The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More Information

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More Information Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index Abies, 382, 383 Albanensia grimmi, 157, 158 Abruzzi-Apulia palaeobioprovince, 191–3, Albanohyus, 403 197 Albanohyus pygmaeus, 119 Aceraceae, 184 Alcelaphini, 444 Aceratherium, 217, 221, 223 algal symbionts, 282–3, 311, 315 Aceratherium incivisum, 167, 170 Alicornops alfambrense, 119, 173 Aceratherium kiliasi, 212 Alicornops simorrense, 114, 119 Aceritherium incisivum, 119 Alilepus, 145, 198–9 Aceritherium tetradactylum, 119 Allohyaena kadici, 173 Acerorhinus, 253, 261 Allosoricinae, 392, 394 Acteocemas, 96, 98 Allospalax, 152 Adcrocuta, 104, 114, 209, 212 alluvial sediments Adcrocuta eximia, 118, 167, 173, 209, 211, NE Spain, 398–9 214, 215, 218, 220, 222, 230, 449 Sinap, 243–7 Aden, Gulf of, Pliocene tephra correlation, Tuscany, 365–8 24, 31, 31–51 Alpine foredeep, 13, 15 Aegean, rodent faunas, 17 altitudinal position, 89–90 aeolian deposits, Upper Valdarno basin, altitudinal trees, 379, 383 363–5 Altomiramys,96 Aepycerotini, 444 Alveolinella, 291 Afghanistan, Miocene primate taxa, 458 Amblycoptus, 267, 268, 270, 393 Africa American mammal immigration to Europe climate, 62–4 9, 13, 17, 446;, see also Bering climate/vegetation relationship, 64–8, landbridge 290, 292 American shrews, 392, 393, 394–5 correspondence analysis, recent faunas, Ammonia, 291 419–29 Amphechinus, 265 palaeoenvironment reconstruction, 290, amphibians, Italy, 191 292 Amphicyon, 14, 103 Pliocene environmental change, 66–77, Amphicyon castellanus, 116 446 Amphicyon major, 116, 172 savanna fauna evolution, 437–8, 446–9 amphicyonids, 103, 104, 172, 174, 403 Africa-Eurasia palaeogeography, 14–17 Amphilagus, 267 African entrants into Europe, 96, 98, 99, Amphilagus sarmaticus, 265, 266 101, 106, 115, 197, 271, 291, 297, 406 Amphimoschus-like cervid, Italy, 192 African monsoon, 62 Amphiope bioculata, 278 Afromontane vegetation, 293 Amphiprax, 104 Afropithecus, 463–73 Amphiprox anocerus, 120, 170 Agenian, 90 Amphitragulus, 94, 100 Agnotherium antiquus, 116 Anacus arvernensis, 116, 173 Albanensia, 104, 146, 181 Anapithecus, 116, 295, 460–1, 477 © Cambridge University Press www.cambridge.org Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index Anapithecus cf. hernyaki, 169, 174, 461 Aragonian-Vallesian transition, 113–24 489 Anapithecus hernyaki, 169 Aragoral mudejar, 121 Anatolia, Turkey see Sinap Formation Archaeodesmana, 145, 176, 178, 184 Anatolian plate, 14–17 Archaeodesmana cf. pontica, 163 Anchitherium, 13, 90, 96, 113, 119, 133, 252 Archaeodesmana vinea, 157, 158, 161, 162, Anchitherium aurelianensis, 172 163 Anchitherium sampelayoi, 119 Arctaphicyon, 173 Ancyclotherium pentelici, 119 Ardipithecus, 467, 473 Ancylotherium, 212, 415 Ardroverictis schmidkit., 117 Ancylotherium pentelicum, 218, 220, 221 aridity, 24, 28, 357–65, 407–8, 437 Andegameryx, 94, 96, 98 Africa, 64, 68, 69, 70, 71–3, 77, 446, 447 Angustidens, 178 mock aridity, 69, 70, 73 Ankarapithecus, 252, 261, 295, 465–76 Armantomys, 94, 96, 136 Ankarapithecus meteai, 461 Artemisia steppe, 379, 383, 477 anoa, 445 artiodactyls, 94, 96, 98, 100–1, 106, 119 anomalomyids, 105, 149, 150–2, 182 Central Europe, 170 Anomalomys, 105, 150, 182, 265, 267 Greece, 206, 208 Anomalomys cf. gaudryi, 157 Italy, 192, 197, 198 Anomalomys gaillardi, 158 Spain, 403 Anourosorex, 178, 184 Arvicolidae, 152, 162 Anourosorex kormosi, 162 Asellia, 145 Anourosorex squamipes, 393 Asellia cf. mariatheresae, 158, 200 Anourosoricini, 393, 395 Asia, correspondence analysis, recent Antarctic ice, 17, 68, 403 faunas, 419–29 antelopes, 436, 444 Asian entrants into Europe, 95, 98, 99, 101, Antemus, 402 106, 178–81, 197, 271, 406 Anthracoglis, 195 Asoriculus, 176, 177, 393 Anthracoglis cf. marinoi, 195 Asoriculus gibberodon, 393 Anthracoglis marinoi, 194, 195 Asteraceae, 382 Anthracomys lorenzi, 198–9 Atlanteroxerus, 136, 252 Anthracomys majori, 195, 196 Atlanteroxerus cf. rhodius, 200 anthracotherids, 95, 105–6, 195 atmospheric circulation, 59–62, 372, 397, Anthracotherium,11 407 Apodemus, 106, 151, 271 Aureliachoerus,96 Apodemus aV. primaevus,89 Australopithecus, 449 Apodemus etruscus, 198–9 Austria Apodemus gudrunae, 151, 164, 200 Miocene primate taxa, 457 Apula amberti, 341, 342 non-marine molluscs, 334–5, 336–7, 339 Apula escoYerae, 338, 340 see also Central Europe Apula koehnei, 345 Austroportax, 101, 102, 106, 121 Aquitanian vegetation, 380–1 Avicennia mangrove, 380, 381, 383 Arabian plate, 14–17 Axis axis, 445 Arabian Sea, Pliocene tephra correlations, 23–51 Baranogale adroveri, 117 Aragonian Baranogale cf. adroveri, 173 MN units, Spain, 86, 86–7, 96–102 Barberahyus, 114 rodent assemblages, Spain, 127–38 Barberahyus castellensis, 1194 shrews, 392 basin correlations, Eurasia, 85–90, 258–9 © Cambridge University Press www.cambridge.org Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index 490 basin facies analysis, Tuscany, 355–72 boselaphine bovids, 113, 212, 224 beavers 103, 104, 105, 166, 169, 181, 184; bovids, 98, 99, 101, 102, 104, 106–7, 113, see also Castoridae 114, 425, 441 Begertherium, 253 Greece, 206, 208–9, 212, 224, 227, 228, Belbus, 252 229, 230, 231, 415, 418, 422, 429 Belbus beaumonti, 218, 449 Italy, 195, 198, 200 Bensonomys gileyi, 402 Siwaliks, 405 benthonic foraminifera, 282–93, 477 Turkey, 254 Beremendia, 394 Brachyodus, 95, 96 Beremendia Wssidens, 394 Brachyodus onoideus, 205, 210 Beremendia minor, 394 Brachypotherium, 119, 253, 404 Beremendiini, 394, 395 Brachypotherium goldfussi, 167, 173 Bering landbridge, 11, 17, 287, 290, 293, Bransatoglis, 96, 104, 134, 403 296, 298, 393 Bubalus quarlesi (mountain anoa), 445 Beryslavsky mammalian complex, 268–70 Budorcas (takins), 445 Betulaceae, 184 Bunolistriodon, 13, 98, 100, 206, 253 Bilkynsky mammalian complex, 270–1 Bunolistriodon lockarti, 210 biochronology Byzantinia, 252, 270 hominoid primates, 455–63 non-marine molluscs, 329 Cainotherium, 96, 100 biodiversity, and soricids, 391 Calatayud-Daroca Basin, 127–38 biogeography Calatayud-Teruel Basin, 113–24 and coral data, 312–14 Calligonum, 382 hominoid primates, 454–81 Calomyscus,86 biome method, 380 Camelopardis attica, 230 biostratigraphy camels, 445 Late Miocene, Central Europe, 167–74, Can Vilella, Spain, 89 178–82 Canalicia, 332, 333 Miocene, Spain, 84–107 Canalicia attracta, 332 MN mammal units, 84–107 Canis cipio, 116 Oligocene-Miocene, W Eurasia, 274–98 ‘Caprotragoides’,99 Upper Miocene, France, 153–4 Cardium lipoldi,12 Birgerbohlinia, 105, 121 Carnivora Bison bison athabascae, 445 Late Miocene, Central Europe, 174 Bithinia, 366 Vallesian, Spain, 116–18, 403 Bitlis Zone, 16 Carychiopsis schwageri, 332 bivalves, Paratethys, 12, 278 Carychium (Carychiella) puisseguri, 342 Blackia, 146, 181, 265 Carychium (Saraphia) nouleti, 335 Blackia miocaenica, 157, 158, 162 Carychium (Saraphia) pachychilum, 342, Blarinella, 176, 393 344 Blarinellini, 392–3, 394 Carychium (Saraphia) pseudotetrodon, 344 Blarinini, 393 Caspicyclotus, 333 Blarinoides, 145, 164, 393 Castillomys, 106, 198–9 Bohlinia, 253, 261 Castor, 181 Bohlinia attica, 211, 213, 215, 221, 223, 230, Castor cf. praeWber, 198–9 441, 449 Castoridae 145–6, 402, 403, 424;, see also Bohlinia nikitiae, 213 beavers Bos gaurus (gaur), 445 Castromys, 151, 164 © Cambridge University Press www.cambridge.org Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index Cathaya, 379, 382, 383 Chiroptera, 145, 157–64, 195 491 Cedrus, 379, 382, 383 chitals, 445 Celadensia, 153 Chlamys albina, 278 Celadensia grossetana, 157 Chlamys submalvinae, 278 cenogram analysis, faunal diversity, 122–3 Choerolophodon, 254 Central Europe Choerolophodon chioticus, 206, 210 Wller9 Late Miocene faunal province, Choerolophodon pentelici, 211, 212, 213, 417–18 214, 215, 216, 217, 218, 219, 220, 221, Late Miocene mammals, 165–85 223, 224, 225, 230 Miocene primate taxa, 457 Chondrinidae, 329, 333 palaeoclimate change and non-marine chronostratigraphy, 48–51, 84–5 molluscs, 328–49 hominoid primates, 455–63 Centralomys benericettii, 200 lignites, Tuscany, 365–8 ‘Cepaea’, 333 macromammals, Spain, 123 ‘Cepaea’ concudensis, 338 non-marine molluscs, 329 ‘Cepaea’ moroguesi, 331 Oligocene-Miocene, W Eurasia, 274–98 ‘Cepaea’ silvana silvana, 331 Sinap Formation, 247–9 ‘Cepaea’ subsulcosa, 331 Valle`s-Penede`s Basin, 397–408 Ceratonia, 382 Circamustela dechaseauxi, 117 Ceratotherium, 252, 261, 449 Cistus, 379 Ceratotherium neumayri, 212, 214, 216, cladograms, 463–74 217, 221, 223 Clausilia, 335 cercopithecids 169, 214, 216, 223, 224, 225, Clausilia baudoni, 342 296, 405, 413, 414;, see also Clausilia baudoni baudoni, 345 Mesopithecus Clausilia baudoni tillensis, 345 Cervavitulus mimus, 173 Clausilia hollabrunnensis, 340 cervids, 96, 99, 101, 104, 105, 107, 441, 444 Clausilia portisi, 345 Central Europe, 172, 173, 174 Clausilia produbia, 345 Greece, 415, 417 Clausilia rolfbrandti, 345 Italy, 192, 198, 200 Clausilia strauchiana, 345 Turkey, 252, 261 Clausilioidea, 329–47 Cervus canadensis (wapiti), 444, 445 climate, Late Miocene, France, 153 Cervus unicolor (sambar), 444, 445 climate change, and mammal turnover, Chalicomys, 103, 104, 146, 403 Late Miocene,
Recommended publications
  • Aspects of the Functional Morphology in the Cranial and Cervical Skeleton of the Sabre-Toothed Cat Paramachairodus Ogygia (Kaup, 1832) (Felidae
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 1443 363377 Original Article FUNCTIONAL MORPHOLOGY OF P. OGYGIAM. J. SALESA ET AL. Zoological Journal of the Linnean Society, 2005, 144, 363–377. With 11 figures Aspects of the functional morphology in the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: Downloaded from https://academic.oup.com/zoolinnean/article-abstract/144/3/363/2627519 by guest on 18 May 2020 implications for the origins of the machairodont killing bite MANUEL J. SALESA1*, MAURICIO ANTÓN2, ALAN TURNER1 and JORGE MORALES2 1School of Biological & Earth Sciences, Byrom Street, Liverpool John Moores University, Liverpool, L3 3AF, UK 2Departamento de Palaeobiología, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal, 2. 28006 Madrid, Spain Received January 2004; accepted for publication March 2005 The skull and cervical anatomy of the sabre-toothed felid Paramachairodus ogygia (Kaup, 1832) is described in this paper, with special attention paid to its functional morphology. Because of the scarcity of fossil remains, the anatomy of this felid has been very poorly known. However, the recently discovered Miocene carnivore trap of Batallones-1, near Madrid, Spain, has yielded almost complete skeletons of this animal, which is now one of the best known machairodontines. Consequently, the machairodont adaptations of this primitive sabre-toothed felid can be assessed for the first time. Some characters, such as the morphology of the mastoid area, reveal an intermediate state between that of felines and machairodontines, while others, such as the flattened upper canines and verticalized mandibular symphysis, show clear machairodont affinities.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • O Ssakach Drapieżnych – Część 2 - Kotokształtne
    PAN Muzeum Ziemi – O ssakach drapieżnych – część 2 - kotokształtne O ssakach drapieżnych - część 2 - kotokształtne W niniejszym artykule przyjrzymy się ewolucji i zróżnicowaniu zwierząt reprezentujących jedną z dwóch głównych gałęzi ewolucyjnych w obrębie drapieżnych (Carnivora). Na wczesnym etapie ewolucji, drapieżne podzieliły się (ryc. 1) na psokształtne (Caniformia) oraz kotokształtne (Feliformia). Paradoksalnie, w obydwu grupach występują (bądź występowały w przeszłości) formy, które bardziej przypominają psy, bądź bardziej przypominają koty. Ryc. 1. Uproszczone drzewo pokrewieństw ewolucyjnych współczesnych grup drapieżnych (Carnivora). Ryc. Michał Loba, na podstawie Nyakatura i Bininda-Emonds, 2012. Tym, co w rzeczywistości dzieli te dwie grupy na poziomie anatomicznym jest budowa komory ucha środkowego (bulla tympanica, łac.; ryc. 2). U drapieżnych komora ta jest budowa przede wszystkim przez dwie kości – tylną kaudalną kość entotympaniczną i kość ektotympaniczną. U kotokształtnych, w miejscu ich spotkania się ze sobą powstaje ciągła przegroda. Obydwie części komory kontaktują się ze sobą tylko za pośrednictwem małego okienka. U psokształtnych 1 PAN Muzeum Ziemi – O ssakach drapieżnych – część 2 - kotokształtne Ryc. 2. Widziane od spodu czaszki: A. baribala (Ursus americanus, Ursidae, Caniformia), B. żenety zwyczajnej (Genetta genetta, Viverridae, Feliformia). Strzałkami zaznaczono komorę ucha środkowego u niedźwiedzia i miejsce występowania przegrody w komorze żenety. Zdj. (A, B) Phil Myers, Animal Diversity Web (CC BY-NC-SA
    [Show full text]
  • Optimizing Phylogenetic Supertrees Using Answer Set Programming Laura Koponen1, Emilia Oikarinen1, Tomi Janhunen1, and Laura Säilä2 1 HIIT / Dept
    Optimizing Phylogenetic Supertrees Using Answer Set Programming Laura Koponen1, Emilia Oikarinen1, Tomi Janhunen1, and Laura Säilä2 1 HIIT / Dept. Computer Science, Aalto University 2 Dept. Geosciences and Geography, University of Helsinki Computational logic day 2015 — Aalto, Finland Outline Introduction — the supertree problem ASP Encodings — trees, quartets and projections Experiments — Felidae data Conclusions Koponen et al., Optimizing Phylogenetic Supertrees Using ASP Computational logic day 2015 2/31 I Several measures can be used used I Optimal tree not necessarily unique I Output: a phylogenetic tree that covers all taxa from input and reflects the relationships in input as well as possible The supertree problem I Input: a set of overlapping, possibly conflicting phylogenetic trees (rooted, leaf-labeled) Koponen et al., Optimizing Phylogenetic Supertrees Using ASP Computational logic day 2015 3/31 The supertree problem I Input: a set of overlapping, possibly conflicting phylogenetic trees (rooted, leaf-labeled) I Output: a phylogenetic tree that covers all taxa from input and reflects the relationships in input as well as possible I Several measures can be used used I Optimal tree not necessarily unique Koponen et al., Optimizing Phylogenetic Supertrees Using ASP Computational logic day 2015 4/31 Solving the supertree problem I Typically heuristic methods are used, e.g. matrix representation with Parsimony (MRP) [Baum, 1992; Ragan,1992] I input trees encoded into a binary matrix, and maximum parsimony analysis is then used to construct
    [Show full text]
  • A New, Fast Method to Search for Morphological Convergence with Shape Data
    This is a repository copy of A new, fast method to search for morphological convergence with shape data. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/163919/ Version: Published Version Article: Castiglione, Silvia, Serio, Carmela, Tamagnini, Davide et al. (7 more authors) (2019) A new, fast method to search for morphological convergence with shape data. PLoS ONE. e0226949. ISSN 1932-6203 https://doi.org/10.1371/journal.pone.0226949 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE A new, fast method to search for morphological convergence with shape data Silvia Castiglione1, Carmela Serio1, Davide Tamagnini2, Marina Melchionna1, Alessandro Mondanaro1,3, Mirko Di Febbraro4, Antonio Profico2, Paolo Piras5,6, 1 1 Filippo Barattolo , Pasquale RaiaID * 1 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, University of Naples Federico II, Napoli, Italy, 2 Dipartimento di Biologia Ambientale, Sapienza Università
    [Show full text]
  • Endemism and Migration in the Kochkor Basin? Identification and Description of Adcrocuta Eximia (Mammalia: Carnivora: Hyaenidae) and C.F
    Palaeontologia Electronica palaeo-electronica.org Endemism and migration in the Kochkor Basin? Identification and description of Adcrocuta eximia (Mammalia: Carnivora: Hyaenidae) and c.f. Paramachaerodus (Mammalia: Carnivora: Felidae) fossils at the Miocene locality of Ortok, Kyrgyzstan Sophie A. Miller, Paul Z. Barrett, Win N.F. McLaughlin, and Samantha S.B. Hopkins ABSTRACT Dentition from a Miocene hyaenid and a saber-toothed felid are described from the Chu Formation of Kyrgyzstan. Identified as Adcrocuta eximia (UOMNH F-70508) and c.f. Paramachaerodus (UOMNH F-70509), these represent one of the only formal- ized descriptions of fossil taxa from the Miocene in Kyrgyzstan. These specimens were recovered from the Ortok locality at the northwestern corner of the Kochkor Basin, the youngest of the known bone-bed localities in the Chu Formation. Using bio- and mag- netostratigraphy, the Chu Formation is attributed to the late Miocene to Pliocene, deposited approximately at 8 to 4 Ma. The Adcrocuta specimen consists of a partial dentary with condylar and angular processes, one upper, five lower teeth, and the par- tial root and alveoli of a fifth mandibular tooth. The c.f. Paramachaerodus specimen includes a partial M1, P4, and C1, and exhibits the features of the “scimitar-toothed” machairodontines. Preserved diagnostic characters place the Kyrgyz specimen closest to P. ogygia, although with certain features similar to that of P. transasiaticus, such as incipient crenulations on the canine. However, the age of the Kyrgyz specimen, approximately 6 Ma, is substantially younger than what is known for either of these taxa. We therefore hypothesize this Paramachaerodus specimen could be evidence of an endemic taxon in Kyrgyzstan from earlier migrating Asian species, potentially due to geological uplift with the Tien Shan Mountains.
    [Show full text]
  • A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae)
    A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae) Steven C. Wallace1*, Richard C. Hulbert Jr.2 1 Department of Geosciences, Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, Tennessee, United States of America, 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America Abstract South-central Florida’s latest Hemphillian Palmetto Fauna includes two machairodontine felids, the lion-sized Machairodus coloradensis and a smaller, jaguar-sized species, initially referred to Megantereon hesperus based on a single, relatively incomplete mandible. This made the latter the oldest record of Megantereon, suggesting a New World origin of the genus. Subsequent workers variously accepted or rejected this identification and biogeographic scenario. Fortunately, new material, which preserves previously unknown characters, is now known for the smaller taxon. The most parsimonious results of a phylogenetic analysis using 37 cranio-mandibular characters from 13 taxa place it in the Smilodontini, like the original study; however, as the sister-taxon to Megantereon and Smilodon. Accordingly, we formally describe Rhizosmilodon fiteae gen. et sp. nov. Rhizosmilodon, Megantereon, and Smilodon ( = Smilodontini) share synapomorphies relative to their sister-taxon Machairodontini: serrations smaller and restricted to canines; offset of P3 with P4 and p4 with m1; complete verticalization of mandibular symphysis; m1 shortened and robust with widest point anterior to notch; and extreme posterior ‘‘lean’’ to p3/p4. Rhizosmilodon has small anterior and posterior accessory cusps on p4, a relatively large lower canine, and small, non-procumbent lower incisors; all more primitive states than in Megantereon and Smilodon.
    [Show full text]
  • Middle and Late Miocene Terrestrial Vertebrate Localities And
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 2006 Band/Volume: 30 Autor(en)/Author(s): Nargolwalla Mariam C., Hutchison Matt P., Begun David R. Artikel/Article: Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin 347-360 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 30:347-360, Wien 2006 Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin by Mariam C. N a r g o l w a l l a *),Matt P. H u t c h is o n & David R. B e g u n Nargolwalla , M.C., H utchison , M.P. & Begun , D.R., 2006. Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin. — Beitr. Palaont., 30:347-360, Wien. Abstract Crisis,’ in addition to the paleoenvironmental evidence for the location and timing of potential corridors for The Pannonian Basin, surrounded by the Carpathians, faunal interchange. Alps and Dinarides, has long been known as a sedimen­ tary catchment area rich in information on the environ­ Key words: Miocene, Pannonian Basin, Lake Pannon, fos­ mental and biological evolution of Central Europe in the sil, vertebrate, paleoenvironment, paleogeography Miocene. We present here the results of an integrative study using GIS to synthesize the findings from our last three years of survey and excavation of new terrestrial Kurzfassung vertebrate fossil localities of Miocene age, together with the most recent paleogeographic reconstructions of the Das Pannonische Becken, umgeben von den Karpaten, region and published faunal and environmental data, Alpen und Dinariden, ist schon lange bekannt für seinen with the purpose of presenting a revised, comprehensive Sedimentreichtum und für seine Informationen bezüglich history of the paleogeography and paleobiogeography der Umweltentwicklung und der biologischen Evolution of the Pannonian Basin.
    [Show full text]
  • ABSTRACT How Sabertoothed Felids Have Evolved Their Iconic Morphology Remains Unclear Because of the Patchy Fossil Record of Early Machairodontines
    Journal of Mammalian Evolution https://doi.org/10.1007/s10914-021-09541-0 Accepted: 8 March 2021 Morphometric analysis of the mandible of primitive sabertoothed felids from the late Miocene of Spain Short title: Morphometric analysis of early sabertoothed felids Narimane Chatar1,*, Valentin Fischer1, Gema Siliceo2, Mauricio Antón2, Jorge Morales2, and Manuel J. Salesa2 1 Evolution and Diversity Dynamics Lab, Université de Liège, Belgium 2 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal, 2. 28006 Madrid, Spain * Corresponding author: [email protected] ABSTRACT How sabertoothed felids have evolved their iconic morphology remains unclear because of the patchy fossil record of early machairodontines. Batallones localities in the Madrid region (Spain) have the potential to clarify this as two sites have yielded hundreds of fossils of the early machairodontines Promegantereon ogygia and Machairodus aphanistus. Previous analyses suggested that these two sites are not contemporaneous and a morphological drift between cavities was described for these two species; characterizing intraspecific variability is thus important to better understand the evolution of machairodontines. To tackle this issue, we modelled 62 felid mandibles in 3D using a laser scanner. We applied 3D geometric morphometrics (3D GM) and linear morphometrics on these models to test for differences in populations and to better characterize the morphology of early machairodontines. Both linear measurements and 3D data reveal an absence of morphological changes in mandible shape between the two sites. Batallones machairodontines are closer to felines than to other, more derived machairodontines in mandibular morphology, suggesting the existence of rapid shift in the mandibular shape between primitive and derived members of the clade.
    [Show full text]
  • The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection - 17
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 2009 Band/Volume: 31 Autor(en)/Author(s): Koufos George D., Kostopoulos Dimitris S., Merceron Gildas Artikel/Article: The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection - 17. Palaeoecology - Palaeobiogeography 409-430 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 31:409—430, Wien 2009 The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection 17. Palaeoecology - Palaeobiogeography by George D. Koufos1), Dimitris S. Kostopoulos1) & Gildas Merceron2) Koufos, G.D., Kostopoulos, D.S. 8 c M erceron, G., 2009. The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection. 17. Palaeoecology - Palaeobiogeography. — Beitr. Palaont., 31:409-430, Wien. Abstract „kleinsten Anzahl an Individuen“ (Minimum Number of Individuals = MNI), der Taxonomie und der Nahrungs­ The palaeoecology of the Samos mammal faunas is studied präferenzen der verschiedenen Säugergruppen analysiert. using complementary methods. The analysis of the faunal Die Analyse der Faunendiversität legt eine homogene diversity suggests that the Samos faunas are homogene­ und gleich alte Fauna mit einer normalen taxonomischen ous, equilibrated and with normal taxonomic distribution. Verbreitung nahe. Meso- und micro-wear an Zähnen The faunal composition of the Samos faunas has been deuten eine Dominanz an Ungulaten an, die gemischte analyzed using the Minimum Number of Individuals Nahrung bevorzugten. Dazu gehören Boviden, Equiden (MNI), the taxonomy and the feeding preferences of the und Giraffiden, die für ein offenes Buschland mit dichtem various groups of mammals.
    [Show full text]
  • A New Species of Paramachaerodus (Mammalia, Carnivora, Felidae
    PalZ (2017) 91:409–426 DOI 10.1007/s12542-017-0371-7 RESEARCH PAPER A new species of Paramachaerodus (Mammalia, Carnivora, Felidae) from the late Miocene of China and Bulgaria, and revision of Promegantereon Kretzoi, 1938 and Paramachaerodus Pilgrim, 1913 1,2 3 Yu Li • Nikolai Spassov Received: 17 March 2016 / Accepted: 10 June 2017 / Published online: 18 August 2017 Ó Pala¨ontologische Gesellschaft 2017 Abstract New Machairodontinae material from the late Keywords Machairodontinae Á Paramachaerodus Miocene localities of Hezheng (China) and Hadjidimovo transasiaticus sp. nov. Á Promegantereon Á Late Miocene Á (Bulgaria) represents a new species of Paramachaerodus China Á Bulgaria Pilgrim. Both localities are similar in age and suggest that the new species had a very large geographic range Kurzfassung Neues Material von Machairodontinae aus extending from northwestern China adjacent to the Tibetan den obermioza¨nen Fundstellen Hezheng (China) und Plateau (Gansu Province) to southeastern Europe or prob- Hadjidimovo (Bulgarien) repra¨sentiert eine neue Art, die ably to all of southern Europe. The new species—Para- der Gattung Paramachaerodus Pilgrim zugeordnet werden machaerodus transasiaticus sp. nov is characterized by a kann. Die beiden Fundstellen sind altersgleich und deuten combination of features of ‘‘Promegantereon’’ and Para- darauf hin, dass die neue Art ein sehr ausgedehntes Areal machaerodus. This specific morphology, as well as the age von Nordwest-China, im benachbarten Hochland von Tibet of the Hezheng and Hadjidimovo (early Turolian, after the (Provinz Gansu), bis Su¨dost-Europa oder mo¨glicherweise European Land Mammal Ages) put the new species in auch ganz Su¨deuropa besiedelt hat. Die neue Art – Para- intermediary position between ‘‘Promegantereon’’ and machaerodus transasiaticus sp.
    [Show full text]
  • Leeds Thesis Template
    Middle to Late Miocene terrestrial biota and climate by Matthew James Pound M.Sci., Geology (University of Bristol) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment September 2012 - 2 - Declaration of Authorship The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 2 has been published as: Pound, M.J., Riding, J.B., Donders, T.H., Daskova, J. 2012 The palynostratigraphy of the Brassington Formation (Upper Miocene) of the southern Pennines, central England. Palynology 36, 26-37. Chapter 3 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B. 2012. Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97 - 5.33 Ma). Earth Science Reviews 112, 1-22. Chapter 4 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. and Hunter, S.J. 2011. A Tortonian (Late Miocene 11.61-7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 29-45. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2012, The University of Leeds, British Geological Survey and Matthew J.
    [Show full text]