Faculty of Languages Letters, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 4New Information and Communication Technologies, Faculty of Engineering, Department of Intelligent Buildings, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 5New Information and Communication Technologies, Faculty of Computer Science, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 6Center for Applied Physics and Advanced Technology, National Autonomous University of Mexico. Accepted 5 December, 2012 Plant pathogens cause disease in plants. Chili peppers are one of the most important crops in the world. There are currently disease detection techniques classified as: biochemical, microscopy, immunology, nucleic acid hybridization, identification by visual inspection in vitro or in situ but these have the following disadvantages: they require several days, their implementation is costly and highly trained.
    [Show full text]
  • Polychrome: Creating and Assessing Qualitative Palettes with Many Colors
    bioRxiv preprint doi: https://doi.org/10.1101/303883; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Code Snippet II. http://www.jstatsoft.org/ Polychrome: Creating and Assessing Qualitative Palettes With Many Colors Kevin R. Coombes Guy Brock Zachary B. Abrams The Ohio State University The Ohio State University The Ohio State University Lynne V. Abruzzo The Ohio State University Abstract Although R includes numerous tools for creating color palettes to display continuous data, facilities for displaying categorical data primarily use the RColorBrewer package, which is, by default, limited to 12 colors. The colorspace package can produce more colors, but it is not immediately clear how to use it to produce colors that can be reliably distingushed in different kinds of plots. However, applications to genomics would be enhanced by the ability to display at least the 24 human chromosomes in distinct colors, as is common in technologies like spectral karyotyping. In this article, we describe the Polychrome package, which can be used to construct palettes with at least 24 colors that can be distinguished by most people with normal color vision. Polychrome includes a variety of visualization methods allowing users to evaluate the proposed palettes. In addition, we review the history of attempts to construct qualitative color palettes with many colors. Keywords: color, palette, categorical data, spectral karyotyping, R.
    [Show full text]
  • Quality Measurement of Existing Color Metrics Using Hexagonal Color Fields Yuriy Kotsarenko1, Fernando Ramos1
    Quality Measurement of Existing Color Metrics using Hexagonal Color Fields Yuriy Kotsarenko1, Fernando Ramos1 1 Instituto Tecnológico de Estudios Superiores de Monterrey Abstract. In the area of colorimetry there are many color metrics developed, such as those based on the CIELAB color space, which measure the perceptual difference between two colors. However, in software applications the typical images contain hundreds of different colors. In the case where many colors are seen by human eye, the perceived result might be different than if looking at only two of these colors at once. This work presents an alternative approach for measuring the perceived quality of color metrics by comparing several neighboring colors at once. The colors are arranged in a two dimensional board using hexagonal shapes, for every new element its color is compared to all currently available neighbors and the closest match is used. The board elements are filled from the palette with specific color set. The overall result can be judged visually on any monitor where output is sRGB compliant. Keywords: color metric, perceptual quality, color neighbors, quality estimation. 1. Introduction In the software applications there are applications where several colors need to be compared in order to determine the color that better matches the given sample. For instance, in stereo vision the colors from two separate cameras are compared to determine the visible depth. In image compression algorithms the colors of neighboring pixels are compared to determine what information should be discarded or preserved. Another example is color dithering – an approach, where color pixels are accommodated in special way to improve the overall look of the image.
    [Show full text]
  • Fiery Color Reference
    Fiery® Color Server SERVER & CONTROLLER SOLUTIONS Fiery Color Reference © 2004 Electronics for Imaging, Inc. The information in this publication is covered under Legal Notices for this product. 45046197 24 September 2004 CONTENTS 3 CONTENTS INTRODUCTION 7 About this manual 7 For additional information 8 OVERVIEW OF COLOR MANAGEMENT CONCEPTS 9 Understanding color management systems 9 How color management works 10 Using ColorWise and application color management 11 Using ColorWise color management tools 12 USING COLOR MANAGEMENT WORKFLOWS 13 Understanding workflows 13 Standard recommended workflow 15 Choosing colors 16 Understanding color models 17 Optimizing for output type 18 Maintaining color accuracy 19 MANAGING COLOR IN OFFICE APPLICATIONS 20 Using office applications 20 Using color matching tools with office applications 21 Working with office applications 22 Defining colors 22 Working with imported files 22 Selecting options when printing 23 Output profiles 23 Ensuring color accuracy when you save a file 23 CONTENTS 4 MANAGING COLOR IN POSTSCRIPT APPLICATIONS 24 Working with PostScript applications 24 Using color matching tools with PostScript applications 25 Using swatch color matching tools 25 Using the CMYK Color Reference 25 Using the PANTONE reference 26 Defining colors 27 Working with imported images 29 Using CMYK simulations 30 Using application-defined halftone screens 31 Ensuring color accuracy when you save a file 32 MANAGING COLOR IN ADOBE PHOTOSHOP 33 Loading monitor settings files and ICC device profiles in Photoshop 6.x/7.x 33 Specifying
    [Show full text]