Peripersonal Space: a Multisensory Interface for Body-Objects Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Peripersonal Space: a Multisensory Interface for Body-Objects Interactions Peripersonal space : a multisensory interface for body-objects interactions Claudio Brozzoli To cite this version: Claudio Brozzoli. Peripersonal space : a multisensory interface for body-objects interactions. Human health and pathology. Université Claude Bernard - Lyon I, 2009. English. NNT : 2009LYO10233. tel-00675247 HAL Id: tel-00675247 https://tel.archives-ouvertes.fr/tel-00675247 Submitted on 29 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre 233-2009 Année 2009 THESE DE L‘UNIVERSITE DE LYON Délivrée par L’UNIVERSITE CLAUDE BERNARD LYON 1 ECOLE DOCTORALE Neurosciences et Cognition DIPLOME DE DOCTORAT (arrêté du 7 août 2006) soutenue publiquement le 20/11/2009 par M. Claudio BROZZOLI PERIPERSONAL SPACE : A MULTISENSORY INTERFACE FOR BODY-OBJECTS INTERACTIONS Directeur de thèse : Dr. FARNÈ Alessandro, Ph.D. JURY: Prof. Y. Rossetti M.D., Ph.D. Dr. A. Farnè Ph.D., D.R. Prof. S. Soto-Faraco Ph.D. Prof. C. Spence Ph.D. Prof. O. Blanke M.D., Ph.D. Prof. F. Pavani, Ph.D. Dr. J.-R. Duhamel Ph.D., D.R. A Fede, perché questo spazio mi ha preso nel tempo che a volte era suo AKNOWLEDGEMENTS It has been amazingly exciting. I started something I didnt know what it could be. Then the trip kept on, impossible to be stopped, terrible sometime, but always exciting. And if during this long ride I loved everything I did, it is also because without doubt Im in debt to many people who have contributed to my work, both directly and indirectly. Or just because they were present. Or they would have liked to be. Thus, in random order, thank you all. Dopo avermi iniziato come laureando al pungente piacere della stimolazione elettrica, allimportanza dei catch trials e alla conoscenza dellestinzione, come se non bastasse, mi ha anche introdotto allo “spazio peripersonale”. Solo per questo direi già: grazie Ale! Poi cè tutto il resto, le neuroscienze che ha continuato a farmi scoprire in questi anni con lo stesso piacere dun gioco, la fiducia che mi ha dato, la libertà che mi ha lasciato di spaziare dove più avevo voglia di giocare. E ancora, i dischi di Luigi Tenco, il prosecco e laffetto. Per tutto quello che in questi anni ho potuto realizzare e per tutto quello che questi anni hanno fatto di me, grazie Ale, il Professore che mi ha insegnato, il Supervisore che mi ha guidato e incoraggiato, lAmico che sei stato fin dallinizio. Mes sincères remerciements vont à Alice, dont les mots directes mes fascinent et mont fait du bien plus de ce que jai pu montrer. Merci pour le support que tu ma donné et qui va au delà des neurosciences et du français; pour le bourguignon qui a pas encore trouvé des égales. Avec Ale et Giulio vous avez été mon repère familiale à Lyon. Per chiudere questa famiglia scientifica, ringrazio di tutto cuore Lucilla, la sorella scientifica, ma soprattutto lamica che ha ascoltato, risposto, considerato, capito, cercato e trovato il mio affetto. Lamica che mi mancherà. La ringrazio fortemente anche per il lavoro che abbiamo realizzato insieme e che senza di lei sarebbe stato niente affatto lo stesso e sicuramente meno divertente. Je remercie vivement tous les chercheurs et les composents de lUnité INSERM U864. Travailler à lunité a été un plaisir et latmosphère toujours tellement agréable que jespère de pouvoir encore avoir loccasion de vous retrouver. Un grand et chaleureux merci à tous les étudiants de lUnité INSERM 864: Laurence, Muriel, Alessia et tous les autres qui mont taquiné et incouragé quand necéssaire. A special thanks goes to Nicholas Holmes and Tamar Makin with whom collaborating has been interesting and not less amazing. They introduced me efficiently to the TMS technique. And lot of TV series. A Alfredo e Pina, che instancabili, mi hanno seguito in tutti i miei tentativi e sostenuto lungo diverse vie, va il mio grazie più constante e longevo. Pour le K factor que ma fait aimé Lyon, les amis qui ont contribué à mon bien être, en trouvant toujours la façon pour remplir mes pauses de la rédaction de thèse, entre le 203 et le Broc, Eva, JB, Virginie et tous les autres: merci! v vi CONTENTS RESUME’ 1 ABSTRACT 3 INTRODUCTION 5 Multisensory perception 8 Multisensory perception in human behaviour 10 Multisensory attention 12 The spatial organization of numbers 14 CROSS-MODAL SHIFT OF ATTENTION 17 Discussion 29 Multisensory integration through anatomical convergence 29 Multisensory interactions through feedback on unisensory areas and inter- connections among unisensory areas 31 Back-projections from multisensory higher-level to unisensory lower-level areas 32 Early interactions between unisensory areas 34 Conclusion 35 vii Multisensory and motor representations of peripersonal space 36 Multisensory features of peripersonal space: Visuo-tactile interaction around the body 37 Parietal Visuo-tactile interactions 37 Premotor visuo-tactile interactions 42 Subcortical visuo-tactile interactions 46 Dynamic feature of peripersonal space representation 46 A visuo-tactile network 50 Motor features of peripersonal space: Visuo-tactile interactions around the acting body 51 Inferior premotor cortex 52 Mirror neurons: a particular class of visuo-motor neuron 54 Parietal areas 55 Lesion studies 57 Conclusion: A multisensory-motor network for peripersonal space 58 Multisensory based peripersonal space in humans 60 Modularity of space through cross-modal extinction 61 EXTINCTION 63 Peripersonal space in humans: neuropsychological evidence 81 Peripersonal space in humans: evidence from healthy behaviour 84 viii Cross-modal congruency effect: a perceptual paradigm for the investigation of the peripersonal space representation in healthy humans 86 Spatial modulation of CCE 88 Body-part-centred reference frame for the CCE 88 Tool-use dependent modulations of CCE 89 Peripersonal space in humans: neuroimaging studies 91 Conclusions 91 Peripersonal space: a multisensory interface for body-object interactions? 93 What kind of body-object interactions can the body-centered PpS representation subserve? 95 CCE in action 96 The multisensori-motor task 97 The kinematic recording of movements: a real-time method for linking multisensory perception and action 99 The kinematics of grasping 100 Neural network for grasping 102 Conclusion: kinematic-perceptual co-recording 104 RESULTS 105 STUDY 1 110 STUDY 2 143 ix STUDY 3 153 DISCUSSION 185 Main results 187 Peripersonal space: an interface for avoidance reactions 189 A comparison with non-human primates studies 190 Peripersonal space: an interface for voluntary actions 192 A comparison with non-human primates studies 193 CONCLUSIONS AND PERSPECTIVES 197 REFERENCES 203 x RESUME’ L’ESPACE PERIPERSONNEL: UNE INTERFACE MULTISENSORIELLE POUR LES INTERACTIONS ENTRE LE CORPS ET LES OBJETS Notre habilité à interagir avec les objets du monde nécessite l’intégration d’informations provenant de différents canaux sensoriels, dans le cadre de la construction d’une représentation de l’espace en particulier des informations visuelles et tactiles. L’espace péripersonnel et l’intégration visuo-tactile ont été l’objet d’importantes recherche récemment. Des études neurophysiologiques chez le primate non-humain ont montré l’existence de neurones bimodaux activés à la fois par des stimulations tactiles et par des stimulations visuelles si ces dernières étaient présentées près d’une partie du corps (par exemple la main). Il a été proposé que ces neurones bi-modaux constituent le substrat neuronal de la représentation de l’espace péripersonnel. Les études neuropsychologiques menées chez des patients présentant une extinction cross-modale consécutive à une lésion pariétale droite ont permis de suggérer l’existence du même type de représentation de l’espace péripersonnel chez l’homme. Les données issues des études en neuroimagerie fonctionnelle sont venues par la suite conforter cette idée. Plus récemment, à travers l’utilisation d’outils, des données acquises chez le primate humain et non humain ont révélé les propriétés dynamiques de cette représentation spatiale. Selon notre hypothèse la représentation de l’espace péripersonnel est une interface présidant aux interactions du corps avec les objets du monde externe. Nous avons donc évalué le rôle et l’état de l’espace péripersonnel lors de l’exécution de mouvements volontaires vers des objets (comme une simple saisie) et lors de mouvements involontaires d’évitement. Lors d’une première série d’expériences nous avons étudié les coordonnées spatiales du codage des objets qui soudainement se rapprochent du corps grâce à la mesure des potentiels évoqués moteurs. Cette étude a révélé que l’espace péripersonnel joue un rôle dans la représentation des objets approchant le corps et dans la sélection des mouvements appropriés en réponse. Lors d’une seconde série d’expériences nous avons utilisé un paradigme d’interférence visuo-tactile couplé à l’enregistrement cinématique des mouvements de saisie afin d’examiner la représentation de l’espace péripersonnel lors de 1 l’exécution d’actions volontaires. Cette approche novatrice nous a permis de mettre en évidence que l’action
Recommended publications
  • Dissociation Between Awareness and Spatial Coding: Evidence from Unilateral Neglect
    Dissociation between Awareness and Spatial Coding: Evidence from Unilateral Neglect Barbara Treccani1, Roberto Cubelli1, Roberta Sellaro1, Carlo Umiltà2, and Sergio Della Sala3 Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/24/4/854/1777452/jocn_a_00185.pdf by MIT Libraries user on 17 May 2021 Abstract ■ Prevalent theories about consciousness propose a causal re- dissociate. A patient with left neglect, who was not aware of lation between lack of spatial coding and absence of conscious contralesional stimuli, was able to process their color and po- experience: The failure to code the position of an object is sition. However, in contrast to (ipsilesional) consciously per- assumed to prevent this object from entering consciousness. ceived stimuli, color and position of neglected stimuli were This is consistent with influential theories of unilateral neglect processed separately. We propose that individual object fea- following brain damage, according to which spatial coding of tures, including position, can be processed without attention neglected stimuli is defective, and this would keep their process- and consciousness and that conscious perception of an ob- ing at the nonconscious level. Contrary to this view, we report ject depends on the binding of its features into an integrated evidence showing that spatial coding and consciousness can percept. ■ INTRODUCTION the effects of processing of neglected stimuli on responses Awareness of a stimulus can be defined as the explicit to stimuli presented in the intact hemispace. Properties knowledge of its physical and semantic properties or sim- that can be processed implicitly include color and shape, ply of its existence. This knowledge can be demonstrated identity of alphanumerical symbols, and even the mean- by direct reports of the perception of the stimulus; for ing of words and pictures (Della Sala, van der Meulen, example, by naming it, categorizing it, or just by signaling Bestelmeyer, & Logie, 2010; Làdavas, Paladini, & Cubelli, its presence.
    [Show full text]
  • Spatial Stroop with Directional Cues
    Manuscript accepted for publication in “Journal of Clinical and Experimental Neuropsychology” Increased attentional load moves the left to the right Mario Bonato1,2 * and Simone Cutini3,4 1 Department of Experimental Psychology, Ghent University 2 Department of General Psychology, University of Padova 3 Department of Developmental Psychology, University of Padova 4 Center for Cognitive Neurosciences, University of Padova Running head: Load-dependent contralesional mislocalizations * Corresponding author: Dr. Mario Bonato, Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, B-9000 Ghent, Belgium e-mail: [email protected] Abstract Introduction Unilateral brain damage can heterogeneously alter spatial processing. Very often brain-lesioned patients fail to report (neglect) items appearing within the contralesional space. Much less often patients mislocalize items’ spatial position. We investigated whether a top-down attentional load manipulation (dual-tasking), known to result in contralesional omissions even in apparently unimpaired cases, might also induce spatial mislocalizations. Method Nine right-hemisphere damaged patients performed three computer-based tasks encompassing different levels of attentional load. The side of appearance of visual targets had to be reported either in isolation or while processing additional information (visual or auditory dual-task). Spatial mislocalizations (from the contralesional hemispace towards the ipsilesional -unaffected- one) were then contrasted with omissions both within and across tasks, at individual as well as at group level. Results The representation of ipsilesional targets was accurate and not affected by dual-tasking requirements. Contralesional targets were instead often omitted and, under dual-task conditions, also mislocalized by four patients. Three cases reported a significant number of left targets as appearing on the right (alloesthesia).
    [Show full text]
  • Abadie's Sign Abadie's Sign Is the Absence Or Diminution of Pain Sensation When Exerting Deep Pressure on the Achilles Tendo
    A.qxd 9/29/05 04:02 PM Page 1 A Abadie’s Sign Abadie’s sign is the absence or diminution of pain sensation when exerting deep pressure on the Achilles tendon by squeezing. This is a frequent finding in the tabes dorsalis variant of neurosyphilis (i.e., with dorsal column disease). Cross References Argyll Robertson pupil Abdominal Paradox - see PARADOXICAL BREATHING Abdominal Reflexes Both superficial and deep abdominal reflexes are described, of which the superficial (cutaneous) reflexes are the more commonly tested in clinical practice. A wooden stick or pin is used to scratch the abdomi- nal wall, from the flank to the midline, parallel to the line of the der- matomal strips, in upper (supraumbilical), middle (umbilical), and lower (infraumbilical) areas. The maneuver is best performed at the end of expiration when the abdominal muscles are relaxed, since the reflexes may be lost with muscle tensing; to avoid this, patients should lie supine with their arms by their sides. Superficial abdominal reflexes are lost in a number of circum- stances: normal old age obesity after abdominal surgery after multiple pregnancies in acute abdominal disorders (Rosenbach’s sign). However, absence of all superficial abdominal reflexes may be of localizing value for corticospinal pathway damage (upper motor neu- rone lesions) above T6. Lesions at or below T10 lead to selective loss of the lower reflexes with the upper and middle reflexes intact, in which case Beevor’s sign may also be present. All abdominal reflexes are preserved with lesions below T12. Abdominal reflexes are said to be lost early in multiple sclerosis, but late in motor neurone disease, an observation of possible clinical use, particularly when differentiating the primary lateral sclerosis vari- ant of motor neurone disease from multiple sclerosis.
    [Show full text]
  • Deficits in Response Space Following Unilateral Striatal Dopamine Depletion in the Rat
    The Journal of Neuroscience, March 1989, g(3): 983-989 Deficits in Response Space Following Unilateral Striatal Dopamine Depletion in the Rat Verity J. Brown and Trevor W. Robbins Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom Hungry rats were trained to report the occurrence and lo- location of stimuli on one side of spaceonly, before depleting cation of brief, unpredictable visual stimuli presented to the DA in the striatum contralateral to that side. In another group left of their heads in 1 of 2 response locations. After training, of rats, DA was depleted from the striatum on the sameside as they received unilateral infusions of 6-hydroxydopamine, de- the discrimination, as a control procedure for nonspecific post- pleting dopamine throughout the head of the caudate pu- operative effects. tamen, either on the left or the right side, that is, either A secondquestion of importance concerning striatal neglect ipsilateral or contralateral to the side on which they were is whether a possible hemispatial deficit induced by unilateral required to respond. striatal lesionsis restricted to one side of the body or, altema- Following an ipsilateral lesion there were no impairments tively, is relative, or allocentric, in nature. Kinsboume and War- in localization of the visual discriminanda and there was no rington (1962) and Bisiach and Luzzatti (1978) found parietal lengthening of reaction time. The contralaterally lesioned neglect not only for left retinotopic, but also for left conceptual rats, however, showed considerably lengthened reaction space.In a human reaction time task, Ladavas (1987) described times to both stimuli and a profound bias to the nearer of 2 components of the neglect; there was not only an overall the 2 response locations.
    [Show full text]
  • Sensorimotor!Integration!Processes!Prior! To!And!During!Movements!To!Somatosensory!Targets!
    !Examining!the!Sensorimotor!Integration!Processes!Prior! to!and!During!Movements!to!Somatosensory!Targets! ! by! ! Gerome!Aleandro!Manson! A!thesis!submitted!in!conformity!with!the!requirements! for!the!degree!of!Doctor!of!Philosophy! Graduate!Department!of!Exercise!Science! University!of!Toronto! Joint!with! École!Doctorale!des!Sciences!de!la!Vie!et!de!la!Santé! AixGMarseille!Université! ©!Copyright!by!Gerome!Aleandro!Manson!2019! Examining!the!Sensorimotor!Integration!Processes!Prior!to!and! During!Movements!to!Somatosensory!Targets! Gerome Aleandro Manson Doctor of Philosophy University!of!Toronto! AixGMarseille!Université!! 2019 Abstract! Previous research on multisensory integration for movement planning and control has focused on movements to targets external to the body. In this dissertation, three experiments were conducted to examine the sensorimotor transformation processes underlying goal-directed actions to targets defined by body positions (i.e., somatosensory targets). The goal of the first experiment was to investigate if the modality of the cue used to indicate the location of a somatosensory target affects the body representation used to encode the target’s position during movement planning. The results showed that auditory cues prompted the use of an exteroceptive body representation for the encoding of movements to a somatosensory target in visual coordinates. The goal of the second experiment was to examine the neural processes associated with the visual remapping of an auditory-cued somatosensory target. It was found that the sensorimotor transformation processes responsible for the conversion of a somatosensory target position into visual coordinates engages visuomotor cortical networks to a greater extent than movements to external visual targets. The goal of the third experiment was to examine the sensorimotor transformation processes employed for the online control of movements to a somatosensory target.
    [Show full text]
  • Reference of Sensation at the Spinal Level by P
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.19.2.88 on 1 May 1956. Downloaded from J. Neurol. Neurosurg. Psychiat., 1956, 19, 88. REFERENCE OF SENSATION AT THE SPINAL LEVEL BY P. W. NATHAN From the Neurological Research Unit of the Medical Research Council, National Hospital, Queen Square, London After the spino-thalamic tract has been cut in The purpose of this paper is to describe the man, loss of sensation of pain and temperature features of such reference of sensation and to record caudal to the lesion is to be expected. In a small it in conditions other than in those previously proportion of patients, although analgesia-in the reported. Certain related phenomena will also be usual sense of the term-is present, painful or described. An investigation of the various forms thermal stimuli applied to parts of the body caudal of the reference of sensation will be reported; and to the lesion arouse a sensation, which is felt, not the possible underlying mechanism and the ana- at the place actually stimulated, but in a normally tomical implications will be considered. innervated part of the body. Thus, a pin applied to the analgesic left leg, for instance, may cause a Observations sensation referred to the normally innervated right has been observed in This reference of sensation Protected by copyright. leg. one patient having an amputation of an upper This form of reference of sensation following the limb, in one patient with a thrombosis of the cutting of the spino-thalamic tract on one side of anterior spinal artery, and in 13 patients following the cord was described by Ray and Wolff in 1945.
    [Show full text]
  • Body Awareness Disorders: Dissociations Between Body-Related Visual and Somatosensory Information Laure Pisella, Laurence Havé, Yves Rossetti
    Body awareness disorders: dissociations between body-related visual and somatosensory information Laure Pisella, Laurence Havé, Yves Rossetti To cite this version: Laure Pisella, Laurence Havé, Yves Rossetti. Body awareness disorders: dissociations between body- related visual and somatosensory information. Brain - A Journal of Neurology , Oxford University Press (OUP), 2019, 142 (8), pp.2170-2173. 10.1093/brain/awz187. hal-02346581 HAL Id: hal-02346581 https://hal.archives-ouvertes.fr/hal-02346581 Submitted on 7 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BADs: dissociations between body-related visual and somatosensory information L. Pisella1, L. Havé1,3 & Y. Rossetti1,2 1 ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I, Villeurbanne, France 2 Plate-forme Mouvement et Handicap, Hospices Civils de Lyon, Centre de Recherche en Neurosciences de Lyon, 69500 Bron, France 3 Hôpital d'instruction des armées Desgenettes, 69275 Lyon, France Glossary : Precuneus: medial part of the posterior parietal cortex, between the occipital (cuneus) and the anterior parietal (paracentral lobule) cortices, well located for visual- somatosensory integration. Body image typically depicts mental representation of one’s own body, arising from all sources of sensory and cognitive information, whereas body schema is used to depict the unconscious use of sensory information required by our motor system to maintain body posture and produce accurate movements.
    [Show full text]
  • Proprioception and Motor Control in Parkinson's Disease
    Journal of Motor Behavior, Vol. 41, No. 6, 2009 Copyright C 2009 Heldref Publications Proprioception and Motor Control in Parkinson’s Disease Jurgen¨ Konczak1,6, Daniel M. Corcos2,FayHorak3, Howard Poizner4, Mark Shapiro5,PaulTuite6, Jens Volkmann7, Matthias Maschke8 1School of Kinesiology, University of Minnesota, Minneapolis. 2Department of Kinesiology and Nutrition, University of Illinois at Chicago. 3Department of Science and Engineering, Oregon Health and Science University, Portland. 4Institute for Neural Computation, University of California–San Diego. 5Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois. 6Department of Neurology, University of Minnesota, Minneapolis. 7Department of Neurology, Universitat¨ Kiel, Germany. 8Department of Neurology, Bruderkrankenhaus,¨ Trier, Germany. ABSTRACT. Parkinson’s disease (PD) is a neurodegenerative dis- cles, tendons, and joint capsules. These receptors provide order that leads to a progressive decline in motor function. Growing information about muscle length, contractile speed, muscle evidence indicates that PD patients also experience an array of tension, and joint position. Collectively, this latter informa- sensory problems that negatively impact motor function. This is es- pecially true for proprioceptive deficits, which profoundly degrade tion is also referred to as proprioception or muscle sense. motor performance. This review specifically address the relation According to the classical definition by Goldscheider (1898) between proprioception and motor impairments in PD. It is struc- the four properties of the muscle sense are (a) passive mo- tured around 4 themes: (a) It examines whether the sensitivity of tion sense, (b) active motion sense, (c) limb position sense, kinaesthetic perception, which is based on proprioceptive inputs, is and (d) the sense of heaviness. Alternatively, some use the actually altered in PD.
    [Show full text]
  • Functional Sensory Symptoms
    Handbook of Clinical Neurology, Vol. 139 (3rd series) Functional Neurologic Disorders M. Hallett, J. Stone, and A. Carson, Editors http://dx.doi.org/10.1016/B978-0-12-801772-2.00024-2 © 2016 Elsevier B.V. All rights reserved Chapter 24 Functional sensory symptoms J. STONE1* AND M. VERMEULEN2 1Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK 2Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands Abstract Functional (psychogenic) sensory symptoms are those in which the patient genuinely experiences alter- ation or absence of normal sensation in the absence of neurologic disease. The hallmark of functional sen- sory symptoms is the presence of internal inconsistency revealing a pattern of symptoms governed by abnormally focused attention. In this chapter we review the history of this area, different clinical presentations, diagnosis (including sensitivity of diagnostic tests), treatment, experimental studies, and prognosis. Altered sensation has been a feature of “hysteria” since descriptions of witchcraft in the middle ages. In the 19th century hysteric sensory stigmata were considered a hallmark of the condition. Despite this long history, relatively little attention has been paid to the topic of functional sensory disturbance, compared to functional limb weakness or functional movement disorders, with which it commonly coexists. There are recognizable clinical patterns, such as hemisensory disturbance and sensory disturbance fin- ishing at the groin or shoulder, but in keeping with the literature on reliability of sensory signs in neurology in general, the evidence suggests that physical signs designed to make a positive diagnosis of functional sensory disorder may not be that reliable.
    [Show full text]
  • Sounds on Time: Auditory Feedback in Motor Learning, Re-Learning and Over-Learning of Timing Regularity
    Sounds on time: auditory feedback in motor learning, re-learning and over-learning of timing regularity. Floris van Vugt To cite this version: Floris van Vugt. Sounds on time: auditory feedback in motor learning, re-learning and over-learning of timing regularity.. Neuroscience. Université Claude Bernard - Lyon I, 2013. English. tel-00915893 HAL Id: tel-00915893 https://tel.archives-ouvertes.fr/tel-00915893 Submitted on 9 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sounds on time - N° d’ordre 232 - 2013 THESE DE L‘UNIVERSITE DE LYON Délivrée par L’UNIVERSITE CLAUDE BERNARD LYON 1 ECOLE DOCTORALE NEUROSCIENCES ET COGNITION (NSCo) DIPLOME DE DOCTORAT EN NEUROSCIENCES (arrêté du 7 août 2006) Soutenue publiquement le 27 novembre 2013 à Lyon par Floris Tijmen VAN VUGT Directeurs de hèse: Dr. Barbara TILLMANN et Prof. Eckart ALTENMÜLLER Composition du Jury Prof. Eckart ALTENMÜLLER (directeur de thèse) Dr. Barbara TILLMANN (directeur de thèse) Prof. Peter KELLER (rapporteur) Prof. Virginia PENHUNE (rapporteur) Dr. Fabien PERRIN (président du jury) | 3 | Sounds on time - Sounds on time: auditory feedback in motor learning, re-learning and over-learning of timing regularity.
    [Show full text]
  • Coding of Spatial Lnformation in the with Neglect Following Parietal Lobe
    Coding of Spatial Lnformation in the Somatosensory System: Evidence Erom Patients with Neglect following Parietal Lobe Damage Morris Moscovitch and Marlene Behrmann University of Toronto and Rotnian Research Institute of Baycrest Centre, Toronto Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/6/2/151/1755120/jocn.1994.6.2.151.pdf by guest on 18 May 2021 Abstract Unilateral parietal lobe darnage, particularly in the right both the palm up and the palm down position. Patients ne- cerehral hemisphere, leads to neglect of stimuli on the contra- glected the stimuli on the side of space contralateral to the 1ater;rl side. To determine the reference frame within which lesion regardless of hand position. These results indicate that neglect operates in the somatosensory system, 11 patients with point-localization in the somatosensory system is accomplished unilateral neglect were touched simultaneously on the left and with respect to a spatially defined frame-of-referenceand not right side of the wrist of one hand. The hand was tested in strictly with respect to somatotopically defined coordinates. INTRODUCTION stimulation of the sensory surface projecting to the le- sioned hemisphere. Recent work in vision has refuted Individuals with damage to the right parietal lobes often the notion that this view can account for all aspects of suffer from hemineglect, a dramatic attentional disorder neglect. A number of investigators have shown that what in which information on the left side is ignored (Bisiach is neglected is not necessarily the stimulus in the left & Vattar, 1988; Critchley, 1953; Heilman, Watson, & Val- visual field, but rather the left-most item of a set of enstcin, 1985; Mesulam, 1981).
    [Show full text]
  • A Dictionary of Neurological Signs.Pdf
    A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A.J. LARNER MA, MD, MRCP (UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. 123 Andrew J. Larner MA MD MRCP (UK) DHMSA Walton Centre for Neurology & Neurosurgery Lower Lane L9 7LJ Liverpool, UK ISBN 978-1-4419-7094-7 e-ISBN 978-1-4419-7095-4 DOI 10.1007/978-1-4419-7095-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937226 © Springer Science+Business Media, LLC 2001, 2006, 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]