Transporting Biotherapeutics Across the Blood-Brain Barrier

Total Page:16

File Type:pdf, Size:1020Kb

Transporting Biotherapeutics Across the Blood-Brain Barrier Transporting Biotherapeutics Across the Blood-Brain Barrier October 15, 2020 Disclaimers Forward Looking Statements This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements other than statements of historical facts contained in this presentation, including, without limitation, statements regarding future results of operations and financial position of Denali Therapeutics Inc. (“Denali” or the “Company”); Denali’s business strategy, business plans, product candidates, planned preclinical studies and clinical trials; expectations regarding the timing of results of such studies and trials; plans, timelines and expectations related to DNL310, Denali’s TV technology platform and TV programs; the ability of the TV technology to effectively deliver large therapeutic molecules across the blood-brain barrier (“BBB”); plans, timelines and expectations related to DNL151 and other LRRK2 inhibitor molecules; plans, timelines and expectations related to DNL788, DNL758 and DNL343; expectations related to clinical trials to address Hunter Syndrome and the ability to establish biomarker proof-of-concept in patients by end of 2020; the potential benefits and results of the collaborations with Denali’s partners, including Biogen, Sanofi and Takeda; plans and expectations regarding patient recruitment, planned regulatory filings, long-term development plans and near-term pipeline milestones; and Denali’s priorities, regulatory approvals, timing and likelihood of success and expectations regarding collaborations, are forward-looking statements. Denali has based these forward-looking statements largely on its current expectations and projections about future events. These forward-looking statements speak only as of the date of this presentation and are subject to a number of risks, uncertainties and assumptions, including but not limited to, risks related to: any and all risks to Denali’s business and operations caused directly or indirectly by the evolving COVID-19 pandemic; the risk of the occurrence of any event, change or other circumstance that could give rise to the termination of Denali’s collaboration agreements, including those with Biogen, Sanofi and Takeda; Denali’s early stages of clinical drug development; Denali’s ability to complete the development of, and if approved, commercialization of its product candidates; Denali’s dependence on successful development of its BBB platform technology, product candidates currently in its core program and biomarker strategy; expectations and potential benefits of strategic collaboration agreements may not be met and Denali may not be able to attract collaborators with development, regulatory and commercialization expertise; Denali’s ability to conduct or complete clinical trials on expected timelines; the risk that preclinical profiles of Denali’s product candidates, such as DNL 151 and DNL788, may not translate in clinical studies, and the uncertainty that any of Denali’s product candidates will receive regulatory approval necessary to be commercialized; Denali’s ability to obtain and maintain regulatory approval of its product candidates, and any related restrictions, limitations and/or warnings in the label of any approved product candidate; Denali’s ability to continue to create a pipeline of product candidates and develop commercially successful products; Denali’s ability to obtain, maintain, or protect intellectual property rights related to its product candidates and BBB platform technology; implementation of Denali’s strategic plans for its business, product candidates and BBB platform technology; Denali’s ability to obtain funding for its operations, including funding necessary to develop and commercialize its product candidates; and other risks. In light of these risks, uncertainties and assumptions, the forward-looking statements and events discussed in this presentation are inherently uncertain and may not occur, and actual results could differ materially and adversely from those anticipated or implied in the forward- looking statements. Accordingly, you should not rely upon forward-looking statements as predictions of future events. Information regarding additional risks and uncertainties may be found in Denali’s Annual Report on Form 10-K filed with the SEC on March 12, 2019, Denali’s Quarterly Report on Form 10-Q filed with the SEC on August 7, 2020 and Denali’s future reports to be filed with the SEC. Denali does not undertake any obligation to update or revise any forward-looking statements, to conform these statements to actual results or to make changes in Denali’s expectations, except as required by law. Accuracy of Data This presentation contains statistical data based on independent industry publications or other publicly available information, as well as other information based on Denali’s internal sources. Denali has not independently verified the accuracy or completeness of the data contained in these industry publications and other publicly available information. Accordingly, Denali makes no representations as to the accuracy or completeness of that data. 2 AGENDA TIME (ET) TOPIC SPEAKER 1:00 – 1:30 p.m. Introduction and Blood-Brain Barrier Transport Vehicle (TV) Overview Ryan Watts, PhD CEO, Denali Simon Jones, MRCPCH, MBChB 1:30 – 1:50 p.m. Hunter Syndrome: Overview Willink Unit, Manchester Centre for Genomic Medicine 1:50 – 2:20 p.m. TV Flagship Program: ETV:IDS (DNL310) Carole Ho, MD CMO and Head of Development, Denali 2:20 – 2:40 p.m. Q&A 2:40 – 2:50 p.m. Break 2:50 – 3:20 p.m. TV Portfolio Programs Joe Lewcock, PhD CSO and Head of Discovery, Denali 3:20 – 3:35 p.m. UnlocKing the TV Platform Potential Alex Schuth, MD COO, Denali 3:35 – 4:00 p.m. Q&A 3 Introduction Ryan Watts, PhD, CEO OUR PURPOSE: DEFEAT DEGENERATION RARE NEURODEGENERATIVE AMYOTROPHIC DISEASES LATERAL SCLEROSIS PARKINSON’S ALZHEIMER’S Orphan 20,000+ (US) 1,000,000+ (US) 5,800,000+ (US) >30 lysosomal storage diseases >45 known genetic associations >95 known genetic associations >35 known genetic associations D n i o s i t e a a l s u e p P o o P p y u h l t a l t a i o e n H Normal PD Normal AD Significant unmet medical need with few disease-modifying medicines 5 OUR PRINCIPLES SCIENTIFIC Genetic Pathway Potential Engineering Brain Delivery Biomarker-Driven Development BUSINESS Broad Portfolio Parallel Investments Strategic Partnering 6 DEGENOGENES DEFINE NEURODEGENERATION BIOLOGY Glial Biology-related Degenogenes PILRA Lysosomal Function-related Degenogenes Cellular Homeostasis-related Degenogenes Other Degenogenes Number of Genetic Associations and Implicated Genes Implicated and Associations of Genetic Number Disease Alzheimer’s Alzheimer’s APOE4 Disease Parkinson’s Parkinson’s ALS / FTD / ALS 7 OUR PORTFOLIO APPROACH DIVERSE DIFFERENTIATED DATA-DRIVEN Therapeutic Pipeline Brain Delivery Technology Drug Development D n i o s i t e a a l s u e p P o o P p y u h l t a l t a i o e n H Multiple therapeutic targets, Two Platforms: Focus on target engagement, modalities and indications in Degenogene Biology & pathway engagement, and neurodegeneration BBB Technologies patient phenotyping for clinical decisions 8 OUR PROGRESS: PAST TWO YEARS • RIPK1 decision to advance 3Q DNL788; pause DNL747 3Q 1Q • Biomarker PoC LRRK2 inhibitors • Initiated P1/2 in Hunter syndrome (HV & PD for DNL201; HV for (ETV:IDS/DNL310) DNL151) • Sanofi initiated Ph1b COVID-19 of • IND accepted for ETV:IDS/DNL310 • Sanofi initiated Ph1 HV peripheral inhibitor for MPSII 1Q with peripheral inhibitor (RIPK1:DNL758) (RIPK1: DNL758) • First in human dosing of EIF2B • Selected DNL151 for late-stage • Initiated Ph1b in ALS activator (DNL343) testing in PD (LRRK2) (RIPK:DNL747) • Added PTV:PRGN & ETV:SGSH to • Initiated Ph1b in PD • Biogen partnership portfolio • Initiated Ph1b in AD (LRRK2: DNL151) $560M upfront, $465M equity (RIPK:DNL747) • $207M follow-on offering ($23/share) investment 2019 2020 • PoC data expected for • Orphan Drug & Rare Pediatric Disease ETV:IDS/DNL310 in Designation for ETV:IDS/DNL310 Back-to-back publications on 2Q 2Q TV Platform Technology in 4Q Hunter syndrome Science Translational Medicine Clinical RegUlatory Portfolio Corporate Milestones Milestones Transitions Strategy 9 OUR PORTFOLIO Large Molecule (TV Platform) Small Molecule AAV DRUG DEVELOPMENT PROGRAM TARGET DRUG CANDIDATE DISEASE INDICATION PARTNER Drug Discovery IND-Enabling Early Clinical Late Clinical Approved LYSOSOMAL FUNCTION PATHWAY LRRK2 DNL151 Parkinson’s Biogen Iduronate 2-sulfatase DNL310 MPS II (Hunter Syndrome) PGRN DNL593 Frontotemporal Dementia Takeda Alpha-Synuclein ATV:aSyn Parkinson’s, DLB, MSA Sulfamidase ETV:SGSH MPS IIIA (Sanfilippo Syndrome) Undisclosed ETV:LF1 LSD with Neurodegeneration Undisclosed AAV:LF2 Parkinson’s GLIAL BIOLOGY PATHWAY RIPK1 (CNS) DNL788 Alzheimer’s, ALS, MS Sanofi TREM2 DNL919 Alzheimer’s Takeda Undisclosed GB1 ALS CELLULAR HOMEOSTASIS EIF2B DNL343 ALS, FTD Tau ATV:Tau Alzheimer’s Takeda Abeta ATV:Abeta Alzheimer’s Biogen Undisclosed CH1 ALS, Parkinson’s OTHER COVID-19, Peripheral RIPK1 (Peripheral) DNL758 Sanofi Inflammatory Diseases LRRK2 (Peripheral) DNL975 Crohn’s Disease Biogen 10 HER2 ATV:HER2 Oncology 2020 CLINICAL PROGRESS AND PLANS LRRK2 § Entered strategic collaboration with Biogen Parkinson’s § Advancing DNL151 into late-stage clinical trials in 2021 EIF2B § DNL343 Phase 1 in HV results to enable patient study – end of 2020 / early 2021 ALS RIPK1 § IND submitted for DNL788 (Sanofi) CNS § First in human dosing
Recommended publications
  • The Alzheimer's Disease Protective P522R Variant of PLCG2
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.059600; this version posted April 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Alzheimer’s disease protective P522R variant of PLCG2, consistently enhances stimulus-dependent PLCγ2 activation, depleting substrate and altering cell function. Emily Maguire #1, Georgina E. Menzies#1, Thomas Phillips#1, Michael Sasner2, Harriet M. Williams2, Magdalena A. Czubala3, Neil Evans1, Emma L Cope4, Rebecca Sims5, Gareth R. Howell2, Emyr Lloyd-Evans4, Julie Williams†1,5, Nicholas D. Allen†4 and Philip R. Taylor†*1,3. 1 UK Dementia Research Institute at Cardiff, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK. 2 The Jackson Laboratory, Bar Harbor, Maine 04660, USA. 3 Systems Immunity University Research Institute, Tenovus Building, Heath Park, Cardiff CF 14 4XN, Wales, UK. 4 School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. 5 MRC Centre for Neuropsychiatric Genetics & Genomics, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK. #†These authors contributed equally *To whom correspondence should be addressed (lead contact): Prof Philip R. Taylor; Tel: +44(0)2920687328; Email: [email protected]. Abstract: Recent genome-wide association studies of Alzheimer’s disease (AD) have identified variants implicating immune pathways in disease development. A rare coding variant of PLCG2, which encodes PLCγ2, shows a significant protective effect for AD (rs72824905, P522R, P=5.38x10-10, Odds Ratio = 0.68).
    [Show full text]
  • Plasma Lipidome Is Dysregulated in Alzheimer's Disease and Is
    Liu et al. Translational Psychiatry (2021) 11:344 https://doi.org/10.1038/s41398-021-01362-2 Translational Psychiatry ARTICLE Open Access Plasma lipidome is dysregulated in Alzheimer’s disease and is associated with disease risk genes Yue Liu1,2, Anbupalam Thalamuthu1, Karen A. Mather1,3, John Crawford1, Marina Ulanova1, Matthew Wai Kin Wong1, Russell Pickford4, Perminder S. Sachdev 1,5 and Nady Braidy 1,6 Abstract Lipidomics research could provide insights of pathobiological mechanisms in Alzheimer’s disease. This study explores a battery of plasma lipids that can differentiate Alzheimer’s disease (AD) patients from healthy controls and determines whether lipid profiles correlate with genetic risk for AD. AD plasma samples were collected from the Sydney Memory and Ageing Study (MAS) Sydney, Australia (aged range 75–97 years; 51.2% male). Untargeted lipidomics analysis was performed by liquid chromatography coupled–mass spectrometry (LC–MS/MS). We found that several lipid species from nine lipid classes, particularly sphingomyelins (SMs), cholesterol esters (ChEs), phosphatidylcholines (PCs), phosphatidylethanolamines (PIs), phosphatidylinositols (PIs), and triglycerides (TGs) are dysregulated in AD patients and may help discriminate them from healthy controls. However, when the lipid species were grouped together into lipid subgroups, only the DG group was significantly higher in AD. ChEs, SMs, and TGs resulted in good classification accuracy using the Glmnet algorithm (elastic net penalization for the generalized linear model [glm]) with more than 80% AUC. In general, group lipids and the lipid subclasses LPC and PE had less classification accuracy compared to the other subclasses. We also found significant increases in SMs, PIs, and the LPE/PE ratio in human U251 astroglioma cell lines exposed to pathophysiological concentrations of oligomeric Aβ42.
    [Show full text]
  • Antibody Response Cell Antigen Receptor Signaling And
    Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response This information is current as Jiancheng Hu, Shannon K. Oda, Kristin Shotts, Erin E. of September 24, 2021. Donovan, Pamela Strauch, Lindsey M. Pujanauski, Francisco Victorino, Amin Al-Shami, Yuko Fujiwara, Gabor Tigyi, Tamas Oravecz, Roberta Pelanda and Raul M. Torres J Immunol 2014; 193:85-95; Prepublished online 2 June 2014; Downloaded from doi: 10.4049/jimmunol.1300429 http://www.jimmunol.org/content/193/1/85 Supplementary http://www.jimmunol.org/content/suppl/2014/05/31/jimmunol.130042 http://www.jimmunol.org/ Material 9.DCSupplemental References This article cites 63 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/193/1/85.full#ref-list-1 Why The JI? Submit online. by guest on September 24, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response Jiancheng Hu,*,1,2 Shannon K.
    [Show full text]
  • Survival-Associated Metabolic Genes in Colon and Rectal Cancers
    Survival-associated Metabolic Genes in Colon and Rectal Cancers Yanfen Cui ( [email protected] ) Tianjin Cancer Institute: Tianjin Tumor Hospital https://orcid.org/0000-0001-7760-7503 Baoai Han tianjin tumor hospital He Zhang tianjin tumor hospital Zhiyong Wang tianjin tumor hospital Hui Liu tianjin tumor hospital Fei Zhang tianjin tumor hospital Ruifang Niu tianjin tumor hospital Research Keywords: colon cancer, rectal cancer, prognosis, metabolism Posted Date: December 4th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-117478/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/42 Abstract Background Uncontrolled proliferation is the most prominent biological feature of tumors. To rapidly proliferate and maximize the use of available nutrients, tumor cells regulate their metabolic behavior and the expression of metabolism-related genes (MRGs). In this study, we aimed to construct prognosis models for colon and rectal cancers, using MRGs to indicate the prognoses of patients. Methods We rst acquired the gene expression proles of colon and rectal cancers from the TCGA and GEO database, and utilized univariate Cox analysis, lasso regression, and multivariable cox analysis to identify MRGs for risk models. Then GSEA and KEGG functional enrichment analysis were utilized to identify the metabolism pathway of MRGs in the risk models and analyzed these genes comprehensively using GSCALite. Results Eight genes (CPT1C, PLCB2, PLA2G2D, GAMT, ENPP2, PIP4K2B, GPX3, and GSR) in the colon cancer risk model and six genes (TDO2, PKLR, GAMT, EARS2, ACO1, and WAS) in the rectal cancer risk model were identied successfully. Multivariate Cox analysis indicated that the models predicted overall survival accurately and independently for patients with colon or rectal cancer.
    [Show full text]
  • Description Cy5 LG Cy3 MI Ratio(Cy3/Cy5) C9orf135
    Supplementary Table S2. DNA microarray dataset of top 30 differentially expressed genes and housekeeping genes Up-regulated in SI cancer cells Symbol Description Cy5_LG Cy3_MI Ratio(Cy3/Cy5) C9orf135 Uncharacterized protein C9orf135 1.37 307.8 224.3 KIAA1245 Notch homolog 2 N-terminal like protein 1.82 406.8 223.6 APITD1 Centromere protein S (CENP-S) 2.56 560.3 218.7 PPIL6 Peptidyl-prolyl cis-trans isomerase-like 6 1.85 343.0 185.7 MYCBP2 Probable E3 ubiquitin-protein ligase MYCBP2 2.01 332.1 165.6 ANGPTL4 Angiopoietin-related protein 4 precursor 10.26 1500.1 146.3 C10orf79 Novel protein (Fragment) 2.86 415.5 145.5 NP_653323.1 KPL2 protein isoform 2 1.82 257.5 141.6 ZNF345 Zinc finger protein 345 1.58 215.7 136.8 SIX1 Homeobox protein SIX1 1.59 216.1 136.0 KLHL7 Kelch-like protein 7 1.91 254.4 133.3 TBX1 T-box transcription factor TBX1 1.57 209.0 133.1 PAG1 Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 2.19 290.9 133.0 NOL12 Nucleolar protein 12 1.61 203.7 126.5 ZNF606 Zinc finger protein 606 2.12 267.7 126.0 NFKBIE NF-kappa-B inhibitor epsilon 5.28 658.3 124.7 ZMYND10 Zinc finger MYND domain-containing protein 10 6.85 835.5 121.9 hCG_23177 - 14.94 1758.9 117.7 KIF3A Kinesin-like protein KIF3A 1.94 224.9 116.1 Q9C0K3_HUMAN Actin-related protein Arp11 3.38 368.0 108.9 NP_056263.1 DPCD protein 2.61 270.5 103.7 GBP1 Interferon-induced guanylate-binding protein 1 1.46 149.1 102.3 NP_660151.2 NAD(P) dependent steroid dehydrogenase-like 1.35 137.4 101.5 NP_689672.2 CDNA FLJ90761 fis, clone THYRO1000099 3.68 372.5
    [Show full text]
  • Technical Note, Appendix: an Analysis of Blood Processing Methods to Prepare Samples for Genechip® Expression Profiling (Pdf, 1
    Appendix 1: Signature genes for different blood cell types. Blood Cell Type Source Probe Set Description Symbol Blood Cell Type Source Probe Set Description Symbol Fraction ID Fraction ID Mono- Lympho- GSK 203547_at CD4 antigen (p55) CD4 Whitney et al. 209813_x_at T cell receptor TRG nuclear cytes gamma locus cells Whitney et al. 209995_s_at T-cell leukemia/ TCL1A Whitney et al. 203104_at colony stimulating CSF1R lymphoma 1A factor 1 receptor, Whitney et al. 210164_at granzyme B GZMB formerly McDonough (granzyme 2, feline sarcoma viral cytotoxic T-lymphocyte- (v-fms) oncogene associated serine homolog esterase 1) Whitney et al. 203290_at major histocompatibility HLA-DQA1 Whitney et al. 210321_at similar to granzyme B CTLA1 complex, class II, (granzyme 2, cytotoxic DQ alpha 1 T-lymphocyte-associated Whitney et al. 203413_at NEL-like 2 (chicken) NELL2 serine esterase 1) Whitney et al. 203828_s_at natural killer cell NK4 (H. sapiens) transcript 4 Whitney et al. 212827_at immunoglobulin heavy IGHM Whitney et al. 203932_at major histocompatibility HLA-DMB constant mu complex, class II, Whitney et al. 212998_x_at major histocompatibility HLA-DQB1 DM beta complex, class II, Whitney et al. 204655_at chemokine (C-C motif) CCL5 DQ beta 1 ligand 5 Whitney et al. 212999_x_at major histocompatibility HLA-DQB Whitney et al. 204661_at CDW52 antigen CDW52 complex, class II, (CAMPATH-1 antigen) DQ beta 1 Whitney et al. 205049_s_at CD79A antigen CD79A Whitney et al. 213193_x_at T cell receptor beta locus TRB (immunoglobulin- Whitney et al. 213425_at Homo sapiens cDNA associated alpha) FLJ11441 fis, clone Whitney et al. 205291_at interleukin 2 receptor, IL2RB HEMBA1001323, beta mRNA sequence Whitney et al.
    [Show full text]
  • Time Resolved Quantitative Phosphoproteomics Reveals Distinct Patterns of SHP2
    bioRxiv preprint doi: https://doi.org/10.1101/598664; this version posted April 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Time resolved quantitative phosphoproteomics reveals distinct patterns of SHP2 dependence in EGFR signaling Vidyasiri Vemulapalli1,2, Lily Chylek3, Alison Erickson4, Jonathan LaRochelle1,2, Kartik Subramanian3, Morvarid Mohseni5, Matthew LaMarche5, Michael G. Acker5, Peter K. Sorger3, Steven P. Gygi4, and Stephen C. Blacklow1,2* 1Department of Cancer Biology, Dana-Farber Cancer Institute Boston, MA 02115, USA 2Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA 3Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA 4Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA 5Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA *To whom correspondence should be addressed: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/598664; this version posted April 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines; it is frequently mutated in childhood leukemias and other cancers. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by the small molecule SHP099.
    [Show full text]
  • Mutational Landscape and Clinical Outcome of Patients with De Novo Acute Myeloid Leukemia and Rearrangements Involving 11Q23/KMT2A
    Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/KMT2A Marius Billa,1,2, Krzysztof Mrózeka,1,2, Jessica Kohlschmidta,b, Ann-Kathrin Eisfelda,c, Christopher J. Walkera, Deedra Nicoleta,b, Dimitrios Papaioannoua, James S. Blachlya,c, Shelley Orwicka,c, Andrew J. Carrolld, Jonathan E. Kolitze, Bayard L. Powellf, Richard M. Stoneg, Albert de la Chapelleh,i,2, John C. Byrda,c, and Clara D. Bloomfielda,c aThe Ohio State University Comprehensive Cancer Center, Columbus, OH 43210; bAlliance for Clinical Trials in Oncology Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210; cDivision of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210; dDepartment of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294; eNorthwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY 11042; fDepartment of Internal Medicine, Section on Hematology & Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157; gDepartment of Medical Oncology, Dana-Farber/Partners Cancer Care, Boston, MA 02215; hHuman Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; and iDepartment of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 Contributed by Albert de la Chapelle, August 28, 2020 (sent for review July 17, 2020; reviewed by Anne Hagemeijer and Stefan Klaus Bohlander) Balanced rearrangements involving the KMT2A gene, located at patterns that include high expression of HOXA genes and thereby 11q23, are among the most frequent chromosome aberrations in contribute to leukemogenesis (14–16).
    [Show full text]
  • The Alzheimer's Disease-Associated
    Takalo et al. Molecular Neurodegeneration (2020) 15:52 https://doi.org/10.1186/s13024-020-00402-7 SHORT REPORT Open Access The Alzheimer’s disease-associated protective Plcγ2-P522R variant promotes immune functions Mari Takalo1, Rebekka Wittrahm1, Benedikt Wefers2,3, Samira Parhizkar4, Kimmo Jokivarsi5, Teemu Kuulasmaa1, Petra Mäkinen1, Henna Martiskainen1, Wolfgang Wurst2,3,6, Xianyuan Xiang4, Mikael Marttinen1,7, Pekka Poutiainen8, Annakaisa Haapasalo5, Mikko Hiltunen1*† and Christian Haass2,4,6*† Abstract Background: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. Methods: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. Results: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice.
    [Show full text]
  • Genetic Testing Policy Number: PG0041 ADVANTAGE | ELITE | HMO Last Review: 04/11/2021
    Genetic Testing Policy Number: PG0041 ADVANTAGE | ELITE | HMO Last Review: 04/11/2021 INDIVIDUAL MARKETPLACE | PROMEDICA MEDICARE PLAN | PPO GUIDELINES This policy does not certify benefits or authorization of benefits, which is designated by each individual policyholder terms, conditions, exclusions and limitations contract. It does not constitute a contract or guarantee regarding coverage or reimbursement/payment. Paramount applies coding edits to all medical claims through coding logic software to evaluate the accuracy and adherence to accepted national standards. This medical policy is solely for guiding medical necessity and explaining correct procedure reporting used to assist in making coverage decisions and administering benefits. SCOPE X Professional X Facility DESCRIPTION A genetic test is the analysis of human DNA, RNA, chromosomes, proteins, or certain metabolites in order to detect alterations related to a heritable or acquired disorder. This can be accomplished by directly examining the DNA or RNA that makes up a gene (direct testing), looking at markers co-inherited with a disease-causing gene (linkage testing), assaying certain metabolites (biochemical testing), or examining the chromosomes (cytogenetic testing). Clinical genetic tests are those in which specimens are examined and results reported to the provider or patient for the purpose of diagnosis, prevention or treatment in the care of individual patients. Genetic testing is performed for a variety of intended uses: Diagnostic testing (to diagnose disease) Predictive
    [Show full text]
  • Molecular Mechanisms Regulating Phospholipase C-Γ2 Activity
    Molecular mechanisms regulating phospholipase C‐2 activity Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Anja Jasmin Bühler aus Ulm Universität Ulm Institut für Pharmakologie and Toxikologie Ulm 2013 Current Dean of the Faculty of Natural Sciences: Prof. Dr. Joachim Ankerhold First Supervisor: Prof. Dr. Peter Gierschik Second Supervisor: Prof. Dr. Ralf Marienfeld Day Doctorate Awarded: 24th March 2014 Table of contents Table of Contents List of Figures............................................................................................................................... v Abbreviations and Units............................................................................................................ vii 1 Introduction .................................................................................................................. 1 1.1 Signal transduction......................................................................................................... 1 1.2 Phospholipases C............................................................................................................. 2 1.3 Regulation of Phospholipases C..................................................................................... 5 1.4 Role of PLC2 in inflammatory and autoimmune diseases ....................................... 14 1.5 Anaplastic lymphoma kinase ....................................................................................... 17 1.6 Aim of the work............................................................................................................
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]