Larval and Juvenile Fish Communities of the Lower Mekong Basin

Total Page:16

File Type:pdf, Size:1020Kb

Larval and Juvenile Fish Communities of the Lower Mekong Basin ISSN: 1683-1489 Mekong River Commission Larval and Juvenile Fish Communities of the Lower Mekong Basin MRC Technical Paper No. 49 June 2015 Cambodia . Lao PDR . Thailand . Viet Nam For sustainable development Page i Mekong River Commission Larval and Juvenile Fish Communities of the Lower Mekong Basin MRC Technical Paper No. 49 June 2015 Cambodia . Lao PDR . Thailand . Viet Nam For sustainable development Published in Phnom Penh, Cambodia in June 2015 by the Mekong River Commission Cite this document as: Cowx, I.G; Kamonrat, W.; Sukumasavin, N.; Sirimongkolthawon, R.; Suksri, S. and Phila, N. (2015) Larval and Juvenile Fish Communities of the Lower Mekong Basin. MRC Technical Paper No. 49. Mekong River Commission, Phnom Penh, Cambodia. 100 pp. ISSN: 1683-1489. The opinions and interpretations expressed within are those of the authors and do not necessarily reflect the views of the Mekong River Commission. Editors: Starr, P.; Rodriguez, F.E.; Degen, P.; So, N. and Ngor, P.B. Graphic design and layout: C. Chheana Office of the Secretariat in Phnom Penh (OSP) Office of the Secretariat in Vientiane (OSV) 576 National Road, #2, Chak Angre Krom, Office of the Chief Executive Officer P.O. Box 623, 184 Fa Ngoum Road, P.O. Box 6101, Phnom Penh, Cambodia Vientiane, Lao PDR Tel. (855-23) 425 353 Tel. (856-21) 263 263 Fax. (855-23) 425 363 Fax. (856-21) 263 264 © Mekong River Commission E-mail: [email protected] Website: www.mrcmekong.org Contents List of figures ........................................................................................................................................... v List of tables .......................................................................................................................................... viii Abbreviations and acronyms ................................................................................................................... ix Executive Summary ................................................................................................................................ xi Acknowledgements ................................................................................................................................ xv 1 Introduction ......................................................................................................................................... 1 2 Sampling Methods .............................................................................................................................. 5 2.1 Spawning behaviour and habitats of fish .................................................................................... 5 2.2 Larval and juvenile fish sampling ................................................................................................ 6 2.3 Sampling strategy ........................................................................................................................ 8 2.4 Fisheries data and analysis ......................................................................................................... 15 2.5 Indigenous knowledge ............................................................................................................... 18 3 Results ............................................................................................................................................... 19 3.1 Catch composition between sampling gears ............................................................................. 19 3.2 Conical plankton nets ................................................................................................................ 20 3.2.1 Species composition – site variation ............................................................................... 20 3.2.2 Species composition – seasonal variation ....................................................................... 26 3.3 Seine net ..................................................................................................................................... 33 3.3.1 Species composition – site variation ............................................................................... 33 3.3.2 Species composition – seasonal variation ....................................................................... 37 3.4 Larval and juvenile size and abundance ................................................................................... 45 3.4.1 Conical plankton nets ...................................................................................................... 45 3.4.2 Seine nets ......................................................................................................................... 56 3.5 Indigenous knowledge ............................................................................................................... 56 4 Discussion ......................................................................................................................................... 63 4.1 Review of outputs .................................................................................................................... 63 4.2 Implications of dams ............................................................................................................... 70 4.3 Conclusions and recommendations ......................................................................................... 75 5 References ......................................................................................................................................... 77 Page iii Larval and Juvenile Fish Communities of the Lower Mekong Basin Appendix 1: Indigenous Knowledge Questionnaire .............................................................................. 81 Appendix 2: Relationship between length of larval and life stages and their age in days ..................... 83 Appendix 3: Water velocity (km/day) in Mekong River at different locations and seasons ................. 85 Page iv List of figures Figure 1.1 Location of existing and proposed hydropower schemes in the Mekong River Basin ................................................................................................. 1 Figure 1.2 Profile illustrating location of proposed hydropower schemes in the Lower Mekong River Basin. .................................................................................... 2 Figure 2.1 Design of conical plankton net ...................................................................................... 7 Figure 2.2 Design of seine net ......................................................................................................... 7 Figure 2.3 Location and photographs of each sampling location .................................................. 11 Figure 2.4 Comparison of water levels at selected sites on the Mekong mainstream .................. 15 Figure 3.1 Comparison of catch composition by conical plankton and seine nets ........................ 19 Figure 3.2 Cluster analysis on fish sampling at 11 sites ................................................................ 20 Figure 3.3 MDS analysis of fish sampling at 11 sites .................................................................. 21 Figure 3.4 Variation in species diversity collected by conical plankton nets between 11 sites .... 23 Figure 3.5 Relative abundance of 20 most common species of fish collected by conical plankton nets at 11 sites ............................................................................................................. 24 Figure 3.6 Average linkage cluster (a) and MDS (b) analyses of species abundance .................. 25 Figure 3.7 Seasonal variation in species diversity collected by conical plankton nets between 11 sites ......................................................................................................................... 27 Figure 3.8.1 Seasonal variation in species abundance of fish collected by conical plankton nets between 11 sites .......................................................................................................... 28 Figure 3.8.2 Seasonal variation in species abundance of fish collected by conical plankton nets between 11 sites .......................................................................................................... 29 Figure 3.8.3 Seasonal variation in species abundance of fish collected by conical plankton nets between 11 sites .......................................................................................................... 30 Page v Larval and Juvenile Fish Communities of the Lower Mekong Basin Figure 3.9 Cluster (a) and MDS analyses (b) on fish caught by conical plankton nets at 11 sites and 6 sampling times ................................................................................................... 31 Figure 3.10 Relationship between 20 dominant species caught by conical plankton nets at 11 sites and four environmental factors .................................................................................... 33 Figure 3.11 Variation in species diversity collected by seine nets between 11 sites ...................... 34 Figure 3.12 Relative abundance of species of fish collected by seine netting at 11 sites ............... 35 Figure 3.13 Average linkage cluster (A) and MDS (B) analysis on the species abundance ........... 36 Figure 3.14 Seasonal variation in species diversity collected by seine netting between 11 sites .. 40 Figure 3.15.1 Seasonal variation in species abundance of fish collected by seine netting between 11 sites . ........................................................................................................
Recommended publications
  • Rhinogobius Mizunoi, a New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan
    Bull. Kanagawa prefect. Mus. (Nat. Sci.), no. 46, pp. 79-95, Feb. 2017 79 Original Article Rhinogobius mizunoi, A New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan Toshiyuki Suzuki 1), Koichi Shibukawa 2) & Masahiro Aizawa 3) Abstract. A new freshwater goby, Rhinogobius mizunoi, is described based on six specimens from a freshwater stream in Shizuoka Prefecture, Japan. The species is distinguished from all congeneric species by the following combination of characters: I, 8 second dorsal-fin rays; 18–20 pectoral-fin rays; 13–18 predorsal scales; 33–35 longitudinal scales; 8 or 9 transverse scales; 10+16=26 vertebrae 26; first dorsal fin elongate in male, its distal tip reaching to base of fourth branched ray of second dorsal fin in males when adpressed; when alive or freshly-collected, cheek with several pale sky spots; caudal fin without distinct rows of dark dots; a pair of vertically- arranged dark brown blotches at caudal-fin base in young and females. Key words: amphidoromous, fish taxonomy, Rhinogobius sp. CO, valid species Introduction 6–11 segmented rays; anal fin with a single spine and 5–11 The freshwater gobies of the genus Rhinogobius Gill, segmented rays; pectoral fin with 14–23 segmented rays; 1859 are widely distributed in the East and Southeast pelvic fin with a single spine and five segmented rays; Asian regions, including the Russia Far East, Japan, 25–44 longitudinal scales; 7–16 transverse scales; P-V 3/ Korea, China, Taiwan, the Philippines, Vietnam, Laos, II II I I 0/9; 10–11+15–18= 25–29 vertebrae; body mostly Cambodia, and Thailand (Chen & Miller, 2014).
    [Show full text]
  • Fish Larvae, Development, Allometric Growth, and the Aquatic Environment
    II. Developmental and environmental interactions ICES mar. Sei. Symp., 201: 21-34. 1995 Fish larvae, development, allometric growth, and the aquatic environment J. W. M. Osse and J. G. M. van den Boogaart Osse, J. W. M., and van den Boogaart, J. G. M. 1995. Fish larvae, development, allometric growth, and the aquatic environment. - ICES mar. Sei. Symp., 201: 21-34. During metamorphosis, fish larvae undergo rapid changes in external appearance and dimensions of body parts. The juveniles closely resemble the adult form. The focus of the present paper is the comparison of stages of development of fishes belonging within different taxa in a search for general patterns. The hypothesis that these patterns reflect the priorities of vital functions, e.g., feeding, locomotion, and respiration, is tested taking into account the size-dependent influences of the aquatic environment on the larvae. A review of some literature on ailometries of fish larvae is given and related to the rapidly changing balance between inertial and viscous forces in relation to body length and swimming velocity. New data on the swimming of larval and juvenile carp are presented. It is concluded that the patterns of development and growth shows in many cases a close parallel with the successive functional requirements. J. W. M. Osse and J. G. M. van den Boogaart: Wageningen Agricultural University, Department of Experimental Animal Morphology and Cell Biology, Marijkeweg 40, 6709 PG Wageningen, The Netherlands [tel: (+31) (0)317 483509, fax: (+31) (0)317 483962], Introduction Fish larvae, being so small, must have problems using their limited resources for maintenance, activity, obtain­ Fish larvae are the smallest free-living vertebrates.
    [Show full text]
  • Comparison of an Active and a Passive Age-0 Fish Sampling Gear in a Tropical Reservoir
    Comparison of an Active and a Passive Age-0 Fish Sampling Gear in a Tropical Reservoir M. Clint Lloyd, Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9690 Mississippi State, MS 39762 J. Wesley Neal, Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9690 Mississippi State, MS 39762 Abstract: Age-0 fish sampling is an important tool for predicting recruitment success and year-class strength of cohorts in fish populations. In Puerto Rico, limited research has been conducted on age-0 fish sampling with no studies addressing reservoir systems. In this study, we compared the efficacy of passively-fished light traps and actively-fished push nets for sampling the limnetic age-0 fish community in a tropical reservoir. Diversity of catch between push nets and light traps were similar, although species composition of catches differed between gears (pseudo-F = 32.21, df =1,23, P < 0.001) and among seasons (pseudo-F = 4.29, df = 3,23, P < 0.006). Push-net catches were dominated by threadfin shad (Dorosoma petenense), comprising 94.2% of total catch. Conversely, light traps collected primarily channel catfish Ictalurus( punctatus; 76.8%), with threadfin shad comprising only 13.8% of the sample. Light-trap catches had less species diversity and evenness compared to push nets, consequently their efficiency may be limited to presence/ absence of species. These two gears sampled different components of the age-0 fish community and therefore, gear selection should be based on- re search goals, with push nets an ideal gear for threadfin shad age-0 fish sampling, and light traps more appropriate for community sampling.
    [Show full text]
  • Scale Morphologies of Freshwater Fishes at Tembat Forest Reserve, Terengganu, Malaysia (Morfologi Sisik Ikan Air Tawar Di Hutan Simpan Tembat, Terengganu, Malaysia)
    Sains Malaysiana 46(9)(2017): 1429–1439 http://dx.doi.org/10.17576/jsm-2017-4609-11 Scale Morphologies of Freshwater Fishes at Tembat Forest Reserve, Terengganu, Malaysia (Morfologi Sisik Ikan Air Tawar di Hutan Simpan Tembat, Terengganu, Malaysia) FARAH AYUNI FARINORDIN*, WAN SERIBANI WAN NILAM, SHAHRIL MOD HUSIN, ABDULLAH SAMAT & SHUKOR MD. NOR ABSTRACT Scales are calcium carbonate and collagen-contained structures embedded within the fish epidermis and useful for species identification. This study aimed to describe morphological characteristics of scales and use the differences to prepare keys to species. Fishes were sampled from selected rivers of Tembat Forest Reserve, Hulu Terengganu. Specimens caught were from 3 families (Cyprinidae, Channidae, Nandidae) and 17 species. Each species was represented by ten individuals (size ranges 2.5 - 50 cm TL). The scales were removed, soaked in H2O2 (0.5%), NH3 (0.3%), DH2O and mounted between a pair of glass slides for digital photographing. The morphological descriptions were based on types of scales, distinctiveness of radii arrangement at the anterior field, radii cover, radii distribution, overall shape, focus position and focus pattern. Keys to species were constructed based on these scale morphological characters described. Measurements of scale total length (L), total width (W), rostral field length (L1) and caudal field length (L2) of the scales were taken using Image J software. The inter-specific variation among scales was indicated by L1/L, L2/L, L1/L2 and W/L indices through multiple comparison tests (ANOVA). It was found that all 17 species showed significant differences with at least one other species in all four indices.
    [Show full text]
  • Two New Species of Torrential Gobies of the Genus Rhinogobius from the Ryukyu Islands, Japan
    Bull. Kanagawa Pref. Mus. (Nat. Sci.), no. 49, pp. 7-28, Mar. 2020 7 Original Article Two New Species of Torrential Gobies of the Genus Rhinogobius from the Ryukyu Islands, Japan Toshiyuki Suzuki1), Naoharu Oseko2), Seishi Kimura3) & Koichi Shibukawa4) Abstract. Two new freshwater species of the gobiid fish genus Rhinogobius, R. yaima and R. yon- ezawai, are described based on specimens from swift streams in the Ryukyu Islands, Japan. Rhinogo- bius yaima (16 specimens, 30.2–66.2 mm SL) is distinguished from all congeneric species by the following combination of features: 40–43 longitudinal scales; 10+16=26 vertebrae; head depressed, body and caudal peduncle elongate; first dorsal fin low in males, not extending posteriorly to second dorsal fin; fifth pelvic-fin segmented ray usually divided into five branches at its first (most proximal) segmenting point; pectoral-fin base and prepelvic area naked; belly with small cycloid scales except for a narrow area around ventral midline; a distinct orange oval spot on pectoral-fin base; two orange stripes on temporal region, reaching posteriorly to below origin of second dorsal fin; four vertical rows of orange dots on caudal fin in males; a pair of black blotches at caudal-fin base in females when alive or freshly collected. Rhinogobius yonezawai (17 specimens, 45.8–75.2 mm SL) differs from all congeners by the following combination of features: 35–39 longitudinal scales; 10+16=26 vertebrae; first dorsal fin in males high and falcate, non-filamentous, extending posteriorly to second dorsal-fin; fifth pelvic-fin segmented ray divided into four branches; pectoral-fin base and prepelvic area naked; belly with small cycloid scales except for a narrow area around ventral midline or around anterior half of ventral midline; a distinct black oval spot on pectoral-fin base; two orange stripes on temporal region, reaching posteriorly to below first dorsal fin; six to eight vertical red or orange lines on caudal fin in males; a black bifurcated blotch posteriorly at caudal-fin base in females when alive or freshly collected.
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • Developmental Stages of Endemic Bilih Fish Larvae (Mystacoleucus Padangensis) from Singkarak Lake, West Sumatra, Indonesia 1Warnety Munir, 1Mansyurdin, 2Usman M
    Developmental stages of endemic bilih fish larvae (Mystacoleucus padangensis) from Singkarak Lake, West Sumatra, Indonesia 1Warnety Munir, 1Mansyurdin, 2Usman M. Tang, 1Indra J. Zakaria 1 Department of Biology, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, West Sumatera, Indonesia; 2 Faculty of Fisheries and Marine Sciences, Riau University, Pekanbaru, Riau, Indonesia. Corresponding author: W. Munir, [email protected] Abstract. Larvae developmental stages was studied in the endemic bilih fish (Mystacoleucus padangensis Bleeker, 1852) from Singkarak Lake, West Sumatera, Indonesia. We obtained the study material by artificial insemination. The fertilized eggs were incubated in dechlorinated tap water under temperature 26-28oC. Ten to twenty larvae were collected everyday on the first week and then weekly till juvenile. Larvae development stages was assigned using dissecting microscope, determined and named by body total length and morphological features. The result showed that the early juvenile reached at 11.1 mm (5 week post hatching, wph) and scale juvenile at 35.36 mm total length (16 wph) through stages are total length 2.44 mm (pectoral fin bud), 2.85 mm (gill vesicle), 3.24 mm (caudal fin development biginning), 3.60 mm (pectoral fin ray), 3.75 mm (jaw has formed completely), 3.9 mm (caudal fin primordia rounded), 4.12 mm (beginning of notochord flexi), 4.69 mm (dorsal and anal fin development), 6.18 mm (primordia hypural bone), 11.1 mm (skin finfold has disappeared), 14.92 mm (caudal fin completely developed), 16.85 mm (primordia scale developed), 18.32 mm (scale pattern pigmented area has reached lateral line). Key Words: total body length, weight, morphological characters, metamorphic, ontogeny.
    [Show full text]
  • REPRINTED from KOOLEWONG Vol
    REPRINTED FROM KOOLEWONG Vol. 4, No. 2 The Lungfish-Creature from the Past by GORDON C. GRIGG The survivor from prehistoric times, the salmon-fleshed Queensland lungfish, may fall victim to agricultural destruction of its habitat. Along the more remote reaches of Queensland's Burnett River, particularly toward evening, it is easy to believe that prehistoric creatures exist in the still, dark pools. Yet despite the heavily primeval atmosphere of the river it has so far produced only one genuine survivor from prehistoric times-the Queensland lungfish, Neoceratodus forsteri. Dissection of a lungfish (above) reveals the structure of its single lung. The lungfish also has a set of gills and can breathe air or water at will. Photo by Gordon C. Grigg. Fossil evidence suggests that this fish has remained essentially unaltered by any evolutionary processes for at least the last 150 million years. The lungfish is a member of an extraordinary group of fishes, the Dipnoi, which have lungs as well as gills, allowing them to breathe air as well as water. Of the once widespread Dipnoan fish, only three survive today: Neoceratodus in Queensland, Protopterus in Africa and Lepidosiren in South America. Neoceratodus appears to be more primitive than its overseas cousins. It is the closest surviving relative of the fish from which the first land vertebrates, the labyrinthodonts, arose about 325 million years ago. This makes it of particular interest to zoologists. The Queensland lungfish inhabits waterholes in rivers where the channel widens, deepens and flows more slowly. During the day it remains on the bottom and can sometimes be seen in the shade of overhanging trees.
    [Show full text]
  • Investigations on Age, Growth and Mortality Parameters of Ailia Coila (Hamilton, 1822) (Siluriformes: Ailiidae) from Brahmaputra River System of Assam, India
    Indian J. Fish., 68(2): 8-14, 2021 8 DOI: 10.21077/ijf.2021.68.2.102154-02 Investigations on age, growth and mortality parameters of Ailia coila (Hamilton, 1822) (Siluriformes: Ailiidae) from Brahmaputra river system of Assam, India PRANAB GOGOI1, SURENDRA KUMAR AHIRWAL2*, S. K. CHAKRABORTY3, B. K. BHATTACHARJYA4, A. K. JAISWAR3, JASPREET SINGH2 AND P. R. BEHERA1 1ICAR-Central Inland Fisheries Research Institute, Kolkata Centre, C.G.O. Complex, Salt Lake City, Kolkata - 700 064 West Bengal, India 2ICAR-Research Complex for Eastern Region, Division of Livestock and Fishery Management, Patna - 800 014 Bihar, India 3ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai - 400 061, Maharashtra, India 4ICAR-Central Inland Fisheries Research Institute, Regional Centre, HOUSEFED Complex, Guwahati - 781 006 Assam, India e-mail: [email protected] ABSTRACT The present study deals with the detailed investigation on population dynamics of the near-threatened catfish Ailia coila (Hamilton, 1822), which inhabits the Brahmaputra River of India and forms an important component of freshwater inland fishery, providing nutritional and financial security to the local community. A total of 1034 individuals were collected by weekly sampling from the Uzanbazar and Dhubri landing centres of this river system from September 2013 to April 2014. -1 The estimated asymptotic length (L∞), growth coefficient (K) and age at zero length 0(t ) of A. coila were 268 mm, 0.87 yr and t0 = 0.000028 years respectively. Estimated total mortality (Z), natural mortality (M) and fishing mortality coefficient (F) were 5.76, 1.63 and 4.13 yr-1 respectively. Using von Bertalanffy growth formula (VBGF) the length attained at the end of first, second and third years of life were estimated at 156, 221 and 248 mm, respectively.
    [Show full text]
  • Report on Monitoring of Ecological Health of the Mekong River
    Mekong River Commission REPORT ON MONITORING OF ECOLOGICAL HEALTH OF THE MEKONG RIVER by Lieng Sopha Inland Fisheries Research and Development Institute (IFReDI) Department of Fisheries, Phnom Penh, Cambodia Contract No. PP03-035 Period: March-December 2003 INTRODUCTION Besides rice, fishes are important to mankind as a vital source of protein and cash income for many of the poor in the Mekong River Basin. Fish is a highest trophic level of aquatic animal and main resources in the Mekong River System. In the Mekong, fish are the major protein consumed more than other meats such as poultry, pork, and beef. Fish is a traditional product such as fish paste, and smoked fish are an invaluable source of calcium, vitamin A, and other nutrients. Fish is easier to digest and still comparatively cheap, the poor can afford to buy and can find almost everywhere. Fish is not only a source of vital protein to the population, it also provides employment for the rural people, gaining some of foreign exchange and creating opportunity for recreation such as ornamental and sport fishes. In 2003, the annual catch in the whole Lower Mekong Basin, Cambodia, Lao PDR, Thailand, and Vietnam is estimated 1.5 millions tones, with another 500,000 tons raised in reservoir an other forms of aquaculture. The annual value of the capture fishery is an estimated USD 1,042 million, aquaculture an estimated USD 273 million and the reservoir fishery an estimated USD 163 million, excluding the considerable earnings from trading and processing (MRC report, 2003). The fishery of the Mekong is very important for the 55 million people who live in the Lower Mekong Basin.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Fish Species Composition and Catch Per Unit Effort in Nong Han Wetland, Sakon Nakhon Province, Thailand
    Songklanakarin J. Sci. Technol. 42 (4), 795-801, Jul. - Aug. 2020 Original Article Fish species composition and catch per unit effort in Nong Han wetland, Sakon Nakhon Province, Thailand Somsak Rayan1*, Boonthiwa Chartchumni1, Saifon Kaewdonree1, and Wirawan Rayan2 1 Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phang Khon, Sakon Nakhon, 47160 Thailand 2 Sakon Nakhon Inland Fisheries Research and Development Center, Mueang, Sakon Nakhon, 47000 Thailand Received: 6 August 2018; Revised: 19 March 2019; Accepted: 17 April 2019 Abstract A study on fish species composition and catch per unit effort (CPUE) was conducted at the Nong Han wetland in Sakon Nakhon Province, Thailand. Fish were collected with 3 randomized samplings per season at 6 stations using 6 sets of gillnets. A total of 45 fish species were found and most were in the Cyprinidae family. The catch by gillnets was dominated by Parambassis siamensis with an average CPUE for gillnets set at night of 807.77 g/100 m2/night. No differences were detected on CPUE between the seasonal surveys. However, the CPUEs were significantly different (P<0.05) between the stations. The Pak Narmkam station had a higher CPUE compared to the Pak Narmpung station (1,609.25±1,461.26 g/100 m2/night vs. 297.38±343.21 g/100 m2/night). The results of the study showed that the Nong Han Wetlands is a lentic lake and the fish abundance was found to be medium. There were a few small fish species that could adapt to living in the ecosystem. Keywords: fish species, fish composition, abundance, CPUE, Nong Han wetland 1.
    [Show full text]