Analyses of Currently Available Genetic Data, What It Tells Us, and Where to Go from Here Quinton Marco Dos Santos and Annemariè Avenant‑Oldewage*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Full and FINAL MASTERS DISCERTATION
ASPECTS OF THE MORPHOLOGY AND ECOLOGY OF A DIPLOZOON SPECIES (MONOGENEA) FROM THE GILLS OF LABEO UMBRATUS IN THE VAAL DAM AND VAAL RIVER BARRAGE, GAUTENG, SOUTH AFRICA. LAURETTE SEDDON Supervisor: Prof. A. Avenant-Oldewage Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Zoology in the Faculty of Science of the Rand Afrikaans University Johannesburg , May 2004 ABSTRACT To date, 4 diplozoidae parasites have been described form Africa. Two belonging to the genus Diplozoon, namely D. aegyptensis and D. ghanense from sites in Northern Africa. One belonging to the genus Neodiplozoon, namely Neodiplozoon polycotyleus . The fourth monogenean is the concern of this study which aimed to determine the exact classification of the monogenean found on the gills of Labeo umbratus in the Vaal Dam and Vaal River Barrage respectively. The study was conducted over a 13-month period, with field data collections occurring every two to three months from January 1999 to February 2000. Host fishes were collected with the aid of gill nets with mesh sizes of 90, 110 and 130mm respectively. In-field measurements were taken regarding the total length, fork length, position of parasites on the gill arches and the host gender. All parasites collected were fixed in steaming AFA and stored in 70% ethanol. Laboratory measurements of whole mounts were completed with the aid of light microscope and drawing tube attachment. Staining methods employed included Boraxcarmine-iodine, Mayer’s Hematoxylin and Horen’s Trichrome. Scanning electron microscopy was used to gather information regarding the external morphology of the parasites. -
Seasonal Growth of the Attachment Clamps of a Paradiplozoon Sp
African Journal of Biotechnology Vol. 11(9), pp. 2333-2339, 31 January, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.3064 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Seasonal growth of the attachment clamps of a Paradiplozoon sp. as depicted by statistical shape analysis Milne, S. J.1,2 *# and Avenant-Oldewage, A.1 1Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa. 2School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa. Accepted 15 December, 2011 Geometric morphometric methods using computer software is a more statistically powerful method of assessing changes in the anatomy than are traditional measurements of lengths. The aim of the study was to investigate whether changes in the size and shape Paradiplozoon sp. permanent attachment clamps could be used to determine the duration of the organsism’s life-cycle in situ . A total of 149 adult Paradiplozoon sp. ectoparasites were recovered from Labeobarbus aeneus and Labeobarbus kimberlyensis in the Vaal Dam. The software tool tpsDIG v.2.1 was used on six digitised landmarks placed at the junctures between the sclerites of the attachment clamps from digital micrographs. The tpsSmall v. 2.0 and Morphologika 2 v. 2.5 software tools were used to perform principal component analysis (PCA) on this multivariate dataset. The PCA analysis indicated that the increase in size and linear change in shape of the selected landmarks, were significant predictors of the sampling season. This study suggests that it takes one year for the permanent attachment clamps of a Paradiplozoon sp. -
SEM Study of Diplozoon Kashmirensis (Monogenea, Polyopisthocotylea) from Crucian Carp, Carassius Carassius
SEM study of Diplozoon kashmirensis (Monogenea, Polyopisthocotylea) from Crucian Carp, Carassius carassius Shabina Shamim, Fayaz Ahmad Department of Zoology, University of Kashmir, Srinagar – 190 006, Kashmir, J&K, India ABSTRACT Using Scanning Electron Microscopy the external morphology of the helminth parasite Diplozoon kashmirensis (Monogenea, Diplozoidae) from the fish Carassius carassius is described herein for the first time. The present study is a part of the parasitological work carried out on the fishes of Jammu and Kashmir. These fish helminthes are ectoparasites, blood feeding found on gills of fishes. They have extraordinary body architecture due to their unique sexual behavior in which two larval worms fuse together permanently resulting in the transformation of one X shaped duplex individual. Oral sucker of the prohaptor has a partition giving it a paired appearance. The opisthohaptor present on hind body contains four pairs of clamps on each haptor of the pair, a pair of hooks and a concave terminal end. Body is composed of tegmental folds to help the worms in fixing to the gills. This type of strategy adapted for parasitic life in which two individuals permanently fuse into a single hermaphrodite individual without any need to search for mating partner and presence of highly sophisticated attachment structures, shows highest type of specialization of diplozoid monogeneans. In this study we used SEM to examine the surface topography of Diplozoon kashmiriensis, thereby broadening our existing knowledge of surface morphology of fish helminthes. Key Words – Carassius carassius, Diplozoon kashmirensis, Monogenea, Opisthohaptor, SEM. I INTRODUCTION Monogenea is one of the largest classes within the phylum Platyhelminthes and they usually possess anterior and posterior attachment apparatus that are used for settlement, feeding, locomotion and transfer from host to host [1, 2, 3]. -
APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous -
Fish Species Composition and Catch Per Unit Effort in Nong Han Wetland, Sakon Nakhon Province, Thailand
Songklanakarin J. Sci. Technol. 42 (4), 795-801, Jul. - Aug. 2020 Original Article Fish species composition and catch per unit effort in Nong Han wetland, Sakon Nakhon Province, Thailand Somsak Rayan1*, Boonthiwa Chartchumni1, Saifon Kaewdonree1, and Wirawan Rayan2 1 Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phang Khon, Sakon Nakhon, 47160 Thailand 2 Sakon Nakhon Inland Fisheries Research and Development Center, Mueang, Sakon Nakhon, 47000 Thailand Received: 6 August 2018; Revised: 19 March 2019; Accepted: 17 April 2019 Abstract A study on fish species composition and catch per unit effort (CPUE) was conducted at the Nong Han wetland in Sakon Nakhon Province, Thailand. Fish were collected with 3 randomized samplings per season at 6 stations using 6 sets of gillnets. A total of 45 fish species were found and most were in the Cyprinidae family. The catch by gillnets was dominated by Parambassis siamensis with an average CPUE for gillnets set at night of 807.77 g/100 m2/night. No differences were detected on CPUE between the seasonal surveys. However, the CPUEs were significantly different (P<0.05) between the stations. The Pak Narmkam station had a higher CPUE compared to the Pak Narmpung station (1,609.25±1,461.26 g/100 m2/night vs. 297.38±343.21 g/100 m2/night). The results of the study showed that the Nong Han Wetlands is a lentic lake and the fish abundance was found to be medium. There were a few small fish species that could adapt to living in the ecosystem. Keywords: fish species, fish composition, abundance, CPUE, Nong Han wetland 1. -
Attachment Structure of Wood Ticks; a Fine Structure Study
Heckmann Pakistan Journal of Parasitology 65; June 2018 ATTACHMENT STRUCTURE OF WOOD TICKS; A FINE STRUCTURE STUDY Richard Heckmann Department of Biology - 1114 MLBM, Brigham Young University, Provo,Utah 84602 USA Abstract: The mouthparts of four species of ticks (Rhipicephalus, Amblyomma, Dermacenter and Haemaphysalis) were viewed with SEM and compared to one species of mite (Varrao). The ticks have the characteristic pedipalps, chelicera and hypostome to attach and feed on hosts. The appendage modification for host attachment was viewed including the pulvilli and Haller’s organ. Specific mouthparts were scanned with x-ray (XEDS) and the barbs of the hypostome were cut with a gallium ion beam (LIMS). For comparison, the mouthparts of a mite (Varrao) were included in the study. Those organisms studied belonged to the Acarina. Keywords: Ticks, Mites, Mouthparts, Hypostome, Acarina. INTRODUCTION The mouthparts of a tick are designed for puncture of a host skin and then feed on the host body fluids, especially blood. During the feeding process the eight leg Acarinid can transmit many diseases may acquired by human hosts. Birds, mammals and reptiles are infected with blood feeding ticks. (Macnair, 2016) reported that approximately 850 species have been described worldwide (Wikipedia). Tick, 2018 and Sonenshine, 1991 had suggested that ticks are important vector of disease in humans and animals. Mouthparts of ticks have three visible components for mouthparts. The two outside parts which are joined are highly mobile palps also called (pedipalps) in between these are paired chelicerae which protect the hypostome. While ticks are deeding the palps more laterally. Beak-like projections are present or the bared hyperstome, this structure plunges while feeding on host skin. -
The Parasite Release Hypothesis and the Success of Invasive Fish in New Zealand
http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The parasite release hypothesis and the success of invasive fish in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at The University of Waikato by Keshi Zhang The University of Waikato 2012 Abstract Non-indigenous species are commonly released from their native enemies, including parasites, when they are introduced into new geographical areas. This has been referred to as the enemy release hypothesis and more strictly as the parasite release hypothesis. The loss of parasites is commonly inferred to explain the invasiveness of non-indigenous species. I examined parasite release in New Zealand non-indigenous freshwater fishes. A literature review was undertaken in order to collate lists of the known parasite fauna of 20 New Zealand non-indigenous freshwater fish species. -
Environmental Assessment & Management Plan
Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized E1050 v3 rev m Theun 2 Hydroelectric Project Na & Management Plan Environmental Assessment March 2005 annexes List of Annexes List of Annexes Annex A: References ........................................................................................A1-6 Annex B: Contributors to the EAMP ....................................................................B1-2 Annex C: Project Key Technical Data ..................................................................C1-4 Annex D: Technical Drawings of Project Infrastructure ......................................D1-18 Annex E: Hydrological Data ............................................................................. E1-10 Annex F: Simulated Dam Operations ................................................................ F1-10 Annex G: Water Quality Modelling Assumptions and Results ................................G1-4 Annex H: Forest & Vegetation Types ..................................................................H1-4 Annex I: Mammal & Bird Species of the NNT Area .............................................I1-20 Annex J: Fish Species & Migration ..................................................................... J1-8 Annex K: Head Construction Contractor’s Environmental Requirements .............. K1-18 Annex L: Pest Management Plan ..................................................................... L1-18 Annex M: Public Consultation and Disclosure Events ......................................... -
Helminths (Parasitic Worms) Helminths
Helminths (Parasitic worms) Multicellular - tissues & organs Degenerate digestive system Reduced nervous system Complex reproductive system - main physiology Complex life cycles Kingdom Animalia Phylum Platyhelminths Phylum Nematoda Flatworms Roundworms Helminths - Important Features Significant variation in size Millimeters to Meters in length Nearly world-wide distribution Long persistence of helminth parasites in host PUBLIC HEALTH Indistinct clinical syndromes Protective immunity is acquired only after many years (decades) Poly-parasitism Greatest burden is in children Malnutrition, growth/development retardation, decreased work Morbidity proportional to worm load Helminths (Parasitic worms) Kingdom Animalia Phylum Platyhelminths Phylum Nematoda Tubellarians Monogenea Trematodes Cestodes Free-living Monogenetic Digenetic Tapeworms worms Flukes Flukes 1 Phylum Platyhelminths General Properties (some variations) Bilateral symmetry Generally dorsoventrally flattened Body having 3 layers of tissues with organs and organelles Body contains no internal cavity (acoelomate) Possesses a blind gut (i.e. it has a mouth but no anus) Protonephridial excretory organs instead of an anus Nervous system of longitudinal fibers rather than a net Reproduction mostly sexual as hermaphrodites Some species occur in all major habitats, including many as parasites of other animals. Planaria - Newest model system? Planaria - common name Free-living flatworm Simple organ system RNAi - yes! Large scale RNAi screen Amazing power -
Capítulo 5. Clase Monogenea Fabiana B
Capítulo 5. Clase Monogenea Fabiana B. Drago & Verónica Núñez Pocos seres vivos muestran una monogamia tan extrema como Diplozoon paradoxum, un monogeneo parásito de la branquias de peces, los juveniles fusionan sus cuerpos, alcanzan la madurez sexual y permanecen juntos hasta que la muerte los separe…. ADAPTADO DE DAVID P. BARASH & JUDITH E. LIPTON THE MYTH OF MONOGAMY El nombre Monogenea deriva del nombre original con el que los describió Van Beneneden en 1958 “Mo- nogénèses” ("mono": único; "génesis", del griego: generación) y hace referencia a su ciclo de vida, en el cual los individuos se reproducen sólo sexualmente, en oposición a la digénesis o generaciones alternantes de reproducción sexual y asexual. La mayoría son ectoparásitos de la piel (escamas o aletas), cavidad branquial, branquias, línea lateral y narinas de peces marinos y de aguas continentales. Muy pocas especies han invadido la cloaca y vejiga de los anfibios y reptiles y una especie ha sido encontrada en el ojo de hipopótamos. Existen unas pocas espe- cies que parasitan crustáceos y cefalópodos. También se han encontrado algunas especies adaptadas a la vida endoparásita, como es el caso de las especies pertenecientes a los géneros Dictyocotyle que se en- cuentran en celoma de peces, Philureter en uréteres y vejiga de peces, y Polystoma en la vejiga de anfibios. Se alimentan de mucus, células epiteliales y sangre. Generalmente su tamaño varía entre 0,3 mm a 20 mm y a diferencia de otros platelmintos poseen un órgano de fijación posterior armado con ganchos y ventosas denominado haptor u opistohaptor, que tiene una gran adaptación a la fijación en su sitio específico en el hospedador. -
Monogenea, Diplozoidae
Bull. Natl. Mus. Nat. Sci., Ser. A, 41(3), pp. 137–154, August 21, 2015 Paradiplozoon skrjabini (Monogenea, Diplozoidae), an Ectoparasite on the Gills of Freshwater Fishes (Cyprinidae, Leuciscinae) of Japan and Primorsky Region, Russia: a Morphological and Molecular Study Takeshi Shimazu1, Kensuke Kobayashi2, Koji Tojo2, Vladimir V. Besprozvannykh3 and Kazuo Ogawa4 1 10486–2 Hotaka-Ariake, Azumino, Nagano 399–8301, Japan E-mail: [email protected] 2 Department of Mountain and Environmental Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3–1–1 Asahi, Matsumoto, Nagano 390–8621, Japan 3 Institute of Biological and Soil Science, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letija, 159, Vladivostok 690022, Russia 4 Meguro Parasitological Museum, 4–1–1 Shimomeguro, Meguro-ku, Tokyo 153–0064, Japan (Received 8 May 2015; accepted 24 June 2015) Abstract Monogenean specimens of Paradiplozoon Akhmerov, 1974 (Diplozoidae) were found on the gills of Tribolodon hakonensis (Günther, 1877), Tribolodon sachalinensis (Nikolskii, 1889), Phoxinus steindachneri Sauvage, 1883 and Phoxinus oxycephalus (Sauvage and Dabry de Thier- sant, 1874) (Cyprinidae, Leuciscinae) from Japan; and Leuciscus waleckii (Dybowski, 1869) and Rhynchocypris lagowskii (Dybowski, 1869) (Leuciscinae) from Primorsky Region, Russia. The second internal transcribed spacer (ITS2) region of the ribosomal DNA (rDNA) was sequenced for many of them. The ITS2 (624 bp) and 5.8S-ITS2-28S (720 bp) sequences obtained were phyloge- netically compared with some previously published ITS2 sequences of diplozoids by the neighbor joining (NJ), maximum likelihood (ML) and maximum persimony (MP) methods. All the present specimens are identified as Paradiplozoon skrjabini Akhmerov, 1974 from the present morpholog- ical and molecular studies. -
Monogenea: Diplozoidae) from Manyas Spirlin, Alburnoides Manyasensis, an Endemic Fish of Turkey: New Host and Geographical Record
Iranian Journal of Fisheries Sciences 19(6) 3301-3309 2020 DOI: 10.22092/ijfs.2020.123007 Research Article Prevalence and intensity of Paradiplozoon homoion (Monogenea: Diplozoidae) from Manyas spirlin, Alburnoides manyasensis, an endemic fish of Turkey: new host and geographical record Aydoğdu N.1; Avenant-Oldewage A.2; Dos Santos Q.M.2; Aydoğdu A.3* Received: August 2019 Accepted: September 2020 Abstract In this study, the occurrence of a parasitic helminth infecting a Turkish endemic fish, Manyas spirlin, Alburnoides manyasensis from the Nilüfer stream, Bursa, was studied from winter 2017 to autumn 2018. A total of 46 A. manyasensis were examined for the presence of the helminth. The helminth was identified as Paradiplozoon homoion (Monogenea: Diplozoidae) and occurred on the gills of host fish. A total of 115 specimens of P. homoion infected 32 of 46 fish examined, with prevalence and mean intensity of infection of 69.57% (41.67% in Summer to 90.00% in Winter) and 3.59 (1.00 in Summer to 6.22 in Winter) respectively. Additionally, prevalence and mean intensity of infection was calculated per seasons, host size and sex. The highest values for prevalence and intensity of infection were found in winter for P. homoion. To our knowledge, this is the first ichthyoparasitological study for A. manyasensis in Turkey. This is also the first record of P. homoion from this host fish and locality. Downloaded from jifro.ir at 4:01 +0330 on Saturday September 25th 2021 Keywords: Turkey, Manyas spirlin, Alburnoides manyasensis, Paradiplozoon homoion, Seasonality, Infection statistics, Monogenea 1-Balıkesir University, Graduate School of Natural and Applied Sciences, Department of Hydrobiology, Balıkesir, Turkey 2-Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa 3-Uludag Universty, Faculty of Veterinary Medicine, Department of Aquatic Animal Diseases, Görükle – Bursa, Turkey *Corresponding author's Email: [email protected] 3302 Aydoğdu et al., Prevalence and intensity of Paradiplozoon homoion from ..