A New Genus of Pliopithecoid from the Late Early Miocene of China and Its Implications for Understanding the Paleozoogeography of the Pliopithecoidea

Total Page:16

File Type:pdf, Size:1020Kb

A New Genus of Pliopithecoid from the Late Early Miocene of China and Its Implications for Understanding the Paleozoogeography of the Pliopithecoidea Journal of Human Evolution 145 (2020) 102838 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol A new genus of pliopithecoid from the late Early Miocene of China and its implications for understanding the paleozoogeography of the Pliopithecoidea * Terry Harrison a, Yingqi Zhang b, c, , Guangbiao Wei d, Chengkai Sun e, Yuan Wang b, c, Jinyi Liu b, c, Haowen Tong b, c, Baiting Huang f,FanXuf a Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, 10003, USA b Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, People's Republic of China c CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, People's Republic of China d Chongqing Institute of Geological Survey, Chongqing, 401122, People's Republic of China e Division of Natural History, Shandong Museum, Jinan, 250014, People's Republic of China f Cultural Heritage Administration of Fanchang County, Wuhu City, Anhui Province, Wuhu, 241200, People's Republic of China article info abstract Article history: A diversity of pliopithecoids is known from Miocene localities in Europe, but until recently, this group Received 20 March 2020 was relatively poorly represented in China. However, new discoveries have shown that Chinese pliopi- Accepted 26 May 2020 thecoids were taxonomically diverse and geographically widespread. The earliest pliopithecoids in China Available online 10 July 2020 (and Eurasia) are Dionysopithecus and Platodontopithecus from the Early Miocene of Sihong, Jiangsu (~19À18 Ma). During the Middle Miocene (~15À12 Ma), several species of pliopithecoids are recorded at Keywords: localities in Gansu Province (Laogou), Inner Mongolia (Damiao), Xinjiang Uygur Autonomous Region Pliopithecid (Tieersihabahe), and Ningxia Hui Autonomous Region (Tongxin). Finally, a late-surviving anapithecine Crouzeliid Dental morphology crouzeliid, Laccopithecus robustus, is known from the Late Miocene (~7 Ma) of Shihuiba in Yunnan, which Phylogeny postdates the extinction of pliopithecoids in Europe (during MN 10). Paleontological investigations at a Zoogeography late Early Miocene locality near Fanchang in Anhui Province have yielded a large sample of isolated teeth (more than one hundred) of a previously unknown species of pliopithecoid. The associated micro- mammals indicate an age contemporaneous with the Shanwang Formation in Shandong Province (MN 3 e4, ~18À17 Ma). All of the permanent teeth are represented except for I2. With its unique suite of dental features, the Fanchang pliopithecoid can be attributed to a new species and genus. Shared derived features of the lower molars confirm that the Fanchang pliopithecoid has its closest affinities with Eu- ropean crouzeliids, but a number of primitive traits indicate that it is a stem member of the clade. The evidence points to China as an important center for the early diversification of pliopithecoids. Contrary to previous zoogeographic scenarios, the occurrence of an early crouzeliid in China implies that the Plio- pithecidae and Crouzeliidae may have diverged from a stem pliopithecoid in Asia during the Early Miocene before their arrival in Europe. © 2020 Elsevier Ltd. All rights reserved. 1. Introduction Eurasia at ~21 Ma (Andrews et al., 1996; Harrison, 2005, 2013). The pliopithecoids were a relatively diverse and successful group, with Pliopithecoids are an extinct clade of stem catarrhines from the 10 genera and 19 species currently recognized, spanning more than Miocene of Eurasia. They were the first catarrhines to migrate out of 10 million years, with a geographical range that extended from the Africa, soon after the collision of the Afro-Arabian plate with Iberian Peninsula to eastern China (Andrews et al., 1996; Begun, 2002; Harrison, 2013; Marigo et al., 2014). They became extinct in Eurasia during the Late Miocene, presumably as a consequence of progressive cooling and increased seasonality at higher latitudes * Corresponding author. associated with a corresponding shift from subtropical evergreen E-mail address: [email protected] (Y. Zhang). https://doi.org/10.1016/j.jhevol.2020.102838 0047-2484/© 2020 Elsevier Ltd. All rights reserved. 2 T. Harrison et al. / Journal of Human Evolution 145 (2020) 102838 woodlands to habitats dominated by deciduous broad-leaved the Early Miocene of Sihong, Jiangsu (~19À18 Ma), are the earliest woodlands and C4 grasslands (Fortelius et al., 2014). pliopithecoids in China (and Eurasia) (Harrison and Gu, 1999). The alpha taxonomy of the clade is well established (Andrews During the Middle Miocene (~15À12 Ma), several species of plio- et al., 1996; Begun, 2002, 2017; Harrison, 2005, 2013; Alba and pithecoids are recorded at localities in Gansu Province (Laogou), Moya-Sol a, 2012), with differences of opinion mainly pertaining Inner Mongolia Autonomous Region (Damiao), Xinjiang Uygur to the taxonomic ranks applied to the various subclades. The clas- Autonomous Region (Tieersihabahe), and Ningxia Hui Autonomous sification adopted here is presented in Table 1. The Pliopithecoidea Region (Tongxin) (Harrison et al., 1991; Wu et al., 2003; Deng, is differentiated into four families: Dionysopithecidae, Pliopitheci- 2004; Deng et al., 2004; Zhang and Harrison, 2008; Kaakinen dae, Crouzeliidae, and Krishnapithecidae. The dionysopithecids et al., 2015). Finally, a late-surviving crouzeliid, Laccopithecus (including Dionysopithecus and Platodontopithecus) represent early robustus (Wu and Pan, 1984, 1985; Pan, 1988), is known from the stem pliopithecoids from China (Harrison and Gu, 1999). The plio- Late Miocene (~7 Ma) of Shihuiba in Yunnan, which postdates the pithecids (including Pliopithecus) and crouzeliids (including Ple- extinction of pliopithecoids in Europe (during MN 10; Fig. 1). The siopliopithecus, Anapithecus, Laccopithecus, Egarapithecus, and present study provides further evidence to document the remark- Barberapithecus), from the Middle and Late Miocene of Eurasia are able diversity of pliopithecoids known from the Miocene of China. more derived than the dionysopithecids (Andrews et al., 1996; In 1984, fossil vertebrates of Miocene age were discovered in a Begun, 2002; Harrison, 2005, 2013; Alba and Moya-Sol a, 2012). limestone quarry at Laili Mountain near the village of Suncun in Krishnapithecidae includes a single highly derived species, Krish- Fanchang County, Anhui Province. The fossils were forwarded to napithecus krishnaii, from the Late Miocene of India (Sankhyan the Anhui Museum in Hefei and the Institute of Vertebrate Pale- et al., 2017). ontology and Paleoanthropology (IVPP) in Beijing (Zheng, 1993; Jin Pliopithecoids are best known from Europe (with at least 12 and Liu, 2009). Full-scale excavations at the site, directed by species), and until recently, they were relatively poorly represented Changzhu Jin in 1999 and 2000, led to the recovery of a diverse in Asia. However, new discoveries in Thailand, India, and especially assemblage of fossil mammals, including more than one hundred China have shown that Asian pliopithecoids were taxonomically isolated teeth of a large species of pliopithecoid (Jin and Wei, 1999). diverse and geographically widespread (Wu and Pan, 1984, 1985; The associated micromammals (Qiu and Jin, 2016, 2017) correspond Qiu and Guan, 1986; Pan, 1988; Suteethorn et al., 1990; Harrison most closely to those from the Shanwang and Xiacaowan Forma- et al., 1991; Wu et al., 2003; Harrison, 2005, 2013; Zhang and tions (Qiu et al., 1999; Qiu and Qiu, 2013) and indicate an estimated Harrison, 2008; Chaimanee et al., 2015; Kaakinen et al., 2015; age of ~18À17 Ma (late Early Miocene, equivalent to middle Sankhyan et al., 2017). Dionysopithecus and Platodontopithecus from Table 1 Classification of the Pliopithecoidea (after Andrews et al., 1996; Alba and Moya-Sol a, 2012; Harrison, 2013; Alba and Berning, 2013; Sankhyan et al., 2017). Order: Primates Linnaeus, 1758 Suborder: Anthropoidea Mivart, 1864 Infraorder: Catarrhini E. Geoffroy Saint-Hilaire, 1812 Superfamily: Pliopithecoidea Zapfe, 1961a Family: Dionysopithecidae Harrison and Gu, 1999 Dionysopithecus Li, 1978 D. shuangouensis Li, 1978 D. orientalis (Suteethorn et al., 1990) Platodontopithecus Gu and Lin, 1983 Plat. jianghuaiensis Gu and Lin, 1983 Family: Krishnapithecidae Sankhyan et al., 2017 Krishnapithecus Ginsburg and Mein, 1980 K. krishnaii (Chopra and Kaul, 1979) Family: Pliopithecidae Zapfe, 1961a Pliopithecus Gervais, 1849 Plio. antiquus (Blainville, 1839) Plio. bii Wu et al., 2003 Plio. canmatensis Alba et al., 2010 Plio. piveteaui Hürzeler, 1954 Plio. platyodon Biedermann, 1863 Plio. vindobonensis Zapfe and Hürzeler, 1957 Plio. zhanxiangi Harrison et al., 1991 Family: Crouzeliidae Ginsburg and Mein, 1980 Subfamily: Crouzeliinae Ginsburg and Mein, 1980 Crouzelia Ginsburg, 1975 C. auscitanensis Ginsburg, 1975 C. rhodanica Ginsburg and Mein, 1980 Plesiopliopithecus Zapfe, 1960 Plesio. lockeri (Zapfe, 1960) Barberapithecus Alba and Moya-Sol a, 2012 B. huerzeleri Alba and Moya-Sol a, 2012 Subfamily: Anapithecinae Alba and Moya-Sol a, 2012 (new rank) Anapithecus Kretzoi, 1975 A. hernyaki (Kretzoi, 1975) cf. A. priensis (Welcomme et al., 1991) Laccopithecus Wu and Pan, 1984 L. robustus Wu and Pan, 1984 Egarapithecus Moya-Sol a et al., 2001 E. narcisoi Moya-Sol a et al., 2001 T. Harrison et al. / Journal of Human Evolution 145 (2020) 102838 3 Figure 1. Map showing
Recommended publications
  • Geckos from the Middle Miocene of Devı´Nska Nova´ Ves (Slovakia): New Material and a Review of the Previous Record
    Swiss Journal of Geosciences (2018) 111:183–190 https://doi.org/10.1007/s00015-017-0292-1 (0123456789().,-volV)(0123456789().,-volV) Geckos from the middle Miocene of Devı´nska Nova´ Ves (Slovakia): new material and a review of the previous record 1 2 3 Andrej Cˇ ernˇ ansky´ • Juan D. Daza • Aaron M. Bauer Received: 16 May 2017 / Accepted: 17 July 2017 / Published online: 16 January 2018 Ó Swiss Geological Society 2017 Abstract New species of a gecko of the genus Euleptes is described here—E. klembarai. The material comes from the middle Miocene (Astaracian, MN 6) of Slovakia, more precisely from the well-known locality called Zapfe‘s fissure fillings (Devı´nska Nova´ Ves, Bratislava). The fossil material consists of isolated left maxilla, right dentary, right pterygoid and cervical and dorsal vertebrae. The currently known fossil record suggests that isolation of environment of the Zapfe‘s fissure site, created a refugium for the genus Euleptes in Central Europe (today, this taxon still inhabits southern part of Europe and North Africa—E. europea), probably resulting from the island geography of this area during the middle Miocene. The isolation of this territory might have facilitated allopatric speciation. Keywords Gekkota Á Euleptes Á Neogene Á Zapfe’s fissure 1 Introduction superb preservation of skeletal and soft tissue (Bo¨hme 1984; Daza and Bauer 2012; Daza et al. 2013b, 2016). Gekkota (geckos and pygopods) is a speciose clade of Very important and superbly preserved find in Baltic amber lepidosaurs, comprising more than 1600 extant species is represented by Yantarogecko balticus from the Early (Bauer 2013; Uetz and Freed 2017).
    [Show full text]
  • Gibbon Classification : the Issue of Species and Subspecies
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1988 Gibbon classification : the issue of species and subspecies Erin Lee Osterud Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biological and Physical Anthropology Commons, and the Genetics and Genomics Commons Let us know how access to this document benefits ou.y Recommended Citation Osterud, Erin Lee, "Gibbon classification : the issue of species and subspecies" (1988). Dissertations and Theses. Paper 3925. https://doi.org/10.15760/etd.5809 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF Erin Lee Osterud for the Master of Arts in Anthropology presented July 18, 1988. Title: Gibbon Classification: The Issue of Species and Subspecies. APPROVED BY MEM~ OF THE THESIS COMMITTEE: Marc R. Feldesman, Chairman Gibbon classification at the species and subspecies levels has been hotly debated for the last 200 years. This thesis explores the reasons for this debate. Authorities agree that siamang, concolor, kloss and hoolock are species, while there is complete lack of agreement on lar, agile, moloch, Mueller's and pileated. The disagreement results from the use and emphasis of different character traits, and from debate on the occurrence and importance of gene flow. GIBBON CLASSIFICATION: THE ISSUE OF SPECIES AND SUBSPECIES by ERIN LEE OSTERUD A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS in ANTHROPOLOGY Portland State University 1989 TO THE OFFICE OF GRADUATE STUDIES: The members of the Committee approve the thesis of Erin Lee Osterud presented July 18, 1988.
    [Show full text]
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • The Mio-Pliocene European Primate Fossil Record: Dynamics and Habitat Tracking
    Journal of Human Evolution 47 (2004) 323e341 The Mio-Pliocene European primate fossil record: dynamics and habitat tracking Jussi T. Eronena,*, Lorenzo Rookb aDepartment of Geology, P.O. Box 64, FIN-00014 University of Helsinki, Finland bDipartimento di Scienze della Terra, Universita di Firenze, Via G.La Pira 4, 59121 Firenze, Italy Received 16 September 2003; accepted 13 August 2004 Abstract We present here a study of European Neogene primate occurrences in the context of changing humidity. We studied the differences of primate localities versus non-primate localities by using the mammal communities and the ecomorphological data of the taxa present in the communities. The distribution of primates is influenced by humidity changes during the whole Neogene, and the results suggest that the primates track the changes in humidity through time. The exception to this is the Superfamily Cercopithecoidea which shows a wider range of choices in habitats. All primate localities seem to differ from non-primate localities in that the mammal community structure is more closed habitat oriented, while in non-primate localities the community structure changes towards open-habitat oriented in the late Neogene. The differences in primate and non-primate localities are stronger during the times of deep environmental change, when primates are found in their preferred habitats and non-primate localities have faunas better able to adapt to changing conditions. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: fossil primates; Cercopithecoidea; herbivore humidity proxy; hypsodonty; community structure; habitat tracking; Late Neogene; Europe Introduction look at the paleoecological scenarios for the temporal and geographical variation of different The Primate record of Europe is comparatively primate families and genera (e.g.
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Taxonomic Tapestries the Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More Information
    Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index Abies, 382, 383 Albanensia grimmi, 157, 158 Abruzzi-Apulia palaeobioprovince, 191–3, Albanohyus, 403 197 Albanohyus pygmaeus, 119 Aceraceae, 184 Alcelaphini, 444 Aceratherium, 217, 221, 223 algal symbionts, 282–3, 311, 315 Aceratherium incivisum, 167, 170 Alicornops alfambrense, 119, 173 Aceratherium kiliasi, 212 Alicornops simorrense, 114, 119 Aceritherium incisivum, 119 Alilepus, 145, 198–9 Aceritherium tetradactylum, 119 Allohyaena kadici, 173 Acerorhinus, 253, 261 Allosoricinae, 392, 394 Acteocemas, 96, 98 Allospalax, 152 Adcrocuta, 104, 114, 209, 212 alluvial sediments Adcrocuta eximia, 118, 167, 173, 209, 211, NE Spain, 398–9 214, 215, 218, 220, 222, 230, 449 Sinap, 243–7 Aden, Gulf of, Pliocene tephra correlation, Tuscany, 365–8 24, 31, 31–51 Alpine foredeep, 13, 15 Aegean, rodent faunas, 17 altitudinal position, 89–90 aeolian deposits, Upper Valdarno basin, altitudinal trees, 379, 383 363–5 Altomiramys,96 Aepycerotini, 444 Alveolinella, 291 Afghanistan, Miocene primate taxa, 458 Amblycoptus, 267, 268, 270, 393 Africa American mammal immigration to Europe climate, 62–4 9, 13, 17, 446;, see also Bering climate/vegetation relationship, 64–8, landbridge 290, 292 American shrews, 392, 393, 394–5 correspondence analysis, recent faunas, Ammonia, 291 419–29 Amphechinus, 265 palaeoenvironment reconstruction, 290, amphibians, Italy, 191 292 Amphicyon, 14, 103
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Middle and Late Miocene Terrestrial Vertebrate Localities And
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 2006 Band/Volume: 30 Autor(en)/Author(s): Nargolwalla Mariam C., Hutchison Matt P., Begun David R. Artikel/Article: Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin 347-360 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 30:347-360, Wien 2006 Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin by Mariam C. N a r g o l w a l l a *),Matt P. H u t c h is o n & David R. B e g u n Nargolwalla , M.C., H utchison , M.P. & Begun , D.R., 2006. Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin. — Beitr. Palaont., 30:347-360, Wien. Abstract Crisis,’ in addition to the paleoenvironmental evidence for the location and timing of potential corridors for The Pannonian Basin, surrounded by the Carpathians, faunal interchange. Alps and Dinarides, has long been known as a sedimen­ tary catchment area rich in information on the environ­ Key words: Miocene, Pannonian Basin, Lake Pannon, fos­ mental and biological evolution of Central Europe in the sil, vertebrate, paleoenvironment, paleogeography Miocene. We present here the results of an integrative study using GIS to synthesize the findings from our last three years of survey and excavation of new terrestrial Kurzfassung vertebrate fossil localities of Miocene age, together with the most recent paleogeographic reconstructions of the Das Pannonische Becken, umgeben von den Karpaten, region and published faunal and environmental data, Alpen und Dinariden, ist schon lange bekannt für seinen with the purpose of presenting a revised, comprehensive Sedimentreichtum und für seine Informationen bezüglich history of the paleogeography and paleobiogeography der Umweltentwicklung und der biologischen Evolution of the Pannonian Basin.
    [Show full text]
  • A New Dryopithecine Mandibular Fragment from the Middle Miocene
    Journal of Human Evolution 145 (2020) 102790 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Short Communications A new dryopithecine mandibular fragment from the middle Miocene of Abocador de Can Mata and the taxonomic status of ‘Sivapithecus’ occidentalis from Can Vila (Valles-Pened es Basin, NE Iberian Peninsula) * David M. Alba a, , Josep Fortuny a, Josep M. Robles a, Federico Bernardini b, c, Miriam Perez de los Ríos d, Claudio Tuniz c, b, e, Salvador Moya-Sol a a, f, g, * Clement Zanolli h, a Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, Cerdanyola del Valles, Barcelona, 08193, Spain b Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche ‘Enrico Fermi’, Piazza del Viminale 1, Roma, 00184, Italy c Multidisciplinary Laboratory, The ‘Abdus Salam’ International Centre for Theoretical Physics, Via Beirut 31, Trieste, 34151, Italy d ~ Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Ignacio Carrera Pinto, 1045, Nunoa,~ Santiago, Chile e Center for Archaeological Science, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia f Unitat d'Antropologia Biologica, Department de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, Campus de la UAB, Cerdanyola del Valles, Barcelona, Spain g Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain h Laboratoire PACEA, UMR 5199 CNRS, Universite de Bordeaux, allee Geoffroy Saint Hilaire, 33615 Pessac Cedex, France article info Article history: 2012; Alba et al., 2018).
    [Show full text]