Image Processing Based Automatic Color Inspection and Detection of Colored Wires in Electric Cables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Models
Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates. -
Chapter 6 : Color Image Processing
Chapter 6 : Color Image Processing CCU, Taiwan Wen-Nung Lie Color Fundamentals Spectrum that covers visible colors : 400 ~ 700 nm Three basic quantities Radiance : energy that flows from the light source (measured in Watts) Luminance : a measure of energy an observer perceives from a light source (in lumens) Brightness : a subjective descriptor difficult to measure CCU, Taiwan Wen-Nung Lie 6-1 About human eyes Primary colors for standardization blue : 435.8 nm, green : 546.1 nm, red : 700 nm Not all visible colors can be produced by mixing these three primaries in various intensity proportions Cones in human eyes are divided into three sensing categories 65% are sensitive to red light, 33% sensitive to green light, 2% sensitive to blue (but most sensitive) The R, G, and B colors perceived by CCU, Taiwan human eyes cover a range of spectrum Wen-Nung Lie 6-2 Primary and secondary colors of light and pigments Secondary colors of light magenta (R+B), cyan (G+B), yellow (R+G) R+G+B=white Primary colors of pigments magenta, cyan, and yellow M+C+Y=black CCU, Taiwan Wen-Nung Lie 6-3 Chromaticity Hue + saturation = chromaticity hue : an attribute associated with the dominant wavelength or dominant colors perceived by an observer saturation : relative purity or the amount of white light mixed with a hue (the degree of saturation is inversely proportional to the amount of added white light) Color = brightness + chromaticity Tristimulus values (the amount of R, G, and B needed to form any particular color : X, Y, Z trichromatic -
Psychophysical Determination of the Relevant Colours That Describe the Colour Palette of Paintings
Journal of Imaging Article Psychophysical Determination of the Relevant Colours That Describe the Colour Palette of Paintings Juan Luis Nieves * , Juan Ojeda, Luis Gómez-Robledo and Javier Romero Department of Optics, Faculty of Science, University of Granada, 18071 Granada, Spain; [email protected] (J.O.); [email protected] (L.G.-R.); [email protected] (J.R.) * Correspondence: [email protected] Abstract: In an early study, the so-called “relevant colour” in a painting was heuristically introduced as a term to describe the number of colours that would stand out for an observer when just glancing at a painting. The purpose of this study is to analyse how observers determine the relevant colours by describing observers’ subjective impressions of the most representative colours in paintings and to provide a psychophysical backing for a related computational model we proposed in a previous work. This subjective impression is elicited by an efficient and optimal processing of the most representative colour instances in painting images. Our results suggest an average number of 21 subjective colours. This number is in close agreement with the computational number of relevant colours previously obtained and allows a reliable segmentation of colour images using a small number of colours without introducing any colour categorization. In addition, our results are in good agreement with the directions of colour preferences derived from an independent component analysis. We show Citation: Nieves, J.L.; Ojeda, J.; that independent component analysis of the painting images yields directions of colour preference Gómez-Robledo, L.; Romero, J. aligned with the relevant colours of these images. Following on from this analysis, the results suggest Psychophysical Determination of the that hue colour components are efficiently distributed throughout a discrete number of directions Relevant Colours That Describe the and could be relevant instances to a priori describe the most representative colours that make up the Colour Palette of Paintings. -
Chapter 2 Fundamentals of Digital Imaging
Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation © 2016 Pearson Education, Inc., Hoboken, 1 NJ. All rights reserved. In this lecture, you will find answers to these questions • What is RGB color model and how does it represent colors? • What is CMY color model and how does it represent colors? • What is HSB color model and how does it represent colors? • What is color gamut? What does out-of-gamut mean? • Why can't the colors on a printout match exactly what you see on screen? © 2016 Pearson Education, Inc., Hoboken, 2 NJ. All rights reserved. Color Models • Used to describe colors numerically, usually in terms of varying amounts of primary colors. • Common color models: – RGB – CMYK – HSB – CIE and their variants. © 2016 Pearson Education, Inc., Hoboken, 3 NJ. All rights reserved. RGB Color Model • Primary colors: – red – green – blue • Additive Color System © 2016 Pearson Education, Inc., Hoboken, 4 NJ. All rights reserved. Additive Color System © 2016 Pearson Education, Inc., Hoboken, 5 NJ. All rights reserved. Additive Color System of RGB • Full intensities of red + green + blue = white • Full intensities of red + green = yellow • Full intensities of green + blue = cyan • Full intensities of red + blue = magenta • Zero intensities of red , green , and blue = black • Same intensities of red , green , and blue = some kind of gray © 2016 Pearson Education, Inc., Hoboken, 6 NJ. All rights reserved. Color Display From a standard CRT monitor screen © 2016 Pearson Education, Inc., Hoboken, 7 NJ. All rights reserved. Color Display From a SONY Trinitron monitor screen © 2016 Pearson Education, Inc., Hoboken, 8 NJ. -
Sensory and Instrument-Measured Ground Chicken Meat Color
Sensory and Instrument-Measured Ground Chicken Meat Color C. L. SANDUSKY1 and J. L. HEATH2 Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742 ABSTRACT Instrument values were compared to scores were compared using each of the backgrounds. sensory perception of ground breast and thigh meat The sensory panel did not detect differences in yellow- color. Different patty thicknesses (0.5, 1.5, and 2.0) and ness found by the instrument when samples on white background colors (white, pink, green, and gray), and pink backgrounds were compared to samples on previously found to cause differences in instrument- green and gray backgrounds. A majority of panelists (84 measured color, were used. Sensory descriptive analysis of 85) preferred samples on white or pink backgrounds. scores for lightness, hue, and chroma were compared to Red color of breast patties was associated with fresh- instrument-measured L* values, hue, and chroma. ness. Sensory ordinal rank scores for lightness, redness, and Reflective lighting was compared to transmission yellowness were compared to instrument-generated L*, lighting using patties of different thicknesses. Sensory a*, and b* values. Sensory descriptive analysis scores evaluation detected no differences in lightness due to and instrument values agreed in two of six comparisons breast patty thickness when reflective lighting was used. using breast and thigh patties. They agreed when thigh Increased thickness caused the patties to appear darker hue and chroma were measured. Sensory ordinal rank when transmission lighting was used. Decreased trans- scores were different from instrument color values in the mission lighting penetrating the sample made the patties ability to detect color changes caused by white, pink, appear more red. -
Computational RYB Color Model and Its Applications
IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig. -
A Thesis Presented to Faculty of Alfred University PHOTOCHROMISM in RARE-EARTH OXIDE GLASSES by Charles H. Bellows in Partial Fu
A Thesis Presented to Faculty of Alfred University PHOTOCHROMISM IN RARE-EARTH OXIDE GLASSES by Charles H. Bellows In Partial Fulfillment of the Requirements for The Alfred University Honors Program May 2016 Under the Supervision of: Chair: Alexis G. Clare, Ph.D. Committee Members: Danielle D. Gagne, Ph.D. Matthew M. Hall, Ph.D. SUMMARY The following thesis was performed, in part, to provide glass artists with a succinct listing of colors that may be achieved by lighting rare-earth oxide glasses in a variety of sources. While examined through scientific experimentation, the hope is that the information enclosed will allow artists new opportunities for creative experimentation. Introduction Oxides of transition and rare-earth metals can produce a multitude of colors in glass through a process called doping. When doping, the powdered oxides are mixed with premade pieces of glass called frit, or with glass-forming raw materials. When melted together, ions from the oxides insert themselves into the glass, imparting a variety of properties including color. The color is produced when the electrons within the ions move between energy levels, releasing energy. The amount of energy released equates to a specific wavelength, which in turn determines the color emitted. Because the arrangement of electron energy levels is different for rare-earth ions compared to transition metal ions, some interesting color effects can arise. Some glasses doped with rare-earth oxides fluoresce under a UV “black light”, while others can express photochromic properties. Photochromism, simply put, is the apparent color change of an object as a function of light; similar to transition sunglasses. -
The War and Fashion
F a s h i o n , S o c i e t y , a n d t h e First World War i ii Fashion, Society, and the First World War International Perspectives E d i t e d b y M a u d e B a s s - K r u e g e r , H a y l e y E d w a r d s - D u j a r d i n , a n d S o p h i e K u r k d j i a n iii BLOOMSBURY VISUAL ARTS Bloomsbury Publishing Plc 50 Bedford Square, London, WC1B 3DP, UK 1385 Broadway, New York, NY 10018, USA 29 Earlsfort Terrace, Dublin 2, Ireland BLOOMSBURY, BLOOMSBURY VISUAL ARTS and the Diana logo are trademarks of Bloomsbury Publishing Plc First published in Great Britain 2021 Selection, editorial matter, Introduction © Maude Bass-Krueger, Hayley Edwards-Dujardin, and Sophie Kurkdjian, 2021 Individual chapters © their Authors, 2021 Maude Bass-Krueger, Hayley Edwards-Dujardin, and Sophie Kurkdjian have asserted their right under the Copyright, Designs and Patents Act, 1988, to be identifi ed as Editors of this work. For legal purposes the Acknowledgments on p. xiii constitute an extension of this copyright page. Cover design by Adriana Brioso Cover image: Two women wearing a Poiret military coat, c.1915. Postcard from authors’ personal collection. This work is published subject to a Creative Commons Attribution Non-commercial No Derivatives Licence. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher Bloomsbury Publishing Plc does not have any control over, or responsibility for, any third- party websites referred to or in this book. -
Book of Abstracts of the International Colour Association (AIC) Conference 2020
NATURAL COLOURS - DIGITAL COLOURS Book of Abstracts of the International Colour Association (AIC) Conference 2020 Avignon, France 20, 26-28th november 2020 Sponsored by le Centre Français de la Couleur (CFC) Published by International Colour Association (AIC) This publication includes abstracts of the keynote, oral and poster papers presented in the International Colour Association (AIC) Conference 2020. The theme of the conference was Natural Colours - Digital Colours. The conference, organised by the Centre Français de la Couleur (CFC), was held in Avignon, France on 20, 26-28th November 2020. That conference, for the first time, was managed online and onsite due to the sanitary conditions provided by the COVID-19 pandemic. More information in: www.aic2020.org. © 2020 International Colour Association (AIC) International Colour Association Incorporated PO Box 764 Newtown NSW 2042 Australia www.aic-colour.org All rights reserved. DISCLAIMER Matters of copyright for all images and text associated with the papers within the Proceedings of the International Colour Association (AIC) 2020 and Book of Abstracts are the responsibility of the authors. The AIC does not accept responsibility for any liabilities arising from the publication of any of the submissions. COPYRIGHT Reproduction of this document or parts thereof by any means whatsoever is prohibited without the written permission of the International Colour Association (AIC). All copies of the individual articles remain the intellectual property of the individual authors and/or their -
Measuring the Color of a Paint on Canvas
Application Note Materials Measuring the Color of a Paint on Canvas Direct measurement with an UV-Vis external diffuse reflectance accessory Authors Introduction Paolo Teragni, Color measurement systems can translate the sensations, or visual appearances, Paolo Scardina, into numbers according to various geometrical coordinates and illumination Agilent Technologies, Inc. systems. The concept of “visual colorimetry” with a standard observer using a standard device as a method of color specification dates to around 1920. The first standardized color system was defined by CIE (Commission internationelle pour l’Eclairage) around 1931. One may regard the CIE system to be at the “heart” of all color measurement systems. However, for each painter, the use of colors is dictated by their personal inclination, cultural context and available materials. These are the reasons why sophisticated and portable instrumentation is needed to understand “the fine arts” and to find the best way for their conservation. Measurements of colored materials in paintings are often difficult due to their size, shape and location. It is not possible to separate one type of paint into its individual components. Therefore, the collection of reflectance spectra and color data from a small spot of paint is needed to understand and classify the different colored materials within and to be able to remake them as similar as possible to the original. The Agilent Cary 60 UV-Vis spectrophotometer with the Principal coordinates and illuminants of remote fiber optic diffuse reflectance accessory (Figure 1) provides fast and accurate diffuse reflectance measurements Color software on sample sizes around 2 mm in diameter. The Cary 60’s – Tristimulus highly focused beam makes it ideal for fiber optic work. -
Arxiv:1902.00267V1 [Cs.CV] 1 Feb 2019 Fcmue Iin Oto H Aaesue O Mg Classificat Image Th for in Used Applications Datasets Fundamental the Most of the Most Vision
ColorNet: Investigating the importance of color spaces for image classification⋆ Shreyank N Gowda1 and Chun Yuan2 1 Computer Science Department, Tsinghua University, Beijing 10084, China [email protected] 2 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China [email protected] Abstract. Image classification is a fundamental application in computer vision. Recently, deeper networks and highly connected networks have shown state of the art performance for image classification tasks. Most datasets these days consist of a finite number of color images. These color images are taken as input in the form of RGB images and clas- sification is done without modifying them. We explore the importance of color spaces and show that color spaces (essentially transformations of original RGB images) can significantly affect classification accuracy. Further, we show that certain classes of images are better represented in particular color spaces and for a dataset with a highly varying number of classes such as CIFAR and Imagenet, using a model that considers multi- ple color spaces within the same model gives excellent levels of accuracy. Also, we show that such a model, where the input is preprocessed into multiple color spaces simultaneously, needs far fewer parameters to ob- tain high accuracy for classification. For example, our model with 1.75M parameters significantly outperforms DenseNet 100-12 that has 12M pa- rameters and gives results comparable to Densenet-BC-190-40 that has 25.6M parameters for classification of four competitive image classifica- tion datasets namely: CIFAR-10, CIFAR-100, SVHN and Imagenet. Our model essentially takes an RGB image as input, simultaneously converts the image into 7 different color spaces and uses these as inputs to individ- ual densenets. -
Color Space Analysis for Iris Recognition
Graduate Theses, Dissertations, and Problem Reports 2007 Color space analysis for iris recognition Matthew K. Monaco West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Monaco, Matthew K., "Color space analysis for iris recognition" (2007). Graduate Theses, Dissertations, and Problem Reports. 1859. https://researchrepository.wvu.edu/etd/1859 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Color Space Analysis for Iris Recognition by Matthew K. Monaco Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial ful¯llment of the requirements for the degree of Master of Science in Electrical Engineering Arun A. Ross, Ph.D., Chair Lawrence Hornak, Ph.D. Xin Li, Ph.D. Lane Department of Computer Science and Electrical Engineering Morgantown, West Virginia 2007 Keywords: Iris, Iris Recognition, Multispectral, Iris Anatomy, Iris Feature Extraction, Iris Fusion, Score Level Fusion, Multimodal Biometrics, Color Space Analysis, Iris Enhancement, Iris Color Analysis, Color Iris Recognition Copyright 2007 Matthew K.