American Meteorological Society Early Online

Total Page:16

File Type:pdf, Size:1020Kb

American Meteorological Society Early Online AMERICAN METEOROLOGICAL SOCIETY Bulletin of the American Meteorological Society EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/BAMS-D-13-00155.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. © 2014 American Meteorological Society Generated using version 3.2 of the official AMS LATEX template 1 Somewhere over the rainbow: How to make effective use of colors 2 in meteorological visualizations ∗ 3 Reto Stauffer, Georg J. Mayr and Markus Dabernig Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 4 Achim Zeileis Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria ∗Reto Stauffer, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, A{6020 Innsbruck E-mail: reto.stauff[email protected] 1 5 CAPSULE 6 Effective visualizations have a wide scope of challenges. The paper offers guidelines, a 7 perception-based color space alternative to the famous RGB color space and several tools to 8 more effectively convey graphical information to viewers. 9 ABSTRACT 10 Results of many atmospheric science applications are processed graphically. Visualizations 11 are a powerful tool to display and communicate (complex) data. But to create effective 12 figures a wide scope of challenges have to be considered. Therefore, this paper offers several 13 guidelines with a focus on colors. Colors are often used to add additional information or to 14 code information. Colors should (i) allow humans to process the information rapidly, (ii) 15 guide the reader to the most important information, and (iii) represent the data appropriately 16 without misleading distortion. The second and third requirements necessitate tailoring the 17 visualization, and the use of colors, to the specific purpose of the graphic. A standard way of 18 deriving color palettes is via transitions through a particular color space. Most of the common 19 software packages still provide default palettes derived in the Red-Green-Blue (RGB) color 20 model or \simple" transformations thereof. Confounding perceptual properties such as hue 21 and brightness make RGB-based palettes more prone to misinterpretation. Switching to a 22 color model corresponding to the perceptual dimensions of human color vision avoids these 23 problems. We show several practically relevant examples using one such model, the Hue- 24 Chroma-Luminance (HCL) color model, to explain how it works and what its advantages 25 are. Moreover, the paper contains several tips on how to easily integrate this knowledge into 26 software commonly used by the community. The guidelines and examples should help readers 27 to switch over to the alternative HCL color model, which will result in a greatly improved 28 quality and readability of visualized atmospheric science data for research, teaching, and 29 communication of results to society. 1 30 1. Introduction 31 One of the many challenges associated with atmospheric sciences is the analysis and 32 utilization of large, usually very complex data sets. One way to gather the information 33 and better understand it, is to visualize it graphically. Visualizations may be as simple 34 as one-dimensional plots (e.g., time series plots) or as complex as multidimensional charts 35 (e.g., from numerical weather prediction model output). As a scientist, an important part of 36 daily work is to create plots and graphs that visualize results and outcomes earned through 37 weeks and possibly months of work. The key feature of visualization is helping the reader to 38 capture the information as simply and quickly as possible. This reader can be a colleague, 39 a customer, or even you. 40 The term \visualization" encompasses many aspects. Much work has been carried out 41 during the last century to investigate the human perception and the influence of different 42 aspects on how to best convey information. Initially, fundamental research was done in 43 physics, biology, and medicine (see Miles 1943; Stevens 1966; Carswell and Wickens 1990), 44 but with the advent of the computer industry this focus expanded into how to deal with the 45 new technological achievements in different disciplines, including 3D graphics, interactive 46 visualization, and animation (Smith 1978; Ware 1988; BAMS 1993; Rogowitz and Treinish 47 1996; Light and Bartlein 2004; Hagh-Shenas et al. 2007). Today, the ubiquitous availability 48 of computers and software enables everyone to create graphics for all different devices. We 49 will focus on only one aspect: how to make effective use of color for visualization. Therefore 50 we are using relatively \simple" spatial plots to illustrate the guidelines and typical user 51 tasks in atmospheric science. 52 Color is a good instrument to improve graphics, but carelessly applied color schemes can 53 result in figures that are less effective than gray-scale ones (Light and Bartlein 2004). For 54 large parts of our vision, hue is irrelevant in comparison to shading. Color does not help 55 us measure distances, discern shapes, detect motion, or to identify small objects over long 56 distances. Hue is useful for labeling and categorization, but less effective for representing 2 57 (fine) spatial data or shape. However, if used effectively, colors are a powerful tool to improve 58 (highly) complex visualizations. Therefore it is important to know how color perception 59 works and how we can make use of it to improve visualization (Ware 2004). Most common 60 software packages supply methods to create different types of plots with different color maps 61 (or color palettes). Nevertheless, because most plotting functions are rather generic it is 62 impossible for the software developers to provide adequate color schemes for all applications. 63 The default color map is often an RGB rainbow palette. This is probably the most 64 known color map and consequently many people use it uncritically as the default for their 65 visualization, even it has been shown to be difficult or even harmful (Brewer 1997; Borland 66 and Taylor 2007). In addition to the rainbow scheme, other color maps defined in the RGB 67 color space also exhibit similar problems and have to be handled with care, because the 68 RGB color space has some critical disadvantages (Rogowitz and Treinish 1998; Light and 69 Bartlein 2004). Vivid colors along the spectrum of the RGB color space strongly differ in their 70 luminance, which can lead to artificial dark or bright bands that can obscure the information 71 shown. Furthermore, the RGB color space is not a uniform color space, meaning that 72 color pairs with the same distance within the color space do not show the same perceptual 73 difference. Other prevalent color spaces, such as Hue-Saturation-Value (HSV) and Hue- 74 Saturation-Luminance (HSL), suffer from the same problems as the RGB color space (Smith 75 1978). 76 To avoid these disadvantages several transformations of the RGB color space have been 77 developed. These transformations are approximations of the human color perception sys- 78 tem, in that they, for example, allow for the fact that we have a logarithmic perception 79 of luminance (Stevens 1966). The most profound work has been done by the Comission 80 Internationale de l'Eclairage´ (CIE) in creating color spaces like the CIELUV or CIELAB 81 color space, based on a standard observer (Ware 2004). Keep in mind that there is not \one 82 omnipotent best" color model or color scheme. Depending on the user task or the medium 83 the most effective color models and palettes can differ. Even with extensive user testing 3 84 there is always a number of different effective color maps for a given purpose. The work of 85 Mahy et al. (1994) contains a good experiment-based comparison of many of the available 86 color spaces. In this paper we will focus on a perception based color concept called HCL, 87 which is the CIELUV gamut in polar coordinates. Thus, the HCL color space is based on 88 how humans perceive color, in contrast to the RGB color space, which is based on technical 89 demands of TV and computer screens. 90 In this article we will demonstrate the benefits of the HCL alternative, which is already 91 becoming better known and more frequently used in other scientific fields (Zeileis et al. 2009; 92 Silva et al. 2011). We argue that the use of misleading and distorting RGB color maps is 93 not necessary as alternative models are available, and that changing to a perception-based 94 color model can strongly improve the visual reception on graphical information with very 95 little additional effort. 96 2. RGB versus HCL color space 97 Hue-Chroma-Luminance (HCL) model: The HCL color space is the polar transformation 98 of the uniform CIELUV color space and forms a distorted double cone where each of the three 99 dimensions directly controls one of the three major perceptual dimensions directly (additional 100 information in the sidebars). The first one is hue, the dominant wavelength (defining the 101 color), the second dimension is chroma, capturing colorfulness (color intensity compared to 102 gray), and the third is luminance, pertaining the brightness (\amount" of gray). Figure 1 103 shows the three perceptual HCL dimensions. In each of the subfigures one dimension changes 104 linearly across the corresponding axis while the others are held constant.
Recommended publications
  • Verfahren Zur Farbanpassung F ¨Ur Electronic Publishing-Systeme
    Verfahren zur Farbanpassung f ¨ur Electronic Publishing-Systeme Von dem Fachbereich Elektrotechnik und Informationstechnik der Universit¨atHannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Wolfgang W¨olker geb. am 7. Juli 1957, in Herford 1999 Referent: Prof. Dr.-Ing. C.-E. Liedtke Korreferent: Prof. Dr.-Ing. K. Jobmann Tag der Promotion: 18.01.1999 Kurzfassung Zuk ¨unftigePublikationssysteme ben¨otigenleistungsstarke Verfahren zur Farb- bildbearbeitung, um den hohen Durchsatz insbesondere der elektronischen Me- dien bew¨altigenzu k¨onnen. Dieser Beitrag beschreibt ein System f ¨urdie automatisierte Farbmanipulation von Einzelbildern. Die derzeit vorwiegend manuell ausgef ¨uhrtenAktionen wer- den durch hochsprachliche Vorgaben ersetzt, die vom System interpretiert und ausgef ¨uhrtwerden. Basierend auf einem hier vorgeschlagenen Grundwortschatz zur Farbmanipulation sind Modifikationen und Erweiterungen des Wortschat- zes durch neue abstrakte Begriffe m¨oglich.Die Kombination mehrerer bekannter Begriffe zu einem neuen abstrakten Begriff f ¨uhrtdabei zu funktionserweitern- den, komplexen Aktionen. Dar ¨uberhinaus pr¨agendiese Erg¨anzungenden in- dividuellen Wortschatz des jeweiligen Anwenders. Durch die hochsprachliche Schnittstelle findet eine Entkopplung der Benutzervorgaben von der technischen Umsetzung statt. Die farbverarbeitenden Methoden lassen sich so im Hinblick auf die verwendeten Farbmodelle optimieren. Statt der bisher ¨ublichenmedien- und ger¨atetechnischbedingten Farbmodelle kann nun z.B. das visuell adaptierte CIE(1976)-L*a*b*-Modell genutzt werden. Die damit m¨oglichenfarbverarbeiten- den Methoden erlauben umfangreiche und wirksame Eingriffe in die Farbdar- stellung des Bildes. Zielsetzung des Verfahrens ist es, unter Verwendung der vorgeschlagenen Be- nutzerschnittstelle, die teilweise wenig anschauliche Parametrisierung bestimm- ter Farbmodelle, durch einen hochsprachlichen Zugang zu ersetzen, der den An- wender bei der Farbbearbeitung unterst ¨utztund den Experten entlastet.
    [Show full text]
  • Measuring Perceived Color Difference Using YIQ NTSC Transmission Color Space in Mobile Applications
    Programación Matemática y Software (2010) Vol.2. Num. 2. Dirección de Reservas de Derecho: 04-2009-011611475800-102 Measuring perceived color difference using YIQ NTSC transmission color space in mobile applications Yuriy Kotsarenko, Fernando Ramos TECNOLÓGICO DE DE MONTERREY, CAMPUS CUERNAVACA. Resumen. En este trabajo varias formulas están introducidas que permiten calcular la medir la diferencia entre colores de forma perceptible, utilizando el espacio de colores YIQ. Las formulas clásicas y sus derivados que utilizan los espacios CIELAB y CIELUV requieren muchas transformaciones aritméticas de valores entrantes definidos comúnmente con los componentes de rojo, verde y azul, y por lo tanto son muy pesadas para su implementación en dispositivos móviles. Las formulas alternativas propuestas en este trabajo basadas en espacio de colores YIQ son sencillas y se calculan rápidamente, incluso en tiempo real. La comparación está incluida en este trabajo entre las formulas clásicas y las propuestas utilizando dos diferentes grupos de experimentos. El primer grupo de experimentos se enfoca en evaluar la diferencia perceptible utilizando diferentes formulas, mientras el segundo grupo de experimentos permite determinar el desempeño de cada una de las formulas para determinar su velocidad cuando se procesan imágenes. Los resultados experimentales indican que las formulas propuestas en este trabajo son muy cercanas en términos perceptibles a las de CIELAB y CIELUV, pero son significativamente más rápidas, lo que los hace buenos candidatos para la medición de las diferencias de colores en dispositivos móviles y aplicaciones en tiempo real. Abstract. An alternative color difference formulas are presented for measuring the perceived difference between two color samples defined in YIQ color space.
    [Show full text]
  • Color Spaces YCH and Ysch for Color Specification and Image Processing in Multi-Core Computing and Mobile Systems
    Programación Matemática y Software (2012) Vol. 4. No 2. ISSN: 2007-3283 Recibido: 14 de septiembre del 2011 Aceptado: 3 de enero del 2012 Publicado en línea: 8 de enero del 2013 Color spaces YCH and YScH for color specification and image processing in multi-core computing and mobile systems Yuriy Kotsarenko, Fernando Ramos Tecnológico de Monterrey, Campus Cuernavaca [email protected], [email protected] Resumen. En este trabajo dos nuevos espacios de color se describen para especificación de colores y procesamiento de imágenes utilizando la forma cilíndrica del espacio de color YIQ. Los espacios de colores clásicos tales como HSL y HSV no toman en cuenta la visión humana y son perceptualmente inexactos. Los espacios de colores perceptualmente uniformes como CIELAB y CIELUV son muy costosos computacionalmente para aplicaciones interactivas de tiempo real y son difíciles de implementar. Las alternativas propuestas, por otro lado, tienen un balance entre uniformidad perceptual, desempeño y simplicidad de cálculo. Estos espacios modelan colores de forma más exacta y son rápidos de calcular. Los resultados experimentales en este trabajo comparan espacios de colores clásicos con los propuestos en términos de uniformidad, riqueza de colores y desempeño, incluyendo numerosas pruebas de rapidez en procesadores de varios núcleos y sistemas móviles tales como ultra portátiles y los tablets tipo iPad. Los resultados evidencian que los espacios de colores propuestos son mejores alternativas para la industria de computación donde actualmente se utilicen los espacios de colores clásicos. Abstract. Two novel color spaces are described for color specification and image processing using cylindrical variants of YIQ color space.
    [Show full text]
  • Polychrome: Creating and Assessing Qualitative Palettes with Many Colors
    bioRxiv preprint doi: https://doi.org/10.1101/303883; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Code Snippet II. http://www.jstatsoft.org/ Polychrome: Creating and Assessing Qualitative Palettes With Many Colors Kevin R. Coombes Guy Brock Zachary B. Abrams The Ohio State University The Ohio State University The Ohio State University Lynne V. Abruzzo The Ohio State University Abstract Although R includes numerous tools for creating color palettes to display continuous data, facilities for displaying categorical data primarily use the RColorBrewer package, which is, by default, limited to 12 colors. The colorspace package can produce more colors, but it is not immediately clear how to use it to produce colors that can be reliably distingushed in different kinds of plots. However, applications to genomics would be enhanced by the ability to display at least the 24 human chromosomes in distinct colors, as is common in technologies like spectral karyotyping. In this article, we describe the Polychrome package, which can be used to construct palettes with at least 24 colors that can be distinguished by most people with normal color vision. Polychrome includes a variety of visualization methods allowing users to evaluate the proposed palettes. In addition, we review the history of attempts to construct qualitative color palettes with many colors. Keywords: color, palette, categorical data, spectral karyotyping, R.
    [Show full text]
  • Quality Measurement of Existing Color Metrics Using Hexagonal Color Fields Yuriy Kotsarenko1, Fernando Ramos1
    Quality Measurement of Existing Color Metrics using Hexagonal Color Fields Yuriy Kotsarenko1, Fernando Ramos1 1 Instituto Tecnológico de Estudios Superiores de Monterrey Abstract. In the area of colorimetry there are many color metrics developed, such as those based on the CIELAB color space, which measure the perceptual difference between two colors. However, in software applications the typical images contain hundreds of different colors. In the case where many colors are seen by human eye, the perceived result might be different than if looking at only two of these colors at once. This work presents an alternative approach for measuring the perceived quality of color metrics by comparing several neighboring colors at once. The colors are arranged in a two dimensional board using hexagonal shapes, for every new element its color is compared to all currently available neighbors and the closest match is used. The board elements are filled from the palette with specific color set. The overall result can be judged visually on any monitor where output is sRGB compliant. Keywords: color metric, perceptual quality, color neighbors, quality estimation. 1. Introduction In the software applications there are applications where several colors need to be compared in order to determine the color that better matches the given sample. For instance, in stereo vision the colors from two separate cameras are compared to determine the visible depth. In image compression algorithms the colors of neighboring pixels are compared to determine what information should be discarded or preserved. Another example is color dithering – an approach, where color pixels are accommodated in special way to improve the overall look of the image.
    [Show full text]
  • Transforming Thermal Images to Visible Spectrum Images Using Deep Learning
    Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2018 Transforming Thermal Images to Visible Spectrum Images using Deep Learning Adam Nyberg Master of Science Thesis in Electrical Engineering Transforming Thermal Images to Visible Spectrum Images using Deep Learning Adam Nyberg LiTH-ISY-EX–18/5167–SE Supervisor: Abdelrahman Eldesokey isy, Linköpings universitet David Gustafsson FOI Examiner: Per-Erik Forssén isy, Linköpings universitet Computer Vision Laboratory Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2018 Adam Nyberg Abstract Thermal spectrum cameras are gaining interest in many applications due to their long wavelength which allows them to operate under low light and harsh weather conditions. One disadvantage of thermal cameras is their limited visual inter- pretability for humans, which limits the scope of their applications. In this the- sis, we try to address this problem by investigating the possibility of transforming thermal infrared (TIR) images to perceptually realistic visible spectrum (VIS) im- ages by using Convolutional Neural Networks (CNNs). Existing state-of-the-art colorization CNNs fail to provide the desired output as they were trained to map grayscale VIS images to color VIS images. Instead, we utilize an auto-encoder ar- chitecture to perform cross-spectral transformation between TIR and VIS images. This architecture was shown to quantitatively perform very well on the problem while producing perceptually realistic images. We show that the quantitative differences are insignificant when training this architecture using different color spaces, while there exist clear qualitative differences depending on the choice of color space. Finally, we found that a CNN trained from day time examples generalizes well on tests from night time.
    [Show full text]
  • CIC24 Twenty-Fourth Color and Imaging Conference Preliminary
    P November 7-11, 2016 R San Diego, CA E L CIC24 I Twenty-fourth Color and Imaging M I Conference Color Science and Engineering Systems, Technologies, and N Applications A R Y P R O G R A M Early Registration Deadline: October 9, 2016 www.imaging.org/color IS&T Sponsored by Society for Imaging Science and Technology imaging.org November 7 – 11, 2016 • San Diego, CA Table of Contents Sponsors Conference At-a-Glance . 1 Google Inc. Hewlett-Packard Company Venue Information . 1 Image Engineering GmbH Short Course Program . 2 IS&T Sustaining Corporate Members Short Courses At-a-Glance . 5 Adobe Systems Inc. CIC24 Technical Program . 14 HCL America CIC24 Workshops . 19 Hewlett-Packard Company Qualcomm Technologies, Inc. ICC DevCon 2016 . 22 Samsung Electronics Company Ltd. Hotel and Transportation Info . 23 Xerox Corporation Conference Registration . 24 Cooperating Societies • Associazione Italiana Colore • Inter-Society Color Council (ISCC) • Comité de Color • IOP Printing and Graphics Science Group • The Colour Group (Great Britain) • Swedish Colour Centre Foundation • Deutsche Gesellschaft für Angewandte Optik, DGaO • The Royal Photographic Society of Great Britain • Flemish Innovation Centre for Graphic Communications • Society of Motion Picture and Television Engineers VIGC (SMPTE) • German Society for Color Science and Application (DfwG) • Society of Photographic Science and Technology of • Imaging Society of Japan (ISJ) Japan (SPSTJ) Program Committee General Chair Workshop Chairs CIC Steering Committee Philipp Urban Nicolas Bonnier Vien Cheung Fraunhofer Institute for Apple Inc. (USA) University of Leeds (UK) Computer Graphics Research Maria Vanrell Graham Finlayson IGD (Germany) Universitat Autònoma de University of East Anglia (UK) Barcelona (Spain) Suzanne Grinnan Technical Program Chairs IS&T (USA) Michael J.
    [Show full text]
  • Transaction / Regular Paper Title
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 ColorMapND: A Data-Driven Approach and Tool for Mapping Multivariate Data to Color Shenghui Cheng, Wei Xu, Member, IEEE and Klaus Mueller, Senior Member, IEEE (b) (c) (a) (d) Fig. 1. System interface with all major displays and components (using the battery data, see Section 6.2 for more detail). Users can select a multivariate data point in any of these displays via mouse click. The system responds by highlighting the selected data point with a small circle both in the targeted display as well as in the other, synched displays (see arrows, added for illustration). (a) Integrated CIE HCL (Hue Chroma Luminance) interactive multivariate color mapping display (ICD, top) with control panel (middle), and the selected point’s multivariate spectrum display (bottom). (b) Multi-field / hyperspectral image, pseudo-colored via the multivariate color map in (a). (c) Locally enhanced colorization of the selected rectangular region in (b). (d) Individual scalar images (usually displayed on the bottom of the interface in a chan- nel view partition) colorized via the attribute-linked color primaries marked and labeled at the circle boundary of the multivariate color map in (a). The image in (b) constitutes a joint colorization of these individual channel images. Abstract—A wide variety of color schemes have been devised for mapping scalar data to color. We address the challenge of color-mapping multivariate data. While a number of methods can map low-dimensional data to color, for example, using bilinear or barycentric interpolation for two or three variables, these methods do not scale to higher data dimensions.
    [Show full text]
  • Know Your Data. • Select Color Space & Rule. • Build Color
    THE PROCESS OF COLORIZING A DATA VISUALIZATION • Know your data. • Select Color Space & Rule. • Build Color Scheme. •Check for Color Deficiency & Pre Existing conditions •Apply Color Scheme to Data & Modify per Review. Image: Theresa-Marie Rhyne 2021 •Theresa-Marie Rhyne - Color Maven/Visualization1 Expert/Author [email protected] (1) KNOW OR IDENTIFY THE NATURE OF YOUR DATA • Nominal - name/no order-e.g. eye color. • Ordinal - rank - low, medium, high - no info on degree of difference. • Interval - differentiated by degree of difference - numerical values have positive, negative or zero. • Ratio - data distinguished by the degree of difference - Age, Height, Duration • Discrete - only whole numbers & some kind of count • Continuous - data take any value - computational Chart prepared by Georges Hattab, see: Ten simple rules to colorize biological data visualization by Hattab, Rhyne & Heider, model https://journals.plos.org/ploscompbiol/article?id=10.1371/ journal.pcbi.1008259 Binary/Dichotomous - 2 possible values- Yes or No • 2 [email protected] (1) KNOW OR IDENTIFY THE NATURE OF YOUR DATA For the example I will work through in this talk: I want to build a set of bar charts using the 5 point Likert scale of Strongly Agree, Agree, Neutral, Disagree and Strongly Disagree. Magenta is my Key Color. • Ordinal - categorical attributes of a Image: Theresa-Marie Rhyne 2021 variable differentiated by order (rank, scale, or position) Getting it Right in Black & White. • Key Color: Magenta (#FC56FF in Hex Code) 3 [email protected] (2A) SELECT COLOR SPACE & RULE: 3 CLASSIC MODELS RGB adds with lights. CMYK subtracts for printing. RYB subtracts to mix paints.
    [Show full text]
  • How to Make Effective Use of Colors in Meteorological Visualizations
    Escaping RGBland: How to make effective use of colors in meteorological visualizations Reto Stauffer1, Achim Zeileis2, Georg J. Mayr1, Markus Dabernig1 University of Innsbruck INTRODUCTION EXAMPLE II: WARNING MAP AUSTRIA In meteorology, visualizations are an essential part of the everyday work. Most figures are contain- (A.1) (B.1) ing colors. The Red-Green-Blue (RGB) based color palettes provided as default by most common software packages can lead to various problems. An alternative is the Hue-Chroma-Luminance (HCL) color space. The HCL color space is based on how we perceive colors. Based on HCL palettes one can strongly improve the visual output with barely no additional effort and help the end-user to gather complex data as easy as possible. (A.2) (B.2) HOW COLORS SHOULD BE natural & simpel: no highly-saturated colors; manageable number of colors (A.3) (B.3) guiding: help the reader to gather the information; guide to most important parts supportive: lead the reader; reproduce well-known patterns (e.g. water is blue) appealing & relaxing: if not: reader can get lost, very strenuous for the eye customized: who has to interpret the image? regarding visual constraints? Figure 3: A severe weather alert map (high amounts of precipitation) for Austria, 31th of Mai 2013. Label (A) for the work everywhere: screen, projector, color- and gray-scale printers original colors, label (B) for the modified HCL version. From 1 to 3: colorized version; desaturated version; simulated version for people with Deuteranopia (red-green blindness). Source: www.uwz.ch, UBIMET GmbH. The second example shows an alert map for Austria.
    [Show full text]
  • Choosing Color Palettes for Statistical Graphics
    ePubWU Institutional Repository Achim Zeileis and Kurt Hornik Choosing Color Palettes for Statistical Graphics Paper Original Citation: Zeileis, Achim and Hornik, Kurt ORCID: https://orcid.org/0000-0003-4198-9911 (2006) Choosing Color Palettes for Statistical Graphics. Research Report Series / Department of Statistics and Mathematics, 41. Department of Statistics and Mathematics, WU Vienna University of Economics and Business, Vienna. This version is available at: https://epub.wu.ac.at/1404/ Available in ePubWU: October 2006 ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU. http://epub.wu.ac.at/ Choosing Color Palettes for Statistical Graphics Achim Zeileis, Kurt Hornik Department of Statistics and Mathematics Wirtschaftsuniversität Wien Research Report Series Report 41 October 2006 http://statmath.wu-wien.ac.at/ Choosing Color Palettes for Statistical Graphics Achim Zeileis and Kurt Hornik Wirtschaftsuniversit¨at Wien, Austria Abstract Statistical graphics are often augmented by the use of color coding information contained in some variable. When this involves the shading of areas (and not only points or lines)— e.g., as in bar plots, pie charts, mosaic displays or heatmaps—it is important that the colors are perceptually based and do not introduce optical illusions or systematic bias. Here, we discuss how the perceptually-based Hue-Chroma-Luminance (HCL) color space can be used for deriving suitable color palettes for coding categorical data (qualitative palettes) and numerical variables (sequential and diverging palettes). Keywords: qualitative palette, sequential palette, diverging palette, HCL colors, HSV colors, perceptually-based color space.
    [Show full text]
  • Book IX Composition
    D DD DD Composition DDDDon.com DDDD Basic Photography in 180 Days Book IX - Composition Editor: Ramon F. aeroramon.com Contents 1 Day 1 1 1.1 Composition (visual arts) ....................................... 1 1.1.1 Elements of design ...................................... 1 1.1.2 Principles of organization ................................... 3 1.1.3 Compositional techniques ................................... 4 1.1.4 Example ............................................ 8 1.1.5 See also ............................................ 9 1.1.6 References .......................................... 9 1.1.7 Further reading ........................................ 9 1.1.8 External links ......................................... 9 1.2 Elements of art ............................................ 9 1.2.1 Form ............................................. 10 1.2.2 Line ............................................. 10 1.2.3 Color ............................................. 10 1.2.4 Space ............................................. 10 1.2.5 Texture ............................................ 10 1.2.6 See also ............................................ 10 1.2.7 References .......................................... 10 1.2.8 External links ......................................... 11 2 Day 2 12 2.1 Visual design elements and principles ................................. 12 2.1.1 Design elements ........................................ 12 2.1.2 Principles of design ...................................... 15 2.1.3 See also ...........................................
    [Show full text]