Book IX Composition

Total Page:16

File Type:pdf, Size:1020Kb

Book IX Composition D DD DD Composition DDDDon.com DDDD Basic Photography in 180 Days Book IX - Composition Editor: Ramon F. aeroramon.com Contents 1 Day 1 1 1.1 Composition (visual arts) ....................................... 1 1.1.1 Elements of design ...................................... 1 1.1.2 Principles of organization ................................... 3 1.1.3 Compositional techniques ................................... 4 1.1.4 Example ............................................ 8 1.1.5 See also ............................................ 9 1.1.6 References .......................................... 9 1.1.7 Further reading ........................................ 9 1.1.8 External links ......................................... 9 1.2 Elements of art ............................................ 9 1.2.1 Form ............................................. 10 1.2.2 Line ............................................. 10 1.2.3 Color ............................................. 10 1.2.4 Space ............................................. 10 1.2.5 Texture ............................................ 10 1.2.6 See also ............................................ 10 1.2.7 References .......................................... 10 1.2.8 External links ......................................... 11 2 Day 2 12 2.1 Visual design elements and principles ................................. 12 2.1.1 Design elements ........................................ 12 2.1.2 Principles of design ...................................... 15 2.1.3 See also ............................................ 18 2.1.4 Notes ............................................. 18 2.1.5 References .......................................... 18 2.1.6 External links ......................................... 18 3 Day 3 20 3.1 Shape ................................................. 20 3.1.1 Classification of simple shapes ................................ 20 3.1.2 Shape in geometry ...................................... 21 i ii CONTENTS 3.1.3 Shape analysis ........................................ 23 3.1.4 Similarity classes ....................................... 23 3.1.5 See also ............................................ 23 3.1.6 References .......................................... 24 3.1.7 External links ......................................... 24 4 Day 4 25 4.1 Color ................................................. 25 4.1.1 Physics of color ....................................... 27 4.1.2 Perception .......................................... 29 4.1.3 Associations ......................................... 33 4.1.4 Spectral colors and color reproduction ............................ 33 4.1.5 Additive coloring ....................................... 35 4.1.6 Subtractive coloring ..................................... 35 4.1.7 Structural color ........................................ 36 4.1.8 Mentions of color in social media .............................. 37 4.1.9 Additional terms ....................................... 37 4.1.10 See also ............................................ 37 4.1.11 References .......................................... 38 4.1.12 External links and sources .................................. 38 5 Day 5 39 5.1 Texture (visual arts) .......................................... 39 5.1.1 Three varieties of texture ................................... 39 5.1.2 Hypertexture ......................................... 40 5.1.3 Examples of physical texture ................................. 40 5.1.4 Examples of visual texture .................................. 41 5.1.5 See also ............................................ 42 5.1.6 Notes ............................................. 42 5.1.7 References .......................................... 42 6 Day 6 43 6.1 Lightness ............................................... 43 6.1.1 Relationship between lightness, value, and relative luminance ................ 43 6.1.2 Other psychological effects .................................. 44 6.1.3 See also ............................................ 45 6.1.4 References .......................................... 45 6.1.5 External links ......................................... 45 7 Day 7 48 7.1 Space ................................................. 48 7.1.1 Philosophy of space ...................................... 48 7.1.2 Mathematics ......................................... 56 CONTENTS iii 7.1.3 Physics ............................................ 56 7.1.4 Spatial measurement ..................................... 58 7.1.5 Geographical space ...................................... 58 7.1.6 In psychology ......................................... 59 7.1.7 See also ............................................ 59 7.1.8 References .......................................... 59 7.1.9 External links ......................................... 60 8 Day 8 61 8.1 Rule of thirds ............................................. 61 8.1.1 Use .............................................. 61 8.1.2 History ............................................ 61 8.1.3 See also ............................................ 64 8.1.4 References .......................................... 65 9 Day 9 66 9.1 Golden ratio .............................................. 66 9.1.1 Calculation .......................................... 67 9.1.2 History ............................................ 69 9.1.3 Applications and observations ................................. 71 9.1.4 Mathematics ......................................... 74 9.1.5 Pyramids ........................................... 80 9.1.6 Disputed observations ..................................... 81 9.1.7 See also ............................................ 81 9.1.8 References and footnotes ................................... 82 9.1.9 Further reading ........................................ 85 9.1.10 External links ......................................... 86 9.2 Rabatment of the rectangle ...................................... 101 9.2.1 Theory ............................................ 101 9.2.2 Practice ............................................ 101 9.2.3 Examples ........................................... 102 9.2.4 References .......................................... 102 9.2.5 External links ......................................... 103 9.3 Headroom (photographic framing) .................................. 103 9.3.1 Examples ........................................... 104 9.3.2 See also ............................................ 104 9.3.3 References .......................................... 104 9.3.4 Further reading ........................................ 105 10 Day 10 106 10.1 Perspective (graphical) ........................................ 106 10.1.1 Overview ........................................... 107 iv CONTENTS 10.1.2 Types of perspective ..................................... 113 10.1.3 Methods of construction ................................... 116 10.1.4 Example ........................................... 116 10.1.5 Limitations .......................................... 117 10.1.6 See also ............................................ 117 10.1.7 Notes ............................................. 118 10.1.8 References .......................................... 118 10.1.9 Further reading ........................................ 119 10.1.10 External links ......................................... 119 11 Text and image sources, contributors, and licenses 132 11.1 Text .................................................. 132 11.2 Images ................................................. 139 11.3 Content license ............................................ 145 Chapter 1 Day 1 1.1 Composition (visual arts) In the visual arts, composition is the placement or arrangement of visual elements or ingredients in a work of art, as distinct from the subject. It can also be thought of as the organization of the elements of art according to the principles of art. The composition of a picture is different from its subject, which what is shown, whether a moment from a story, a person or a place. Many subjects, for example Saint George and the Dragon, are often shown in art, but using a great range of compositions, even though the two figures are typically the only ones shown. The term composition means 'putting together' and can apply to any work of art, from music to writing to photography, that is arranged using conscious thought. In the visual arts, composition is often used interchangeably with various terms such as design, form, visual ordering, or formal structure, depending on the context. In graphic design for press and desktop publishing, composition is commonly referred to as page layout. 1.1.1 Elements of design Main article: Elements of art The various visual elements, known as elements of design, formal elements, or elements of art, are the vocabulary with which the visual artist composes. These elements in the overall design usually relate to each other and to the whole art work. The elements of design are: • Line — the visual path that enables the eye to move within the piece • Shape — areas defined by edges within the piece, whether geometric or organic • Colour — hues with their various values and intensities • Texture — surface qualities which translate into tactile illusions • Tone — Shading used to emphasize form • Form — 3-D length, width, or depth • Space — the space taken up by (positive) or in between (negative) objects • Depth — perceived distance from the observer, separated in foreground, background, and optionally middle ground 1 2 CHAPTER 1.
Recommended publications
  • From a GOLDEN RECTANGLE to GOLDEN QUADRILATERALS And
    An example of constructive defining: TechSpace From a GOLDEN TechSpace RECTANGLE to GOLDEN QUADRILATERALS and Beyond Part 1 MICHAEL DE VILLIERS here appears to be a persistent belief in mathematical textbooks and mathematics teaching that good practice (mostly; see footnote1) involves first Tproviding students with a concise definition of a concept before examples of the concept and its properties are further explored (mostly deductively, but sometimes experimentally as well). Typically, a definition is first provided as follows: Parallelogram: A parallelogram is a quadrilateral with half • turn symmetry. (Please see endnotes for some comments on this definition.) 1 n The number e = limn 1 + = 2.71828 ... • →∞ ( n) Function: A function f from a set A to a set B is a relation • from A to B that satisfies the following conditions: (1) for each element a in A, there is an element b in B such that <a, b> is in the relation; (2) if <a, b> and <a, c> are in the relation, then b = c. 1It is not being claimed here that all textbooks and teaching practices follow the approach outlined here as there are some school textbooks such as Serra (2008) that seriously attempt to actively involve students in defining and classifying triangles and quadrilaterals themselves. Also in most introductory calculus courses nowadays, for example, some graphical and numerical approaches are used before introducing a formal limit definition of differentiation as a tangent to the curve of a function or for determining its instantaneous rate of change at a particular point. Keywords: constructive defining; golden rectangle; golden rhombus; golden parallelogram 64 At Right Angles | Vol.
    [Show full text]
  • American Meteorological Society Early Online
    AMERICAN METEOROLOGICAL SOCIETY Bulletin of the American Meteorological Society EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/BAMS-D-13-00155.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. © 2014 American Meteorological Society Generated using version 3.2 of the official AMS LATEX template 1 Somewhere over the rainbow: How to make effective use of colors 2 in meteorological visualizations ∗ 3 Reto Stauffer, Georg J. Mayr and Markus Dabernig Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 4 Achim Zeileis Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria ∗Reto Stauffer, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, A{6020 Innsbruck E-mail: reto.stauff[email protected] 1 5 CAPSULE 6 Effective visualizations have a wide scope of challenges. The paper offers guidelines, a 7 perception-based color space alternative to the famous RGB color space and several tools to 8 more effectively convey graphical information to viewers. 9 ABSTRACT 10 Results of many atmospheric science applications are processed graphically.
    [Show full text]
  • Philosophy of Science -----Paulk
    PHILOSOPHY OF SCIENCE -----PAULK. FEYERABEND----- However, it has also a quite decisive role in building the new science and in defending new theories against their well-entrenched predecessors. For example, this philosophy plays a most important part in the arguments about the Copernican system, in the development of optics, and in the Philosophy ofScience: A Subject with construction of a new and non-Aristotelian dynamics. Almost every work of Galileo is a mixture of philosophical, mathematical, and physical prin~ a Great Past ciples which collaborate intimately without giving the impression of in­ coherence. This is the heroic time of the scientific philosophy. The new philosophy is not content just to mirror a science that develops independ­ ently of it; nor is it so distant as to deal just with alternative philosophies. It plays an essential role in building up the new science that was to replace 1. While it should be possible, in a free society, to introduce, to ex­ the earlier doctrines.1 pound, to make propaganda for any subject, however absurd and however 3. Now it is interesting to see how this active and critical philosophy is immoral, to publish books and articles, to give lectures on any topic, it gradually replaced by a more conservative creed, how the new creed gener­ must also be possible to examine what is being expounded by reference, ates technical problems of its own which are in no way related to specific not to the internal standards of the subject (which may be but the method scientific problems (Hurne), and how there arises a special subject that according to which a particular madness is being pursued), but to stan­ codifies science without acting back on it (Kant).
    [Show full text]
  • The Experimental Verdict on Spacetime from Gravity Probe B
    The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it). These effects have important implications for astrophysics, cosmol- ogy and the origin of inertia. Philosophically, they might also be viewed as tests of the propositions that spacetime acts on matter (geodetic effect) and that matter acts back on spacetime (frame-dragging effect). 1 Space and Time Before Minkowski The Stoic philosopher Zeno of Elea, author of Zeno’s paradoxes (c. 490-430 BCE), is said to have held that space and time were unreal since they could neither act nor be acted upon by matter [1]. This is perhaps the earliest version of the relational view of space and time, a view whose philosophical fortunes have waxed and waned with the centuries, but which has exercised enormous influence on physics.
    [Show full text]
  • Verfahren Zur Farbanpassung F ¨Ur Electronic Publishing-Systeme
    Verfahren zur Farbanpassung f ¨ur Electronic Publishing-Systeme Von dem Fachbereich Elektrotechnik und Informationstechnik der Universit¨atHannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Wolfgang W¨olker geb. am 7. Juli 1957, in Herford 1999 Referent: Prof. Dr.-Ing. C.-E. Liedtke Korreferent: Prof. Dr.-Ing. K. Jobmann Tag der Promotion: 18.01.1999 Kurzfassung Zuk ¨unftigePublikationssysteme ben¨otigenleistungsstarke Verfahren zur Farb- bildbearbeitung, um den hohen Durchsatz insbesondere der elektronischen Me- dien bew¨altigenzu k¨onnen. Dieser Beitrag beschreibt ein System f ¨urdie automatisierte Farbmanipulation von Einzelbildern. Die derzeit vorwiegend manuell ausgef ¨uhrtenAktionen wer- den durch hochsprachliche Vorgaben ersetzt, die vom System interpretiert und ausgef ¨uhrtwerden. Basierend auf einem hier vorgeschlagenen Grundwortschatz zur Farbmanipulation sind Modifikationen und Erweiterungen des Wortschat- zes durch neue abstrakte Begriffe m¨oglich.Die Kombination mehrerer bekannter Begriffe zu einem neuen abstrakten Begriff f ¨uhrtdabei zu funktionserweitern- den, komplexen Aktionen. Dar ¨uberhinaus pr¨agendiese Erg¨anzungenden in- dividuellen Wortschatz des jeweiligen Anwenders. Durch die hochsprachliche Schnittstelle findet eine Entkopplung der Benutzervorgaben von der technischen Umsetzung statt. Die farbverarbeitenden Methoden lassen sich so im Hinblick auf die verwendeten Farbmodelle optimieren. Statt der bisher ¨ublichenmedien- und ger¨atetechnischbedingten Farbmodelle kann nun z.B. das visuell adaptierte CIE(1976)-L*a*b*-Modell genutzt werden. Die damit m¨oglichenfarbverarbeiten- den Methoden erlauben umfangreiche und wirksame Eingriffe in die Farbdar- stellung des Bildes. Zielsetzung des Verfahrens ist es, unter Verwendung der vorgeschlagenen Be- nutzerschnittstelle, die teilweise wenig anschauliche Parametrisierung bestimm- ter Farbmodelle, durch einen hochsprachlichen Zugang zu ersetzen, der den An- wender bei der Farbbearbeitung unterst ¨utztund den Experten entlastet.
    [Show full text]
  • Classical Spacetime Structure
    Classical Spacetime Structure James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract I discuss several issues related to \classical" spacetime structure. I review Galilean, Newto- nian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible. 1. Introduction One often associates spacetime|a four-dimensional geometrical structure representing both space and time|with relativity theory, developed by Einstein and others in the early part of the twentieth century.1 But soon after relativity theory appeared, several authors, such as Hermann Weyl (1952 [1918]), Elie´ Cartan (1923, 1924), and Kurt Friedrichs (1927), began to study how the spatio-temporal structure presupposed by classical, i.e., Newtonian, physics could be re-cast using the methods of four-dimensional geometry developed in the context of relativity. These reformulations of classical physics were initially of interest for the insight they offered into the structure of relativity theory.2 But this changed in 1967, when Howard Stein proposed that the notion of a \classical" spacetime could provide important insight arXiv:1707.05887v1 [physics.hist-ph] 18 Jul 2017 Email address: [email protected] (James Owen Weatherall) 1The idea of \spacetime" was actually introduced by Minkowski (2013 [1911]), several years after Einstein first introduced relativity theory. 2And indeed, they remain of interest for this reason: see, for instance, Friedman (1983), Malament (1986a,b, 2012), Earman (1989b), Fletcher (2014), Barrett (2015), Weatherall (2011a,b, 2014, 2017d,c), and Dewar and Weatherall (2017) for philosophical discussions of the relationship between relativity theory and Newtonian physics that make heavy use of this formalism.
    [Show full text]
  • Why Spacetime Is Probably a Substance Author(S): Tim Maudlin Reviewed Work(S): Source: Philosophy of Science, Vol
    Buckets of Water and Waves of Space: Why Spacetime Is Probably a Substance Author(s): Tim Maudlin Reviewed work(s): Source: Philosophy of Science, Vol. 60, No. 2 (Jun., 1993), pp. 183-203 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/188350 . Accessed: 28/12/2012 20:13 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org This content downloaded on Fri, 28 Dec 2012 20:13:44 PM All use subject to JSTOR Terms and Conditions Philosophy of Science June, 1993 BUCKETS OF WATER AND WAVES OF SPACE: WHY SPACETIME IS PROBABLY A SUBSTANCE* TIM MAUDLINtt Department of Philosophy Rutgers University This paper sketches a taxonomy of forms of substantivalism and relationism concerning space and time, and of the traditional arguments for these positions. Several natural sorts of relationism are able to account for Newton's bucket experiment. Conversely, appropriately constructed substantivalism can survive Leibniz's critique, a fact which has been obscured by the conflation of two of Leibniz's arguments.
    [Show full text]
  • Measuring Perceived Color Difference Using YIQ NTSC Transmission Color Space in Mobile Applications
    Programación Matemática y Software (2010) Vol.2. Num. 2. Dirección de Reservas de Derecho: 04-2009-011611475800-102 Measuring perceived color difference using YIQ NTSC transmission color space in mobile applications Yuriy Kotsarenko, Fernando Ramos TECNOLÓGICO DE DE MONTERREY, CAMPUS CUERNAVACA. Resumen. En este trabajo varias formulas están introducidas que permiten calcular la medir la diferencia entre colores de forma perceptible, utilizando el espacio de colores YIQ. Las formulas clásicas y sus derivados que utilizan los espacios CIELAB y CIELUV requieren muchas transformaciones aritméticas de valores entrantes definidos comúnmente con los componentes de rojo, verde y azul, y por lo tanto son muy pesadas para su implementación en dispositivos móviles. Las formulas alternativas propuestas en este trabajo basadas en espacio de colores YIQ son sencillas y se calculan rápidamente, incluso en tiempo real. La comparación está incluida en este trabajo entre las formulas clásicas y las propuestas utilizando dos diferentes grupos de experimentos. El primer grupo de experimentos se enfoca en evaluar la diferencia perceptible utilizando diferentes formulas, mientras el segundo grupo de experimentos permite determinar el desempeño de cada una de las formulas para determinar su velocidad cuando se procesan imágenes. Los resultados experimentales indican que las formulas propuestas en este trabajo son muy cercanas en términos perceptibles a las de CIELAB y CIELUV, pero son significativamente más rápidas, lo que los hace buenos candidatos para la medición de las diferencias de colores en dispositivos móviles y aplicaciones en tiempo real. Abstract. An alternative color difference formulas are presented for measuring the perceived difference between two color samples defined in YIQ color space.
    [Show full text]
  • Preferred Illuminance and Color Temperature Combination
    Oi, Preferred Illuminance and Color Temperature Combination PREFERRED COMBINATIONS BETWEEN ILLUMINANCE AND COLOR TEMPERATURE IN SEVERAL SETTINGS FOR DAILY LIVING ACTIVITIES Naoyuki Oi, Hironobu Takahashi Kyushu University ABSTRACT Illuminance and color temperature are widely recognized as important factors in interior lighting. Luminance and preferred color temperature are known to be related each other, since Kruithof showed the comfortable illuminance zone related to the color temperature of light sources. However, recent research papers showed the Kruithof's curve is not always useful. It seems to be because Kruithof does not consider the influence of activities to the preference of lighting condition. This paper shows the result of subjective evaluation of scale models on preferred combinations between luminance and color temperature in six settings of living activities at home. For the experiment, 1:10 scale models illuminated with the light source consists of red, green, and blue compact fluorescent tubes with controllers were used. Lighting conditions used are the combination of illuminance (50, 100, 200, 400, 800lux) and color temperature (3000, 4200, 5000, 6500K). Interior color is white, with a small color patch on the wall. Six settings of Living activities are the space for "relaxing", "family gathering", "dining", "cooking", "studying", and "retiring (bedroom before sleep)". Three variables: "preference", "brightness", and "naturalness of color appearance" are evaluated. In the space for relaxing, low color temperature and relatively low illuminance are preferred. In the space for family gathering, preferred conditions are similar to the Kruithof's comfortable zone except high illuminance over 200lux. These results are generally similar to Nakamura's result. In the space for dining, preferred conditions are similar to the Kruithof's comfortable zone.
    [Show full text]
  • Color Spaces YCH and Ysch for Color Specification and Image Processing in Multi-Core Computing and Mobile Systems
    Programación Matemática y Software (2012) Vol. 4. No 2. ISSN: 2007-3283 Recibido: 14 de septiembre del 2011 Aceptado: 3 de enero del 2012 Publicado en línea: 8 de enero del 2013 Color spaces YCH and YScH for color specification and image processing in multi-core computing and mobile systems Yuriy Kotsarenko, Fernando Ramos Tecnológico de Monterrey, Campus Cuernavaca [email protected], [email protected] Resumen. En este trabajo dos nuevos espacios de color se describen para especificación de colores y procesamiento de imágenes utilizando la forma cilíndrica del espacio de color YIQ. Los espacios de colores clásicos tales como HSL y HSV no toman en cuenta la visión humana y son perceptualmente inexactos. Los espacios de colores perceptualmente uniformes como CIELAB y CIELUV son muy costosos computacionalmente para aplicaciones interactivas de tiempo real y son difíciles de implementar. Las alternativas propuestas, por otro lado, tienen un balance entre uniformidad perceptual, desempeño y simplicidad de cálculo. Estos espacios modelan colores de forma más exacta y son rápidos de calcular. Los resultados experimentales en este trabajo comparan espacios de colores clásicos con los propuestos en términos de uniformidad, riqueza de colores y desempeño, incluyendo numerosas pruebas de rapidez en procesadores de varios núcleos y sistemas móviles tales como ultra portátiles y los tablets tipo iPad. Los resultados evidencian que los espacios de colores propuestos son mejores alternativas para la industria de computación donde actualmente se utilicen los espacios de colores clásicos. Abstract. Two novel color spaces are described for color specification and image processing using cylindrical variants of YIQ color space.
    [Show full text]
  • Dirac's Principle of Mathematical Beauty, Mathematics of Harmony
    1 Dirac’s Principle of Mathematical Beauty, Mathematics of Harmony and “Golden” Scientific Revolution Alexey Stakhov The International Club of the Golden Section 6 McCreary Trail, Bolton, ON, L7E 2C8, Canada [email protected] • www.goldenmuseum.com Abstract. In this study we develop the Mathematics of Harmony as a new interdisciplinary direction of modern science. The newest discoveries in different fields of modern science based on the Mathematics of Harmony, namely, mathematics (a general theory of hyperbolic functions and a solution to Hilbert’s Fourth Problem, algorithmic measurement theory and “golden” number theory), computer science (the “golden information technology), crystallography (quasi-crystals), chemistry (fullerenes), theoretical physics and cosmology (Fibonacci-Lorentz transformations, the “golden” interpretation of special theory of relativity and “golden” interpretation of the Universe evolution), botany (new geometric theory of phyllotaxis), genetics (“golden” genomatrices) and so on, are creating a general picture of the “Golden” Scientific Revolution, which can influence fundamentally on the development of modern science and education. Contents Preface 1. Introduction: Dirac’s Principle of Mathematical Beauty and “beautiful” mathematical objects 2. A new approach to the mathematics origins 3. The Mathematics of Harmony as a “beautiful” mathematical theory 4. The “Golden” Fibonacci goniometry: a revolution in the theory of hyperbolic functions 5. The “Golden” Fibonacci goniometry and Hilbert’s Fourth Problem: revolution in hyperbolic geometry 6. Fibonacci and “golden” matrices: a unique class of square matrices 7. New scientific principles based on the Golden Section 8. The Mathematics of Harmony: a renaissance of the oldest mathematical theories 9. The “Golden” information technology: a revolution in computer science 10.
    [Show full text]
  • DESSERT'2018 Programme
    IEEE Ukraine Section National Aerospace University n. a. N. E. Zhukovsky “KhAI”, Kharkiv, Ukraine Banking University, Kyiv, Ukraine National Aviation University, Kyiv, Ukraine IEEE Ukraine Section SP/AES Societies Joint Chapter IEEE Ukraine Section (Kyiv) ED/MTT/CPMT/COM/SSC Societies Joint Chapter IEEE Ukraine Section (Kharkiv) SP/AP/C/EMC/Com Societies Joint Chapter IEEE Ukraine Section IM/CIS Societies Joint Chapter DEpendable Systems, SERvices and Technologies DESSERT’2018 Ukraine, Kyiv May 24-27, 2018 Programme Exclusive partners Research and Production Corporation Radiy, Ukraine National Bank of Ukraine University and Research Institute partners Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Institute of Information Science and Technologies of National Research Council ISTI-CNR Pisa, Italy Leeds Beckett University, Leeds, United Kingdom Pukhov Institute for Modelling in Energy Engineering, National Academy of Sciences of Ukraine, Kyiv Tallinn University of Technology, Tallinn, Estonia University of Žilina, Zilina, Slovakia IT companies and Associations partners EPAM Systems, Ukraine ChiSoftware, Ukraine Cypress Semiconductor, USA Center for Safety Infrastructure-Oriented Research and Analysis, Ukraine Association of Industrial Automation of Ukraine, Ukraine HiTech Office Ukraine IT Alliance, Kyiv, Ukraine Social partners The International Society of Service Innovation Professionals, USA Data Techno Park, Poland eCv Collaboratory, USA Media and project partners Carte Blanche Magazine, Kyiv, Ukraine Ukrainian Association Fintech & Innovation Companies, Ukraine Erasmus+ Project ALIOT 7Event Group, Ukraine Contents Welcome note 3 DESSERT’2018 Committees 5 Time-table 9 Layout of rooms 10 Keynote speakers 11 Schedule 16 May 24 16 May 25 18 May 26 23 May 27 28 Location 30 Transport 31 Alphabetical index of authors 32 2 WELCOME NOTE Welcome to the 9th International IEEE Conference Dependable Systems, Services and Technologies, DESSERT’2018! Background.
    [Show full text]