Mekong River Commission

Total Page:16

File Type:pdf, Size:1020Kb

Mekong River Commission Mekong River Commission Office of the Secretariat in Vientiane Office of the Secretariat in Phnom Penh 184 Fa Ngoum Road, Ban Sithane Neua, 576 National Road, no. 2, Chok Angre Krom, P.O. Box 6101, Vientiane, Lao PDR P.O. Box 623, Phnom Penh, Cambodia Tel: (856-21) 263 263 Fax: (856-21) 263 264 Tel: (855-23) 425 353 Fax: (855-23)425 363 [email protected] www.mrcmekong.org The ISH 0306 Study Development of Guidelines for Hydropower Environmental Impact Mitigation and Risk Management in the Lower Mekong Mainstream and Tributaries 2nd Interim Report - Final November 2016 Volume 2 – Version 2.0 – Hydropower Risks and Impact Mitigation MANUAL – Key Hydropower Risks, Impacts and Vulnerabilities and General Mitigation Options for Lower Mekong Document history Version Revision Description Issue date Issued by First Interim Phase 1 1 First Draft – Version 1.0 9 October 2015 Leif Lillehammer 2 2 Second Draft – Version 1.0 1 Dec. 2015 Leif Lillehammer 3 3 Final – Version 1.0 11 Dec. 2015 Leif Lillehammer Second Interim Phase 4 4 Draft Final Version 2.0 23 Sept. 2016 Leif Lillehammer 5 5 Final Version 2.0 7 Nov. 2016 Leif Lillehammer The Draft Second Interim Report constitutes 4 volumes: Volume 1: Version 2.0 – Hydropower Risks and Impact Mitigation Guidelines and Recommendations Volume 2: Version 2.0 – Hydropower Risks and Impact Mitigation MANUAL – Key Hydropower Risks, Impacts and Vulnerabilities and General Mitigation Options for Lower Mekong Volume 3: Case Study Report, Version 1.0 – Modelling, Scenarios and Impact Mitigation Assessment Volume 4: Knowledge Base Report, Version 1.0 – Structure, Usage and Update on Regional and International Practise 2 Contents Preface ..................................................................................................................................................... 7 Abbreviations .......................................................................................................................................... 9 1 Description, Purpose and How to Use the Manual ....................................................................... 13 2 Hydrology and Water Resources – Status, Risks and Mitigation .................................................. 15 2.1 Status and Overview .............................................................................................................. 15 2.1.1 Introduction ....................................................................................................................... 15 2.1.2 Stream Flows ..................................................................................................................... 15 2.1.3 Water Use and Abstraction ............................................................................................... 18 2.1.4 Floods and Droughts .......................................................................................................... 19 2.2 Risks, Impacts and Vulnerabilities ......................................................................................... 20 2.3 Hydrology and Water Resources Mitigation Measures ........................................................ 28 2.4 Indicators and Monitoring .................................................................................................. 29 3 Geomorphology and Sediments – Status, Risks and Mitigation ................................................... 30 3.1 Status and Overview .............................................................................................................. 30 3.1.1 Importance of sediments and sediment transport in river systems ................................. 30 3.1.2 Catchment geomorphology ............................................................................................... 31 3.1.3 Sediment transport in the LMB ......................................................................................... 34 3.1.4 Recent changes to sediment transport in the LMB ........................................................... 35 3.1.5 Other activities affecting sediment transport ................................................................... 37 3.1.6 Observed geomorphic Changes associated with Altered Sediment Delivery ................... 40 3.2 Risks, Impacts and Vulnerabilities ......................................................................................... 41 3.2.1 Annual and inter-annual flow changes .............................................................................. 42 3.2.2 Short-term flow fluctuations ............................................................................................. 43 3.2.3 Loss of river connectivity and creation of impoundments ................................................ 44 3.2.4 Intra or inter-basin transfers ............................................................................................. 45 3.3 Identification of LMB specific geomorphic risks associated with HP developments ............ 45 3.3.1 Zone 1: Chiang Saen to upstream of Vientiane ................................................................ 45 3.3.2 Zone 2 – Upstream Vientiane to Kong Chiam ................................................................... 46 3.3.3 Zone 3 Kong Chiam to Kratie ............................................................................................. 48 3.3.4 Zone 4: Kratie to Chaktomuk and Tonle Sap .................................................................... 49 3.3.5 Zone 5 Delta ...................................................................................................................... 51 3.3.6 Interaction between HP impacts and other catchment developments ............................ 52 3.3.7 LMB Specific challenges associated with sediment management .................................... 53 3 3.4 Geomorphology and Sediments Mitigation Measures ......................................................... 54 3.4.1 Background information from the MRC Preliminary Design Guidance ............................ 54 3.4.2 General approaches to geomorphology and sediment mitigation ................................... 55 3.4.3 Master Plan & Feasibility ................................................................................................... 56 3.4.4 Detailed design .................................................................................................................. 60 3.4.5 Construction phase ............................................................................................................ 72 3.4.6 Operational phase ............................................................................................................. 73 3.5 Indicators and monitoring ..................................................................................................... 76 4 Water Quality, Nutrients and Reservoir Stratification .................................................................. 77 4.1 Status and Overview .............................................................................................................. 77 4.1.1 Introduction and importance of water quality in river system ......................................... 77 4.1.2 Water quality trends in the LMB ....................................................................................... 77 4.1.3 Changes to sediment and flow and impacts on water quality .......................................... 85 4.2 Risks, Impacts and Vulnerabilities ......................................................................................... 87 4.2.1 Annual /inter-annual flow changes ................................................................................... 87 4.2.2 Daily or short-time period flow changes ........................................................................... 88 4.2.3 Loss of river connectivity ................................................................................................... 89 4.2.4 Conversion of river to lake ................................................................................................ 90 4.2.5 Inter intra-basin transfers ................................................................................................. 92 4.2.6 Other risks associated with hydropower developments................................................... 92 4.3 Water Quality Mitigation Measures ...................................................................................... 93 4.3.1 General .............................................................................................................................. 93 4.3.2 Background information from the MRC Preliminary Design Guidance ............................ 93 4.3.3 Master Plans and feasibility .............................................................................................. 94 4.3.4 Detailed design .................................................................................................................. 97 4.3.5 Construction .................................................................................................................... 102 4.3.6 Operational Stage ............................................................................................................ 103 4.4 Water quality indicators and monitoring ............................................................................ 103 5 Fisheries and Aquatic Ecology ..................................................................................................... 106 5.1 Status and Overview ...........................................................................................................
Recommended publications
  • CPWF Project Report
    CPWF Project Report Mekong Basin Focal Project: Final Report Project Number: PN58 Mac Kirby1, Chayanis Krittasudthacheewa2, Mohammed Mainuddin1, Eric Kemp-Benedict2, Chris Swartz2, Elnora de la Rosa2 1CSIRO Water for a Healthy Country 2Stockholm Environment Institute for submission to the August, 2009 Acknowledgements The Mekong Basin Focal Project was undertaken by the CSIRO, the Stockholm Environment Institute, the Mekong River Commission and the Japan International Research Centre for Agricultural Science. The project was partly funded by all of those organizations and partly by the Challenge Program on Water and Food. Program Preface The Challenge Program on Water and Food (CPWF) contributes to efforts of the international community to ensure global diversions of water to agriculture are maintained at the level of the year 2000. It is a multi-institutional research initiative that aims to increase water productivity for agriculture—that is, to change the way water is managed and used to meet international food security and poverty eradication goals—in order to leave more water for other users and the environment. The CPWF conducts action-oriented research in nine river basins in Africa, Asia and Latin America, focusing on crop water productivity, fisheries and aquatic ecosystems, community arrangements for sharing water, integrated river basin management, and institutions and policies for successful implementation of developments in the water-food- environment nexus. Project Preface The Mekong Basin Focal Project aims were to assess water use, water productivity and water poverty in the basin, and analyse the opportunities and risks of change in water management that influences water poverty. The main issue facing the Lower Mekong is not water availability (except for seasonally in certain areas such as northeast Thailand) but the impact of changed flows (which may result from dam or irrigation development or climate change) on ecology, fish production, access to water and food security.
    [Show full text]
  • Linnaeus at Home
    NATURE-BASED ACTIVITIES FOR PARENTS LINNAEUS 1 AT HOME A GuiDE TO EXPLORING NATURE WITH CHILDREN Acknowledgements Written by Joe Burton Inspired by Carl Linnaeus With thanks to editors and reviewers: LINNAEUS Lyn Baber, Melissa Balzano, Jane Banham, Sarah Black, Isabelle Charmantier, Mark Chase, Maarten Christenhusz, Alex Davey, Gareth Dauley, AT HOME Zia Forrai, Jon Hale, Simon Hiscock, Alice ter Meulen, Lynn Parker, Elizabeth Rollinson, James Rosindell, Daryl Stenvoll-Wells, Ross Ziegelmeier Share your explorations @LinneanLearning #LinnaeusAtHome Facing page: Carl Linnaeus paper doll, illustrated in 1953. © Linnean Society of London 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrival system or trasmitted in any form or by any means without the prior consent of the copyright owner. www.linnean.org/learning “If you do not know Introduction the names of things, the knowledge of them is Who was Carl Linnaeus? Contents Pitfall traps 5 lost too” Carl Linnaeus was one of the most influential scientists in the world, - Carl Linnaeus A bust of ‘The Young Linnaeus’ by but you might not know a lot about him. Thanks to Linnaeus, we Bug hunting 9 Anthony Smith (2007). have a naming system for all species so that we can understand how different species are related and can start to learn about the origins Plant hunting 13 of life on Earth. Pond dipping 17 As a young man, Linnaeus would study the animals, plants, Bird feeders 21 minerals and habitats around him. By watching the natural world, he began to understand that all living things are adapted to their Squirrel feeders 25 environments and that they can be grouped together by their characteristics (like animals with backbones, or plants that produce Friendly spaces 29 spores).
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
    Designation date: 23/06/99 Ramsar Site no. 999 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Dr. Srey Sunleang, DD MM YY Director, Department of Wetlands and Coastal Zones, Ministry of Environment, #48 Preah Sihanouk Blvd., Tonle Bassac, Designation date Site Reference Number Chamkar Morn, Phnom Penh, Cambodia Tel: (855) 77-333-456 Fax: (855)-23-721-073 E-mail: [email protected] 2.
    [Show full text]
  • Overview of the Key Fish Species and Their Biology in Himalayan Rivers in Nepal Tek Bahadur Gurung, Arun Baidya, Gopal Lamsal, Nita Pradhan
    Overview of the key fish species and their biology in Himalayan Rivers in Nepal Tek Bahadur Gurung, Arun Baidya, Gopal Lamsal, Nita Pradhan Regional Meeting of Fish Experts 29-30 April, 2018, Hotel Yak and Yeti Organized by Kathmandu, Nepal 1 Nepal is endowed with 232 fish species, 217 indigenous in 6000 rivers, the river basins extending to China, Nepal & India in 3 river basins & 1 river system 2 Species Richness Low High mount Moderate Mid hills Flood plains Rich Cool water fish (not permanently in cold or warm waters), most life history strategies (12 to 29oC), Cold water species (7-20oC) Warm water (15 to 32oC) 3 The Key Fish Species of Himalayan Rivers Key fish species are those : • Rare, endangered, threatened RET Species in Nepal Himalaya species as per IUCN criteria • Endemic species Endemic species reported • Exhibiting Habitat Diversity Number of species at altitudinal and migratory Pathways basis and migratory pathways • Spawning Biology Ex-situ conservation • Conservation Biology In-situ co-managing conservation Most important biotic and abiotic factors of a river • Water flow • Substrate 210 cross dam projects in different rivers • Light (NEA 2013): • Temperature • 84 in operation, • Water chemistry • 34 under construction, • Bacteria • 92 proposed • Underwater plants • Invertebrates • Fish • Birds ….. and the communities Location of Cross Dams Source: ADB 2014 Flows, Fish Species & Livelihood : Generalised Scenario et al 2016al et Gurung Source : Source 6 General features of the Himalayan Rivers • Himalayan rivers have
    [Show full text]
  • Review of Wetland and Aquatic Ecosystem in the Lower Mekong River Basin of Cambodia
    FINAL REPORT Review of Wetland and Aquatic Ecosystem in the Lower Mekong River Basin of Cambodia By Kol Vathana Department of Nature Conservation and Protection Ministry of Environment Phnom Penh, Kingdom of Cambodia Submitted to The Cambodian National Mekong Committee Secretariat (CNMCS) and THE MEKONG RIVER COMMISSION SECRETARIAT (MRCS) August 2003 1 TABLE OF CONTENT I. INTRODUCTION..................................................................................................................6 II. WETLAND BIODIVERSITY ..............................................................................................9 2.1 Current Status...................................................................................................................9 2.2 Ecosystem Diversity ........................................................................................................9 2.2.1 Freshwater Ecosystem ..............................................................................................9 2.2.2 Coastal and Marine Ecosystem...............................................................................12 2.3 Species Diversity ...........................................................................................................15 2.3.1 Fauna.......................................................................................................................15 2.3.2 Flora ........................................................................................................................19 2.4 Genetic Diversity ...........................................................................................................20
    [Show full text]
  • MOU-ASEAN.Pdf
    Memorandum of Understanding Between the Mekong River Commission Secretariat and the ASEAN Secretariat Preamble REAFFIRMING the development of partnership between the Association of Southeast Asian Nations Secretariat (the "ASEC") and the Mekong River Commission Secretariat (the "MRCS") to contribute towards the sustainable development of the Mekong Basin. The ASEC and the MRCS have agreed to increase their cooperation and enter into partnership in fields of common interest. NOTING the Memorandum of Understanding (the "MoU") sets out the modalities under which ASEC and MRCS intend to closely collaborate. Noting 1. The Association of Southeast Asian Nations (ASEAN) is an intergovernmental institution established on 8 August 1967 in Bangkok by the five original Member States, namely, Indonesia, Malaysia, Philippines, Singapore, and Thailand. Brunei Darussalam joined on 8 January 1984, Vietnam on 28 July 1995, Lao PDR and Myanmar on 23 July 1997, and Cambodia on 30 April 1999. The ASEAN Secretariat is located in Jakarta, Indonesia 2. The ASEAN Charter entered into force on 15 December 2008 and it is a legally binding agreement among the ten Member States. The Charter provides the legal and institutional framework for the realisation of the ASEAN Community by 2015. 3. At the 13th and 14th ASEAN Summits held in 2007 and 2008, respectively, the Leaders adopted the ASEAN Economic Community Blueprint, the ASEAN Socio-Cultural Community Blueprint and the ASEAN Political-Security Community Blueprint and the IAI Work Plan II which serves as the Roadmap for an ASEAN Community (2009-2015). 4. The Roadmap provides strategic plan of actions in promoting sustainability of water resources to ensure equitable accessibility and sufficient water quantity of acceptable quality to meet the needs of the people of ASEAN.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]
  • Species Composition and Invasion Risks of Alien Ornamental Freshwater
    www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people.
    [Show full text]
  • ANS Pocket Guide
    Aquatic Nuisance Species SECOND Pocket Guide EDITION Table of Contents Introduction . 1 Prevention . 2 Laws and Regulations . 5 Take Action! . 11 Animals Mollusks . 12 Crustaceans . 16 Amphibians . 22 Fish . 28 Plants Algae . 70 Submerged . 74 Emergent . 94 Floating . 102 Riparian . 116 Pathogens . 124 Index . 130 Resources . 140 COVER PHOTOs (Clockwise from top): AMERIcaN BULLFROG BY CARL D. HOWE; EURASIAN WaTERMILFOIL BY JOSEPH DITOMASO, UNIVERSITY OF CALIFORNIA DAVIS; PIRANHA BY WIKIMEDIA; QUAGGA MUSSELS BY MICHAEL PORTER, U.S. ARMY CORPS OF ENGINEERS WRITTEN BY WENDY HaNOPHY Printed on recycled paper Introduction What are Aquatic Nuisance Species? Aquatic nuisance species (ANS) are invasive animals, plants, and disease-causing pathogens that are “out of place” in Colorado’s rivers, lakes, streams, and wetlands . They are introduced accidentally or intentionally outside of their native range . Because they are not native to Colorado habitats, they have no natural competitors and predators . Without these checks and balances, the invaders are able to reproduce rapidly and out-compete native species . ANS have harmful effects on natural resources and our use of them . Aquatic Nuisance Species are Everyone’s Problem ANS damage Colorado’s lands and waters, hurt the economy, ruin recreation opportunities, and threaten public health . Many ANS consume enormous amounts of water and reduce the water supply for livestock, wildlife, and humans . They impede water distribution systems for municipal, industrial, and agricultural supplies . They can damage boats and fishing equipment and impair all forms of water based recreation . These species change the physical characteristics of bodies of water and alter food chains . As habitat is destroyed by invasive species, the wildlife that depends on it disappears as well .
    [Show full text]
  • Diversity and Risk Patterns of Freshwater Megafauna: a Global Perspective
    Diversity and risk patterns of freshwater megafauna: A global perspective Inaugural-Dissertation to obtain the academic degree Doctor of Philosophy (Ph.D.) in River Science Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By FENGZHI HE 2019 This thesis work was conducted between October 2015 and April 2019, under the supervision of Dr. Sonja C. Jähnig (Leibniz-Institute of Freshwater Ecology and Inland Fisheries), Jun.-Prof. Dr. Christiane Zarfl (Eberhard Karls Universität Tübingen), Dr. Alex Henshaw (Queen Mary University of London) and Prof. Dr. Klement Tockner (Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries). The work was carried out at Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany, Freie Universität Berlin, Germany and Queen Mary University of London, UK. 1st Reviewer: Dr. Sonja C. Jähnig 2nd Reviewer: Prof. Dr. Klement Tockner Date of defense: 27.06. 2019 The SMART Joint Doctorate Programme Research for this thesis was conducted with the support of the Erasmus Mundus Programme, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions and academic staff in Europe and third countries with a view to creating centres of excellence and providing a highly skilled 21st century workforce enabled to lead social, cultural and economic developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead to the award of recognised joint, double or multiple degrees. The SMART programme represents a collaboration among the University of Trento, Queen Mary University of London and Freie Universität Berlin.
    [Show full text]
  • Dict-En-Fr-Food V3
    Dictionnaire Anglais-Français de l’Alimentation English-French Food Dictionary Version 3.0 Pascal Médeville (CC BY-NC-ND 4.0) 1 This work is distributed under Creative Commons license CC BY-NC-ND 4.0. Please revise the information below and stay within the limits of the license. 2 Le présent travail est distribué dans le cadre de la licence Creative Commons CC BY-NC-ND 4.0. Veuillez lire les informations ci-dessous et respecter les limites imposées. 3 Sigles et abréviations utilisés dans ce dictionnaire : adj. : adjectif agr. : agriculture bot. : botanique ichtyol. : ichtyologie Ind. : Indonésie it. : Italie J : Japon microbiol. : microbiologie œnol. : œnologie p.ex. : par exemple UK : Royaume Uni US : États-Unis d’Amérique vét. : médecine vétérinaire zool. : zoologie Historique des versions/Version history : Date Objet No. de version Déc. 2008 Version initiale 1.0 Juin 2009 Corrections diverses ; Ajout de nouvelles sources ; Ajout de nouvelles 2.0 références bibliographiques Avril 2020 Ajout de nouvelles entrées ; Corrections diverses ; Ajout de nouvelles 3.0 sources ; Ajout de nouvelles references bibliographiques 4 Pour vos traductions anglais-français ou chinois-français dans le domaine de la gastronomie ou de l’agro-alimentaire, veuillez prendre contact avec Pascal Médeville à l’une des adresses suivantes : [email protected] ou [email protected]. For all your food and agrifood translation needs (English to French of Chinese to French), you can contact Pascal Médeville, at [email protected] or [email protected]. Pour toutes vos traductions et besoins de publication assistée par ordinateur en chinois ou d’autres langues asiatiques, n’hésitez pas à faire appel à Pascal Médeville ou à Parallels Translation Office : www.parallels-translation.net.
    [Show full text]
  • Whole-Genome Sequencing of the Giant Devil Catfish, Bagarius Yarrelli
    GBE Whole-Genome Sequencing of the Giant Devil Catfish, Bagarius yarrelli Wansheng Jiang1,2,†, Yunyun Lv3,4,†,LeCheng5,†, Kunfeng Yang1,2,ChaoBian3,6,XiaoaiWang1,2, Yanping Li3,6,XiaofuPan1,2,XinxinYou3,4,6, Yuanwei Zhang1,2, Jinlong Yang5,JiaLi3,6, Xinhui Zhang3,6, Shuwei Liu1,2, Chao Sun1,2, Junxing Yang1,2,*, and Qiong Shi3,4,6,* 1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China 2Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China 3Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China 5BGI-Yunnan, BGI-Shenzhen, Kunming, Yunnan, China 6Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China †These authors contributed equally to this work. *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: July 3, 2019 Data deposition: All the raw sequence data are available via GenBank under the SRA accessions SRX5413128 (for the muscle transcriptome) and SRX5406122–SRX5406135 (for the whole genome). This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession VCAZ00000000 with a BioProject ID of PRJNA523489. The version assembled and described in this article is version VCAZ01000000. The annotation files have been deposited in GitHub (https://github.com/YunyunLv1987/Bagarius_yarrelli_encoding_genes). Abstract As one economically important fish in the southeastern Himalayas, the giant devil catfish (Bagarius yarrelli) has been known for its extraordinarily large body size.
    [Show full text]