Color Spaces YCH and Ysch for Color Specification and Image Processing in Multi-Core Computing and Mobile Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
American Meteorological Society Early Online
AMERICAN METEOROLOGICAL SOCIETY Bulletin of the American Meteorological Society EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/BAMS-D-13-00155.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. © 2014 American Meteorological Society Generated using version 3.2 of the official AMS LATEX template 1 Somewhere over the rainbow: How to make effective use of colors 2 in meteorological visualizations ∗ 3 Reto Stauffer, Georg J. Mayr and Markus Dabernig Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 4 Achim Zeileis Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria ∗Reto Stauffer, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, A{6020 Innsbruck E-mail: reto.stauff[email protected] 1 5 CAPSULE 6 Effective visualizations have a wide scope of challenges. The paper offers guidelines, a 7 perception-based color space alternative to the famous RGB color space and several tools to 8 more effectively convey graphical information to viewers. 9 ABSTRACT 10 Results of many atmospheric science applications are processed graphically. -
Tracking and Automation of Images by Colour Based
Vol 11, Issue 8,August/ 2020 ISSN NO: 0377-9254 TRACKING AND AUTOMATION OF IMAGES BY COLOUR BASED PROCESSING N Alekhya 1, K Venkanna Naidu 2 and M.SunilKumar 3 1PG student, D.N.R College of Engineering, ECE, JNTUK, INDIA 2 Associate Professor D.N.R College of Engineering, ECE, JNTUK, INDIA 3Assistant Professor Sir CRR College of Engineering , EEE, JNTUK, INDIA [email protected], [email protected] ,[email protected] Abstract— Now a day all application sectors are mostly image analysis involves maneuver the moving for the automation processing and image data to conclude exactly the information sensing . for example image processing in compulsory to help to answer a computer imaging medical field ,in industrial process lines , object problem. detection and Ranging application, satellite Digital image processing methods stems from two imaging Processing ,Military imaging etc, In principal application areas: improvement of each and every application area the raw images pictorial information for human interpretation, and are to be captured and to be processed for processing of image data for tasks such as storage, human visual inspection or digital image transmission, and extraction of pictorial processing systems. Automation applications In information this proposed system the video is converted into The remaining paper is structured as follows. frames and then it is get divided into sub bands Section 2 deals with the existing method of Image and then background is get subtracted, then the Processing. Section 3 deals with the proposed object is get identified and then it is tracked in method of Image Processing. Section 4 deals the the framed from the video .This work presents a results and discussions. -
Color Space Conversion
L Technical Color Space Information Conversion The role of color space conversion in the process of scanning and reproduc- ing a color image begins the moment an image is captured by a scanner and continues through the point at which it is output on film. For the purpose of this article we will discuss conversions between three types of color systems: RGB, CIE, and CMYK. The RGB (Red, Green, & Blue) and CMYK (Cyan, Magenta, Yellow, & Black) color models have been described in greater detail in the Linotype-Hell Technical information piece entitled Color in Printing. For some background information on the CIE (Commission Internationale de l’Eclairage), please refer to Color Spaces and PostScript Level 2. CIE as a reference color space Most scanners acquire color in the form of RGB data. The majority of non- photographic printing methods employ CMYK inks or toners. In a closed sys- tem, where the characteristics of both the scanner and the printing method are well-defined, conversions may be made from RGB to CMYK through tables that maintain a reasonable level of color consistency. The process becomes somewhat more difficult as you add monitors, other scanners, proofing devices or printing processes that have different characteristics. It becomes critical to have a consistent yardstick, if you will, a means of con- verting between different color systems (and back again) without a loss in color fidelity. This is what CIE provides. Let’s start with some background on CIE, and then we will look at how it can be applied in an open system. Measuring color Light reflected off of, or transmitted through a colored object can be mea- sured by the wavelengths of light that are reflected or transmitted. -
Package 'Colorspace'
Package ‘colorspace’ February 15, 2013 Version 1.2-1 Date 2013-01-24 Title Color Space Manipulation Description Carries out mapping between assorted color spaces including RGB, HSV, HLS, CIEXYZ, CIELUV, HCL (polar CIELUV),CIELAB and po- lar CIELAB. Qualitative, sequential, and diverging color palettes based on HCL colors are provided. Depends R (>= 2.10.0), methods Suggests KernSmooth, MASS, kernlab, mvtnorm, vcd, tcltk, dichromat License BSD LazyData yes Author Ross Ihaka [aut], Paul Murrell [aut], Kurt Hornik [aut], Jason C. Fisher [aut], Achim Zeileis [aut, cre] Maintainer Achim Zeileis <[email protected]> Repository CRAN Date/Publication 2013-01-24 14:59:08 NeedsCompilation yes R topics documented: choose_palette . .2 color-class . .3 coords . .4 desaturate . .5 hex..............................................6 hex2RGB . .7 HLS.............................................8 1 2 choose_palette HSV.............................................9 LAB............................................. 10 LUV............................................. 11 mixcolor . 12 polarLAB . 13 polarLUV . 14 rainbow_hcl . 15 readhex . 18 readRGB . 19 RGB............................................. 20 sRGB ............................................ 21 USSouthPolygon . 22 writehex . 22 XYZ............................................. 23 Index 25 choose_palette Graphical User Interface for Choosing HCL Color Palettes Description A graphical user interface (GUI) for viewing, manipulating, and choosing HCL color palettes. Usage choose_palette(pal -
Verfahren Zur Farbanpassung F ¨Ur Electronic Publishing-Systeme
Verfahren zur Farbanpassung f ¨ur Electronic Publishing-Systeme Von dem Fachbereich Elektrotechnik und Informationstechnik der Universit¨atHannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Wolfgang W¨olker geb. am 7. Juli 1957, in Herford 1999 Referent: Prof. Dr.-Ing. C.-E. Liedtke Korreferent: Prof. Dr.-Ing. K. Jobmann Tag der Promotion: 18.01.1999 Kurzfassung Zuk ¨unftigePublikationssysteme ben¨otigenleistungsstarke Verfahren zur Farb- bildbearbeitung, um den hohen Durchsatz insbesondere der elektronischen Me- dien bew¨altigenzu k¨onnen. Dieser Beitrag beschreibt ein System f ¨urdie automatisierte Farbmanipulation von Einzelbildern. Die derzeit vorwiegend manuell ausgef ¨uhrtenAktionen wer- den durch hochsprachliche Vorgaben ersetzt, die vom System interpretiert und ausgef ¨uhrtwerden. Basierend auf einem hier vorgeschlagenen Grundwortschatz zur Farbmanipulation sind Modifikationen und Erweiterungen des Wortschat- zes durch neue abstrakte Begriffe m¨oglich.Die Kombination mehrerer bekannter Begriffe zu einem neuen abstrakten Begriff f ¨uhrtdabei zu funktionserweitern- den, komplexen Aktionen. Dar ¨uberhinaus pr¨agendiese Erg¨anzungenden in- dividuellen Wortschatz des jeweiligen Anwenders. Durch die hochsprachliche Schnittstelle findet eine Entkopplung der Benutzervorgaben von der technischen Umsetzung statt. Die farbverarbeitenden Methoden lassen sich so im Hinblick auf die verwendeten Farbmodelle optimieren. Statt der bisher ¨ublichenmedien- und ger¨atetechnischbedingten Farbmodelle kann nun z.B. das visuell adaptierte CIE(1976)-L*a*b*-Modell genutzt werden. Die damit m¨oglichenfarbverarbeiten- den Methoden erlauben umfangreiche und wirksame Eingriffe in die Farbdar- stellung des Bildes. Zielsetzung des Verfahrens ist es, unter Verwendung der vorgeschlagenen Be- nutzerschnittstelle, die teilweise wenig anschauliche Parametrisierung bestimm- ter Farbmodelle, durch einen hochsprachlichen Zugang zu ersetzen, der den An- wender bei der Farbbearbeitung unterst ¨utztund den Experten entlastet. -
ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the -
Measuring Perceived Color Difference Using YIQ NTSC Transmission Color Space in Mobile Applications
Programación Matemática y Software (2010) Vol.2. Num. 2. Dirección de Reservas de Derecho: 04-2009-011611475800-102 Measuring perceived color difference using YIQ NTSC transmission color space in mobile applications Yuriy Kotsarenko, Fernando Ramos TECNOLÓGICO DE DE MONTERREY, CAMPUS CUERNAVACA. Resumen. En este trabajo varias formulas están introducidas que permiten calcular la medir la diferencia entre colores de forma perceptible, utilizando el espacio de colores YIQ. Las formulas clásicas y sus derivados que utilizan los espacios CIELAB y CIELUV requieren muchas transformaciones aritméticas de valores entrantes definidos comúnmente con los componentes de rojo, verde y azul, y por lo tanto son muy pesadas para su implementación en dispositivos móviles. Las formulas alternativas propuestas en este trabajo basadas en espacio de colores YIQ son sencillas y se calculan rápidamente, incluso en tiempo real. La comparación está incluida en este trabajo entre las formulas clásicas y las propuestas utilizando dos diferentes grupos de experimentos. El primer grupo de experimentos se enfoca en evaluar la diferencia perceptible utilizando diferentes formulas, mientras el segundo grupo de experimentos permite determinar el desempeño de cada una de las formulas para determinar su velocidad cuando se procesan imágenes. Los resultados experimentales indican que las formulas propuestas en este trabajo son muy cercanas en términos perceptibles a las de CIELAB y CIELUV, pero son significativamente más rápidas, lo que los hace buenos candidatos para la medición de las diferencias de colores en dispositivos móviles y aplicaciones en tiempo real. Abstract. An alternative color difference formulas are presented for measuring the perceived difference between two color samples defined in YIQ color space. -
Fiery Color Reference C9800 OKI Americas Inc
2Copyright Copyright ES3640e MFP Color Reference Guide P/N 59377001, Revision 1.0 June, 2005 Every effort has been made to ensure that the information in this document is complete, accurate, and up-to-date. Oki assumes no responsibility for the results of errors beyond its control. Oki also cannot guarantee that changes in software and equipment made by other manufacturers and referred to in this guide will not affect the applicability of the information in it. Mention of software products manufactured by other companies does not necessarily constitute endorsement by Oki. While all reasonable efforts have been made to make this document as accurate and helpful as possible, we make no warranty of any kind, expressed or implied, as to the accuracy or completeness of the information contained herein. The most up-to-date drivers and manuals are available from the Oki web site: http://my.okidata.com Copyright © 2005 Oki Data Americas, Inc. and Electronics for Imaging, Inc. All rights reserved. This publication is protected by copyright, and all rights are reserved. No part of it may be reproduced or transmitted in any form or by any means for any purpose without express prior written consent from Electronics for Imaging, Inc. Information in this document is subject to change without notice and does not represent a commitment on the part of Electronics for Imaging, Inc. This publication is provided in conjunction with an EFI product (the “Product”) which contains EFI software (the “Software”). The Software is furnished under license and may only be used or copied in accordance with the terms of the Software license set forth below. -
Color-Proposal.Pdf
Colors in Snap! -bh proposal, draft, do not distribute Your computer monitor can display millions of colors, but you probably can’t distinguish that many. For example, here’s red 57, green 180, blue 200: And here’s red 57, green 182, blue 200: You might be able to tell them apart if you see them side by side: … but maybe not even then. Color space—the collection of all possible colors—is three-dimensional, but there are many ways to choose the dimensions. RGB (red-green-blue), the one most commonly used, matches the way TVs and displays produce color. Behind every dot on the screen are three tiny lights: a red one, a green one, and a blue one. But if you want to print colors on paper, your printer probably uses a different set of three colors: CMY (cyan-magenta-yellow). You may have seen the abbreviation CMYK, which represents the common technique of adding black ink to the collection. (Mixing cyan, magenta, and yellow in equal amounts is supposed to result in black ink, but typically it comes out a not-very-intense gray instead.) Other systems that try to mimic human perception are HSL (hue-saturation-lightness) and HSV (hue-saturation-value). If you are a color professional—a printer, a web designer, a graphic designer, an artist—then you need to understand all this. It can also be interesting to learn about. For example, there are colors that you can see but your computer display can’t generate. If that intrigues you, look up color theory in Wikipedia. -
Color Control of LED Luminaires by Robert Bell
Color control of LED luminaires BY ROBERT BELL Why it is not as easy as you might think. Another description is by hue, saturation, not create every color your eye can see. Below A bit about additive and luminance, HSL. (Some say “intensity” is a hypothetical locus of an RGB system color mixing or “lightness” instead of “luminance.”) rendered on the entire visible light spectrum. WITH RECENT MASS ACCEPTANCE Equally valid is hue, saturation, and value, of solid-state LED lighting, it’s time HSV. Value is sometimes referred to as for an explanation of this technology’s brightness and is similar to luminance. complexities and ways in which it can be However, saturation in HSL and HSV differ tamed. LED luminaires use the output of dramatically. For simplicity, I define hue multiple sources to achieve different colors as color and saturation as the amount of and intensities. Additive color mixing is color. I also try to remember if “L” is set to nothing new to our industry. We’ve done 100%, that is white, 0% is black, and 50% it for years on cycloramas with gelled is pure color when saturation is 100%. As luminaires hitting the same surface, but for “V”, 0% is black and 100% is pure color, control can be tricky. The first intelligent and the saturation value has to make up the luminaire I used was a spotlight that had difference. That over simplifies it, but let’s three MR16 lamps, fitted with red, green, carry on, as we’re not done yet. and blue filters. -
PRECISE COLOR COMMUNICATION COLOR CONTROL from PERCEPTION to INSTRUMENTATION Knowing Color
PRECISE COLOR COMMUNICATION COLOR CONTROL FROM PERCEPTION TO INSTRUMENTATION Knowing color. Knowing by color. In any environment, color attracts attention. An infinite number of colors surround us in our everyday lives. We all take color pretty much for granted, but it has a wide range of roles in our daily lives: not only does it influence our tastes in food and other purchases, the color of a person’s face can also tell us about that person’s health. Even though colors affect us so much and their importance continues to grow, our knowledge of color and its control is often insufficient, leading to a variety of problems in deciding product color or in business transactions involving color. Since judgement is often performed according to a person’s impression or experience, it is impossible for everyone to visually control color accurately using common, uniform standards. Is there a way in which we can express a given color* accurately, describe that color to another person, and have that person correctly reproduce the color we perceive? How can color communication between all fields of industry and study be performed smoothly? Clearly, we need more information and knowledge about color. *In this booklet, color will be used as referring to the color of an object. Contents PART I Why does an apple look red? ········································································································4 Human beings can perceive specific wavelengths as colors. ························································6 What color is this apple ? ··············································································································8 Two red balls. How would you describe the differences between their colors to someone? ·······0 Hue. Lightness. Saturation. The world of color is a mixture of these three attributes. -
Color Image Segmentation Using Perceptual Spaces Through Applets for Determining and Preventing Diseases in Chili Peppers
African Journal of Biotechnology Vol. 12(7), pp. 679-688, 13 February, 2013 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1198 ISSN 1684–5315 ©2013 Academic Journals Full Length Research Paper Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers J. L. González-Pérez1 , M. C. Espino-Gudiño2, J. Gudiño-Bazaldúa3, J. L. Rojas-Rentería4, V. Rodríguez-Hernández5 and V.M. Castaño6 1Computer and Biotechnology Applications, Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 2Faculty of Psychology, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 3Faculty of Languages Letters, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 4New Information and Communication Technologies, Faculty of Engineering, Department of Intelligent Buildings, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 5New Information and Communication Technologies, Faculty of Computer Science, Autonomous University of Queretaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Qro., México. 6Center for Applied Physics and Advanced Technology, National Autonomous University of Mexico. Accepted 5 December, 2012 Plant pathogens cause disease in plants. Chili peppers are one of the most important crops in the world. There are currently disease detection techniques classified as: biochemical, microscopy, immunology, nucleic acid hybridization, identification by visual inspection in vitro or in situ but these have the following disadvantages: they require several days, their implementation is costly and highly trained.