Fiery Color Reference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Models
Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates. -
Chapter 6 : Color Image Processing
Chapter 6 : Color Image Processing CCU, Taiwan Wen-Nung Lie Color Fundamentals Spectrum that covers visible colors : 400 ~ 700 nm Three basic quantities Radiance : energy that flows from the light source (measured in Watts) Luminance : a measure of energy an observer perceives from a light source (in lumens) Brightness : a subjective descriptor difficult to measure CCU, Taiwan Wen-Nung Lie 6-1 About human eyes Primary colors for standardization blue : 435.8 nm, green : 546.1 nm, red : 700 nm Not all visible colors can be produced by mixing these three primaries in various intensity proportions Cones in human eyes are divided into three sensing categories 65% are sensitive to red light, 33% sensitive to green light, 2% sensitive to blue (but most sensitive) The R, G, and B colors perceived by CCU, Taiwan human eyes cover a range of spectrum Wen-Nung Lie 6-2 Primary and secondary colors of light and pigments Secondary colors of light magenta (R+B), cyan (G+B), yellow (R+G) R+G+B=white Primary colors of pigments magenta, cyan, and yellow M+C+Y=black CCU, Taiwan Wen-Nung Lie 6-3 Chromaticity Hue + saturation = chromaticity hue : an attribute associated with the dominant wavelength or dominant colors perceived by an observer saturation : relative purity or the amount of white light mixed with a hue (the degree of saturation is inversely proportional to the amount of added white light) Color = brightness + chromaticity Tristimulus values (the amount of R, G, and B needed to form any particular color : X, Y, Z trichromatic -
In Concert with Teaching Strategies That Have a Solid Theoretical Basis
1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in “Teaching and Learning Technology”. In Section 1 of this course you will cover these topics: Learning And Instruction Computer Applications In Education The Impact Of The Computer On Education Topic : Learning And Instruction Topic Objective: At the end of this topic student would be able to understand: Computer's Role In Instruction Instructional Technology Early Applications The Internet Era Outcomes Research Social Context Gagne's Nine Events of Instruction Definition/Overview: The first topic establishes a framework for looking at the computer's role in instruction and examines its role in student learning. A brief review of behaviorist and constructivist theories of instruction and learning is presented. The intent is to demonstrate that the computer can be a practical tool usedWWW.BSSVE.IN in concert with teaching strategies that have a solid theoretical basis. We recognize that thinking patterns and learning styles vary and that many different cognitive processes and intelligences should be valued. This topic presents a brief overview of types of intelligences, perception and motivation in order to emphasize the importance of analyzing student populations and matching instructional materials to student needs. Recognizing the important role that software plays in instruction and learning, a good deal of discussion takes place on the selection and evaluation of effective software. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Key Points: 1.Computer's Role in Instruction American education has long incorporated technology in K-12 classrooms tape recorders, televisions, calculators, computers, and many others. -
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position. -
Cielab Color Space
Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces. -
A Method of Content-Based Image Retrieval for the Generation of Image Mosaics
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics Michael Snead University of Central Florida Part of the Computer Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Snead, Michael, "A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics" (2007). Electronic Theses and Dissertations, 2004-2019. 3358. https://stars.library.ucf.edu/etd/3358 A METHOD OF CONTENT-BASED IMAGE RETRIEVAL FOR THE GENERATION OF IMAGE MOSAICS by MICHAEL CHRISTOPHER SNEAD B.S. University of Central Florida, 2005 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Electrical Engineering and Computer Science in the College of Engineering & Computer Science at the University of Central Florida Orlando, Florida Spring Term 2007 © 2007 Michael Christopher Snead ii ABSTRACT An image mosaic is an artistic work that uses a number of smaller images creatively combined together to form another larger image. Each building block image, or tessera, has its own distinctive and meaningful content, but when viewed from a distance the tesserae come together to form an aesthetically pleasing montage. This work presents the design and implementation of MosaiX, a computer software system that generates these image mosaics automatically. -
First Semester
NATIONAL UNIVERSITY F o u r t h Y e a r S y l l a b u s D e p a r t m e n t of Computer Science and Engineering Four Year B.Sc. Honours Course Effective from the Session: 2017–2018 National University Subject: Computer Science and Engineering Syllabus for Four Year B.Sc. Honours Course Effective from the Session: 2017-2018 Year wise courses and marks distribution FOURTH YEAR Semester VII Course Code Course Title Credit Hours 540201 Artificial Intelligence 3.0 540202 Artificial Intelligence Lab 1.5 540203 Compiler Design and Construction 3.0 540204 Compiler Design Lab 1.5 540205 Computer Graphics 3.0 540206 Computer Graphics Lab 1.5 540207 E-Commerce and Web Engineering 3.0 540208 E-Commerce and Web Engineering Lab 1.5 Total Credits in 7th Semester 18.0 Semester VIII Course Code Course Title Credit Hours Major Theory Courses 540209 Network and Information Security 3.0 540210 Network and Information Security Lab 1.5 540211 Information System Management 3.0 Project/Industry Attachment 540240 Project/Industry Attachment 6.0 Optional Course (any one) 3.0 540212 Simulation and Modeling 540214 Parallel and Distributed Systems 540216 Digital Signal Processing 540218 Digital Image Processing 540220 Multimedia 540222 Pattern Recognition 540224 Design and Analysis of VLSI Systems 540226 Micro-controller and Embedded System 540228 Cyber Law and Computer Forensic 540230 Natural Language Processing 540232 System Analysis and Design 540234 Optical Fiber Communication 540236 Human Computer Interaction 540238 Graph Theory Page 2 of 18 Optional Course -
Tracking and Automation of Images by Colour Based
Vol 11, Issue 8,August/ 2020 ISSN NO: 0377-9254 TRACKING AND AUTOMATION OF IMAGES BY COLOUR BASED PROCESSING N Alekhya 1, K Venkanna Naidu 2 and M.SunilKumar 3 1PG student, D.N.R College of Engineering, ECE, JNTUK, INDIA 2 Associate Professor D.N.R College of Engineering, ECE, JNTUK, INDIA 3Assistant Professor Sir CRR College of Engineering , EEE, JNTUK, INDIA [email protected], [email protected] ,[email protected] Abstract— Now a day all application sectors are mostly image analysis involves maneuver the moving for the automation processing and image data to conclude exactly the information sensing . for example image processing in compulsory to help to answer a computer imaging medical field ,in industrial process lines , object problem. detection and Ranging application, satellite Digital image processing methods stems from two imaging Processing ,Military imaging etc, In principal application areas: improvement of each and every application area the raw images pictorial information for human interpretation, and are to be captured and to be processed for processing of image data for tasks such as storage, human visual inspection or digital image transmission, and extraction of pictorial processing systems. Automation applications In information this proposed system the video is converted into The remaining paper is structured as follows. frames and then it is get divided into sub bands Section 2 deals with the existing method of Image and then background is get subtracted, then the Processing. Section 3 deals with the proposed object is get identified and then it is tracked in method of Image Processing. Section 4 deals the the framed from the video .This work presents a results and discussions. -
Working with Colors
Working With Colors INK: The physical form of color; Ink is how color is applied to paper There are two different types of inks: • TRANSPARENT INKS are commonly used in printing • OPAQUE INKS are considered a specialty ink and generally cost more COLOR: in printing, there are two types of color modes: • SPOT COLOR; aka: Match color, PMS color, Solid color • 4-COLOR PRocESS; aka: Process, CMYK Working With Colors With Working SPot COLOR • A pre-mixed color; a color mixed prior to the printing press PMS : PANtoNE MAtcHING SYSTEM • Color system that has several color libraries for reference in reproducing color • Popular PMS color libraries: • Spot color Formula guide (coated, uncoated, and matte versions) solid color guide that identifies specific colors • 4-Color Process Guide (coated and uncoated versions) identifies colors using CMYK inks • Color Bridge (coated and uncoated versions) using the colors from the spot color Formula guide this book shows the difference Working With Colors With Working between a spot color and the same color when converted to CMYK • Metallic Inks • Pastels • Tints • www.pantone.com COATED: Paper stock that has been treated with a special coating in order to have a glossy appearance. • Ink sits on this type of paper stock as a result of the glossy coating • Colors appear to be brighter compared to uncoated paper Matte: coated paper stock that has been dulled UNcoATED : Paper stock that has not been treated; it has no coating. • Ink is absorbed into this type of paper stock • Ink color appears darker and duller Working With Colors With Working BENEFit OF USING SPot coLOR: • consistent color within a print job. -
Chapter 2 Fundamentals of Digital Imaging
Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation © 2016 Pearson Education, Inc., Hoboken, 1 NJ. All rights reserved. In this lecture, you will find answers to these questions • What is RGB color model and how does it represent colors? • What is CMY color model and how does it represent colors? • What is HSB color model and how does it represent colors? • What is color gamut? What does out-of-gamut mean? • Why can't the colors on a printout match exactly what you see on screen? © 2016 Pearson Education, Inc., Hoboken, 2 NJ. All rights reserved. Color Models • Used to describe colors numerically, usually in terms of varying amounts of primary colors. • Common color models: – RGB – CMYK – HSB – CIE and their variants. © 2016 Pearson Education, Inc., Hoboken, 3 NJ. All rights reserved. RGB Color Model • Primary colors: – red – green – blue • Additive Color System © 2016 Pearson Education, Inc., Hoboken, 4 NJ. All rights reserved. Additive Color System © 2016 Pearson Education, Inc., Hoboken, 5 NJ. All rights reserved. Additive Color System of RGB • Full intensities of red + green + blue = white • Full intensities of red + green = yellow • Full intensities of green + blue = cyan • Full intensities of red + blue = magenta • Zero intensities of red , green , and blue = black • Same intensities of red , green , and blue = some kind of gray © 2016 Pearson Education, Inc., Hoboken, 6 NJ. All rights reserved. Color Display From a standard CRT monitor screen © 2016 Pearson Education, Inc., Hoboken, 7 NJ. All rights reserved. Color Display From a SONY Trinitron monitor screen © 2016 Pearson Education, Inc., Hoboken, 8 NJ. -
Computational RYB Color Model and Its Applications
IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig. -
Psychovisual Evaluation of the Effect of Color Spaces and Color Quantification in Jpeg2000 Image Compression
PSYCHOVISUAL EVALUATION OF THE EFFECT OF COLOR SPACES AND COLOR QUANTIFICATION IN JPEG2000 IMAGE COMPRESSION Mohamed-Chaker Larabi, Christine Fernandez-Maloigne and Noel¨ Richard IRCOM-SIC Laboratory, University of Poitiers BP 30170 - 86962 Futuroscope cedex FRANCE Email : [email protected] ABSTRACT 4]. Figure 1 shows the fundamental building blocks of a typical JPEG2000 is an emerging standard for still image compres- JPEG2000 encoder as described by Rabbani[4]. sion. It is not only intended to provide rate-distortion and subjective image quality performance superior to existing standards, but also to provide features and additional func- tionalities that current standards can not address sufficiently such as lossless and lossy compression, progressive trans- mission by pixel accuracy and by resolution, etc. Currently the JPEG2000 standard is set up for use with the sRGB three-component color space.the aim of this research is to Fig. 1. JPEG2000 fundamental building blocks. determine thanks to psychovisual experiences whether or Color management in JPEG2000 was an important topic in not the color space selected will significantly improve the the development of the standard and the issue of present- image compression. The RGB, XYZ, CIELAB, CIELUV, ing color properly is becoming more and more important as YIQ, YCrCb and YUV color spaces were examined and com- systems get better and as a wider range of systems are doing pared. In addition, we started a psychovisual evaluation similar things. In the past, color has been targeted as an area on the effect of color quantification on JPEG2000 image of least concern with the overall presentation.