SNAKEBITE ENVENOMATION and DEATH in the DEVELOPING WORLD Luzia S. Cruz, MD

Total Page:16

File Type:pdf, Size:1020Kb

SNAKEBITE ENVENOMATION and DEATH in the DEVELOPING WORLD Luzia S. Cruz, MD SNAKEBITE ENVENOMATION AND DEATH IN THE DEVELOPING WORLD The purpose of this review is to address the Luzia S. Cruz, MD; Roberto Vargas, MD, MPH; global incidence and management of snake- Antoˆnio Alberto Lopes, MD, MPH, PhD bite envenomation and to describe the clinical characteristics and pathogenesis of envenom- ation by species of the family Viperidae, genera Bothrops and Crotalus, the most INTRODUCTION bite envenomation are reported each common venomous snakes in Brazil. We focus year, with an estimated 35,000–50,000 15,24 on the pathogenesis of the acute renal failure Envenoming from poisonous ani- deaths. In Pakistan, there are 24 induced by these snakes. Envenomation after mals, particularly terrestrial venomous <20,000 snakebite deaths annually. snakebite is an underestimated and neglected In Nepal, there are an estimated 20,000 public health issue responsible for substantial snakes, causes substantial illness and illness and death as well as socioeconomic death and represents an economic snakebites and <200 deaths in hospitals hardship to impoverished populations living in hardship on poor, rural populations annually, predominantly in the eastern 4,24 rural and tropical Africa, Asia, Oceania, and and healthcare systems of tropical and Terai. In Vietnam, from 1992 to Latin America. In developed nations, snake subtropical Africa, Asia, Oceania, and 1998, there were an estimated 300,000 bite typically occurs during recreational activ- 1–25 ities, whereas in developing countries it is an Latin America. Although mortality bites per year, and a case fatality ratio of occupational disease more likely to affect from snakebite is estimated to be one- 22% was reported among plantation young agricultural workers, predominantly tenth that of malaria, no equivalent workers bitten by Malayan pit vipers.24 men. Scarcity and delay of administration of global snakebite control program exists. In Mynamar, there were 14,000 bites antivenom, poor health services, and difficul- 24 An international effort is necessary to and 1,000 deaths in 1991. Papua New ties with transportation from rural areas to health centers are major factors that contribute focus global attention on this neglected Guinea has one of the world’s highest 17 17 to the high case-fatality ratio of snakebite and treatable condition. incidence rates of snake bites. In envenomation. (Ethn Dis. 2009;19[Suppl The World Health Organization Africa, the annual incidence rate of 1]:S1-42–S1-46) (WHO) estimates that <2,500,000 snake bites in the Benue Valley of northeastern Nigeria is 497 per Key Words: Snakebite Envenomation, Epi- venomous snakebites per year result in demiology, Pathogenesis, Acute Renal Failure, 125,000 deaths worldwide, 100,000 of 100,000 population, with a case-fatality 4 Clinical Characteristics, Bothrops, Crotalus, which are in Asia and approximately ratio of 12.2%. In northern Africa, the Treatment 20,000 in Africa.5,6 The true global species that causes most bites and deaths incidence of envenomation and its belongs to the family Viperidae, Echis sp severity remain largely misunderstood. (saw-scaled vipers), whereas in Asia Hospital-based data are likely to under- most frequent envenomations result estimate the incidence, the case-fatality from bites by species of the Elapidae ratio, and the overall contribution family, represented by the Naja sp snakebites make to worldwide morbid- (cobras) and Bungarus sp (kraits). In ity and mortality because most victims Central and South America, bites by seek traditional treatment; these victims Bothrops asper and Bothrops atrox (lance- may die at home and their deaths headed pit vipers) predominate.4 In remain unrecorded.4,21 Brazil, the most severe cases of snakebite The objectives of this review are to result from envenomation inflicted by describe the worldwide incidence and species of the family Viperidae, genera treatment of snakebite envenomation, as Bothrops and Crotalus (South American well as clinical characteristics and the rattlesnake). From 1990 to 1993, the From the CLINIRIM, Clı´nica do Rim e pathogenesis of common venomous Brazilian Ministry of Health reported Hipertensa˜o Arterial Ltda (LSC), Medicine snakebites in Brazil. 65,911 snakebites.1 Bites by snakes of Department, Nephrology Service and Epi- genus Bothrops were responsible for demiology Unit, Federal University of Bahia 90.5%, and bites by Crotalus rattle- (AAL), Salvador, Bahia, Brazil; Department of Medicine, Geffen School of Medicine, EPIDEMIOLOGY snakes accounted for 7.7% of these. 26 University of California at Los Angeles and Bucaretchi et al analyzed hospital RAND Institute, Los Angeles, California (RV). Approximately 3000 species of records of 73 children aged ,15 years snakes exist worldwide, and 410 are who were bitten by Bothrops sp snakes in Address correspondence and reprint 18 Sa˜o Paulo, Brazil, from January 1984 requests to: Luzia S. Cruz, MD; 1845 considered venomous. The reported Mallard Dr; Panama City, FL 32404; 850- rate of bites from these snakes is high. In through March 1999. Most bites oc- 871-2684; [email protected] India alone, .200,000 cases of snake- curred from October to March, which S1-42 Ethnicity & Disease, Volume 19, Spring 2009 SNAKE BITE ENVENOMATION - Cruz et al reflects the influence of seasonal factors, consequence, consumption coagulopa- nephrotoxic, leading to acute tubular such as an increase in temperature and thy and partial or complete blood necrosis, the primary and most serious humidity associated with the rainy incoagulability may develop. Envenom- complication of human crotalid enven- season, and also in human agricultural ing by Bothrops sp inflicts severe tissue omation.5,10,13,37–39 Tissue damage at activities, such as planting and harvest- damage, such as swelling, blistering, the site of the bite has been reported to ing. Bothrops jararaca, the most com- hemorrhage, and necrosis of skeletal be minimal or absent, a feature that mon species of Bothrops in southeast muscle. Systemic effects include spon- differentiates the South American rat- Brazil, which was responsible for most taneous hemorrhage (of which cerebral tlesnake from other species of Crotalus. snake bites in this study, is more active hemorrhage is the most serious mani- Spontaneous bleeding has only been during this season and in the evening. festation), disseminated intravascular rarely observed in human patients.1,10,18 The rise in river levels due to tropical coagulation, and cardiovascular shock A prospective survey of 100 cases of rains may cause an inland migration of secondary to hypovolemia and vasodi- C. durissus bites followed from hospi- these snakes.3 lation,1–3,7,16,26,29,34 Bothrops jararaca talization to death or discharge in Sa˜o In developed countries, venomous venom is a potent inhibitor of angio- Paulo, Brazil, revealed a high prevalence snakebites frequently occur during rec- tensin-converting enzyme (ACE) and of acute renal failure (ARF) (29%), reational activities, whereas in the potentiates the hypotensive effect of defined as a creatinine clearance developing world, snakebite is an occu- circulating bradykinin. Murayama et al ,60 mL/min/1.73 m2 in the first pational disease more likely to affect cloned and sequenced cDNA isolated 72 hours after the bite.5 Most cases of young agricultural workers, predomi- from the Bothrops jararaca venom ARF were nonoliguric, and the frac- nantly men.3,8,18,20 The high case- gland; it encodes 2 distinct classes of tional excretion of sodium was signifi- fatality ratio of snakebites in tropical bioactive peptides, bradykinin-potenti- cantly higher in ARF patients. Age developing countries is the result of a ating oligopeptides and a C-type natri- ,12 years was an independent risk combination of factors, including the uretic peptide, which display synergistic factor for ARF, which may be related scarcity of antivenom, poor health effects on blood pressure and most to an increased concentration of the services, and problems with transporta- likely contribute to the cardiovascular venom and a more severe clinical tion from rural areas to health cen- effects caused by Bothrops jararaca picture as a result of a lower blood ters.4,17,19–23,27,28 envenomation.35,36 volume and smaller body surface in children. The case fatality ratio was Crotalus (South 10%. The most important finding in CLINICAL American Rattlesnake) the study was that delay in administer- CHARACTERISTICS Among the species of Crotalus, ing an adequate dose of the crotalid AND PATHOGENESIS Crotalus durissus terrificus is the most antivenom increased the risk of ARF by frequently implicated in envenomation more than 10 times. Therefore, Burd- This section primarily focuses on the in Brazil. The venom of C d terrificus mann et al suggest that antivenom major clinical characteristics and the contains a variety of toxic peptides, should be available in health centers pathogenesis of envenomation by select- including crotoxin, crotamine, giroxin, and emergency services of small com- ed species of snakes that are highly convulxin, and a thrombin-like enzyme. munities rather than concentrated in prevalent in Brazil. Crotoxin is responsible for the high urban reference hospitals. toxicity of the venom and has neuro- Bothrops sp (Lance-headed toxic, myotoxic, and nephrotoxic activ- Pit Vipers) ity. It is a powerful presynaptic neuro- PATHOGENESIS OF Bothrops venom contains various toxin that targets neuromuscular SNAKEBITE-INDUCED ARF biologically active peptides, such as junctions and inhibits the release
Recommended publications
  • Snake Bite Protocol
    Lavonas et al. BMC Emergency Medicine 2011, 11:2 Page 4 of 15 http://www.biomedcentral.com/1471-227X/11/2 and other Rocky Mountain Poison and Drug Center treatment of patients bitten by coral snakes (family Ela- staff. The antivenom manufacturer provided funding pidae), nor by snakes that are not indigenous to the US. support. Sponsor representatives were not present dur- At the time this algorithm was developed, the only ing the webinar or panel discussions. Sponsor represen- antivenom commercially available for the treatment of tatives reviewed the final manuscript before publication pit viper envenomation in the US is Crotalidae Polyva- ® for the sole purpose of identifying proprietary informa- lent Immune Fab (ovine) (CroFab , Protherics, Nash- tion. No modifications of the manuscript were requested ville, TN). All treatment recommendations and dosing by the manufacturer. apply to this antivenom. This algorithm does not con- sider treatment with whole IgG antivenom (Antivenin Results (Crotalidae) Polyvalent, equine origin (Wyeth-Ayerst, Final unified treatment algorithm Marietta, Pennsylvania, USA)), because production of The unified treatment algorithm is shown in Figure 1. that antivenom has been discontinued and all extant The final version was endorsed unanimously. Specific lots have expired. This antivenom also does not consider considerations endorsed by the panelists are as follows: treatment with other antivenom products under devel- opment. Because the panel members are all hospital- Role of the unified treatment algorithm
    [Show full text]
  • Major Article Epidemiological Study of Snakebite Cases in Brazilian Western Amazonia
    Rev Soc Bras Med Trop 51(3):338-346, May-June, 2018 doi: 10.1590/0037-8682-0489-2017 Major Article Epidemiological study of snakebite cases in Brazilian Western Amazonia Katia Regina Pena Schesquini Roriz[1], Kayena Delaix Zaqueo[2],[3], Sulamita Silva Setubal[2], Tony Hiroshi Katsuragawa[4], Renato Roriz da Silva[1], Carla Freire Celedônio Fernandes[2],[4], Luiz Augusto Paiva Cardoso[5], Moreno Magalhães de Souza Rodrigues[2], Andreimar Martins Soares[2], Rodrigo Guerino Stábeli[1],[2] and Juliana Pavan Zuliani[1],[2] [1]. Departamento de Medicina, Universidade Federal de Rondônia, Porto Velho, RO, Brasil. [2]. Fundação Oswaldo Cruz-Rondônia, Porto Velho, RO, Brasil. [3]. Centro de Referência de Jaciara, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Campus São Vicente, Jaciara, MT, Brasil. [4]. Centro de Pesquisa em Medicina Tropical, Porto Velho, RO, Brasil. [5]. Centro de Medicina Tropical de Rondônia, Porto Velho, RO, Brasil. Abstract Introduction: Brazil has the largest number of snakebite cases in South America, of which the large majority is concentrated in the Midwest and North. Methods: In this descriptive observational study, we assessed the epidemiological and clinical snakebite cases referred to the Centro de Medicina Tropical de Rondônia from September 2008 to September 2010. Results: We followed up 92 cases from admission until discharge, namely 81 (88%) men and 11 (12%) women, with a mean age of 37 years, and mainly from rural areas (91.3%). The snakebites occurred while performing work activities (63%) during the Amazon rainy season (78.3%). The vast majority of individuals presented from the Porto Velho microregion (84.7%).
    [Show full text]
  • Cohabitation by Bothrops Asper (Garman 1883) and Leptodactylus Savagei (Heyer 2005)
    Herpetology Notes, volume 12: 969-970 (2019) (published online on 10 October 2019) Cohabitation by Bothrops asper (Garman 1883) and Leptodactylus savagei (Heyer 2005) Todd R. Lewis1 and Rowland Griffin2 Bothrops asper is one of the largest (up to 245 cm) log-pile habitat (approximately 50 x 70 x 100cm) during pit vipers in Central America (Hardy, 1994; Rojas day and night. Two adults (with distinguishable size et al., 1997; Campbell and Lamar, 2004). Its range and markings) appeared resident with multiple counts extends from northern Mexico to the Pacific Lowlands (>20). Adults of B. asper were identified individually of Ecuador. In Costa Rica it is found predominantly in by approximate size, markings, and position on the log- Atlantic Lowland Wet forests. Leptodactylus savagei, pile. The above two adults were encountered on multiple a large (up to 180 mm females: 170 mm males snout- occasions between November 2002 and December vent length [SVL]), nocturnal, ground-dwelling anuran, 2003 and both used the same single escape hole when is found in both Pacific and Atlantic rainforests from disturbed during the day. Honduras into Colombia (Heyer, 2005). Across their On 20 November 2002, two nights after first locating ranges, both species probably originated from old forest and observing the above two Bothrops asper, a large but now are also found in secondary forest, agricultural, (131mm SVL) adult Leptodactylus savagei was seen disturbed and human inhabited land (McCranie and less than 2m from two coiled pit vipers (23:00 PM local Wilson, 2002; Savage, 2002; Sasa et al., 2009). Such time). When disturbed, it retreated into the same hole the habitat adaptation is most likely aided by tolerance for a adult pit vipers previously escaped to in the daytime.
    [Show full text]
  • Approach and Management of Spider Bites for the Primary Care Physician
    Osteopathic Family Physician (2011) 3, 149-153 Approach and management of spider bites for the primary care physician John Ashurst, DO,a Joe Sexton, MD,a Matt Cook, DOb From the Departments of aEmergency Medicine and bToxicology, Lehigh Valley Health Network, Allentown, PA. KEYWORDS: Summary The class Arachnida of the phylum Arthropoda comprises an estimated 100,000 species Spider bite; worldwide. However, only a handful of these species can cause clinical effects in humans because many Black widow; are unable to penetrate the skin, whereas others only inject prey-specific venom. The bite from a widow Brown recluse spider will produce local symptoms that include muscle spasm and systemic symptoms that resemble acute abdomen. The bite from a brown recluse locally will resemble a target lesion but will develop into an ulcerative, necrotic lesion over time. Spider bites can be prevented by several simple measures including home cleanliness and wearing the proper attire while working outdoors. Although most spider bites cause only local tissue swelling, early species identification coupled with species-specific man- agement may decrease the rate of morbidity associated with bites. © 2011 Elsevier Inc. All rights reserved. More than 100,000 species of spiders are found world- homes and yards in the southwestern United States, and wide. Persons seeking medical attention as a result of spider related species occur in the temperate climate zones across bites is estimated at 50,000 patients per year.1,2 Although the globe.2,5 The second, Lactrodectus, or the common almost all species of spiders possess some level of venom, widow spider, are found in both temperate and tropical 2 the majority are considered harmless to humans.
    [Show full text]
  • Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) Venoms from Brazil: Differential Biochemistry and Antivenom Efficacy Resulting from Prey-Driven Venom Variation
    toxins Article Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) Venoms from Brazil: Differential Biochemistry and Antivenom Efficacy Resulting from Prey-Driven Venom Variation Leijiane F. Sousa 1,2, Christina N. Zdenek 2 , James S. Dobson 2, Bianca op den Brouw 2 , Francisco Coimbra 2, Amber Gillett 3, Tiago H. M. Del-Rei 1, Hipócrates de M. Chalkidis 4, Sávio Sant’Anna 5, Marisa M. Teixeira-da-Rocha 5, Kathleen Grego 5, Silvia R. Travaglia Cardoso 6 , Ana M. Moura da Silva 1 and Bryan G. Fry 2,* 1 Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; [email protected] (L.F.S.); [email protected] (T.H.M.D.-R.); [email protected] (A.M.M.d.S.) 2 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (C.N.Z.); [email protected] (J.S.D.); [email protected] (B.o.d.B.); [email protected] (F.C.) 3 Fauna Vet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia; [email protected] 4 Laboratório de Pesquisas Zoológicas, Unama Centro Universitário da Amazônia, Pará 68035-110, Brazil; [email protected] 5 Laboratório de Herpetologia, Instituto Butantan, São Paulo 05503-900, Brazil; [email protected] (S.S.); [email protected] (M.M.T.-d.-R.); [email protected] (K.G.) 6 Museu Biológico, Insituto Butantan, São Paulo 05503-900, Brazil; [email protected] * Correspondence: [email protected] Received: 18 September 2018; Accepted: 8 October 2018; Published: 11 October 2018 Abstract: Lancehead pit-vipers (Bothrops genus) are an extremely diverse and medically important group responsible for the greatest number of snakebite envenomations and deaths in South America.
    [Show full text]
  • Long-Term Effects of Snake Envenoming
    toxins Review Long-Term Effects of Snake Envenoming Subodha Waiddyanatha 1,2, Anjana Silva 1,2 , Sisira Siribaddana 1 and Geoffrey K. Isbister 2,3,* 1 Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura 50008, Sri Lanka; [email protected] (S.W.); [email protected] (A.S.); [email protected] (S.S.) 2 South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka 3 Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW 2308, Australia * Correspondence: [email protected] or [email protected]; Tel.: +612-4921-1211 Received: 14 March 2019; Accepted: 29 March 2019; Published: 31 March 2019 Abstract: Long-term effects of envenoming compromise the quality of life of the survivors of snakebite. We searched MEDLINE (from 1946) and EMBASE (from 1947) until October 2018 for clinical literature on the long-term effects of snake envenoming using different combinations of search terms. We classified conditions that last or appear more than six weeks following envenoming as long term or delayed effects of envenoming. Of 257 records identified, 51 articles describe the long-term effects of snake envenoming and were reviewed. Disability due to amputations, deformities, contracture formation, and chronic ulceration, rarely with malignant change, have resulted from local necrosis due to bites mainly from African and Asian cobras, and Central and South American Pit-vipers. Progression of acute kidney injury into chronic renal failure in Russell’s viper bites has been reported in several studies from India and Sri Lanka. Neuromuscular toxicity does not appear to result in long-term effects.
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Reptiles and Amphibians of Lamanai Outpost Lodge, Belize
    Reptiles and Amphibians of the Lamanai Outpost Lodge, Orange Walk District, Belize Ryan L. Lynch, Mike Rochford, Laura A. Brandt and Frank J. Mazzotti University of Florida, Fort Lauderdale Research and Education Center; 3205 College Avenue; Fort Lauderdale, Florida 33314 All pictures taken by RLL: [email protected] and MR: [email protected] Vaillant’s Frog Rio Grande Leopard Frog Common Mexican Treefrog Rana vaillanti Rana berlandieri Smilisca baudinii Veined Treefrog Red Eyed Treefrog Stauffer’s Treefrog Phrynohyas venulosa Agalychnis callidryas Scinax staufferi White-lipped Frog Fringe-toed Foam Frog Fringe-toed Foam Frog Leptodactylus labialis Leptodactylus melanonotus Leptodactylus melanonotus 1 Reptiles and Amphibians of the Lamanai Outpost Lodge, Orange Walk District, Belize Ryan L. Lynch, Mike Rochford, Laura A. Brandt and Frank J. Mazzotti University of Florida, Fort Lauderdale Research and Education Center; 3205 College Avenue; Fort Lauderdale, Florida 33314 All pictures taken by RLL: [email protected] and MR: [email protected] Tungara Frog Marine Toad Gulf Coast Toad Physalaemus pustulosus Bufo marinus Bufo valliceps Sheep Toad House Gecko Dwarf Bark Gecko Hypopachus variolosus Hemidactylus frenatus Shaerodactylus millepunctatus Turnip-tailed Gecko Yucatan Banded Gecko Yucatan Banded Gecko Thecadactylus rapicaudus Coleonyx elegans Coleonyx elegans 2 Reptiles and Amphibians of the Lamanai Outpost Lodge, Orange Walk District, Belize Ryan L. Lynch, Mike Rochford, Laura A. Brandt and Frank J. Mazzotti University
    [Show full text]
  • The Venomous Snakes of Texas Health Service Region 6/5S
    The Venomous Snakes of Texas Health Service Region 6/5S: A Reference to Snake Identification, Field Safety, Basic Safe Capture and Handling Methods and First Aid Measures for Reptile Envenomation Edward J. Wozniak DVM, PhD, William M. Niederhofer ACO & John Wisser MS. Texas A&M University Health Science Center, Institute for Biosciences and Technology, Program for Animal Resources, 2121 W Holcombe Blvd, Houston, TX 77030 (Wozniak) City Of Pearland Animal Control, 2002 Old Alvin Rd. Pearland, Texas 77581 (Niederhofer) 464 County Road 949 E Alvin, Texas 77511 (Wisser) Corresponding Author: Edward J. Wozniak DVM, PhD, Texas A&M University Health Science Center, Institute for Biosciences and Technology, Program for Animal Resources, 2121 W Holcombe Blvd, Houston, TX 77030 [email protected] ABSTRACT: Each year numerous emergency response personnel including animal control officers, police officers, wildlife rehabilitators, public health officers and others either respond to calls involving venomous snakes or are forced to venture into the haunts of these animals in the scope of their regular duties. North America is home to two distinct families of native venomous snakes: Viperidae (rattlesnakes, copperheads and cottonmouths) and Elapidae (coral snakes) and southeastern Texas has indigenous species representing both groups. While some of these snakes are easily identified, some are not and many rank amongst the most feared and misunderstood animals on earth. This article specifically addresses all of the native species of venomous snakes that inhabit Health Service Region 6/5s and is intended to serve as a reference to snake identification, field safety, basic safe capture and handling methods and the currently recommended first aide measures for reptile envenomation.
    [Show full text]
  • Rattlesnake Envenomation
    Rattlesnake Bite Reviewers: Shawn M. Varney, Authors: Laura Morrison, MD / Ryan Chuang, MD MD Target Audience: Emergency Medicine Residents (junior and senior level postgraduate learners), Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of a venomous snakebite. 2. Recognize the indications for antivenom administration. 3. Recognize potentially dangerous complications of a snakebite and antivenom administration. Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Obtain medication history and evaluate for use of anticoagulant medications 2. Discuss importance of reevaluation of local effects 3. Describe the importance of removing tourniquets that may have been placed prior to arrival in ED 4. Describe the types of toxicity that can result from rattlesnake envenomation Critical actions checklist: 1. Obtain peripheral IV access (in contralateral arm) 2. Order coagulation studies (CBC, platelets, INR, fibrinogen) 3. Administer antivenom 4. Stop antivenom infusion when anaphylactic/anaphylactoid reaction to antivenom develops 5. Provide volume resuscitation for anaphylactic/anaphylactoid reaction 6. Administer medications for anaphylaxis 7. Consult Poison Center/Toxicologist 8. Admit to the MICU Environment: Emergency Department treatment area 1. Room Set Up – ED critical care area a. Manikin Set Up – Mid or high fidelity simulator b. Props – Standard ED equipment 2. Distractors – ED noise, alarming monitor For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background This is a case of a 32-year-old man who is brought to the emergency department reporting a snakebite by a prairie rattlesnake while working in the local zoo that afternoon. He reports severe pain at the site and progressive swelling up his arm since the bite 2-3 hours ago.
    [Show full text]
  • EMS DIVISION 24.1 Rev. 05/14/2021 PROTOCOL 24 ENVENOMATION, BITES, and STINGS
    PROTOCOL 24 ENVENOMATION, BITES, AND STINGS A. North American Pit Vipers B. Coral Snake Bites C. Exotic Snakes D. Brown Recluse Spider Bites E. Black Widow F. Scorpion Stings G. Marine Animal Envenomation H. Marine Animal Stings General Care EMR/BLS 1. Initial Assessment/Care Protocol 1. 2. Attempt to identify the insect, reptile, or animal that caused the injury if it is safe to do so. If unknown or it is a known venomous reptile bite or spider bite, have the FAO contact the Anti-Venom unit. 3. Be alert for the development of any anaphylactic reaction and treat according to the Systemic Reaction Protocol 17. 4. Immobilize the affected area. Keep the patient calm. 5. Remove and secure in a safe location any rings, bracelets, jewelry, etc. that may be in the injured area before swelling becomes too great. 6. Do not apply tourniquets, cold packs, make incisions around the area, or attempt to suction. 7. If unable to contact an Anti-Venom unit, contact the Poison Control Center, 1-800-222-1222 for assistance in managing specific envenomation. Top EMS DIVISION 24.1 Rev. 05/14/2021 PROTOCOL 24 ENVENOMATION, BITES, AND STINGS A. North American Pit Vipers Includes rattlesnakes, copperheads, and cottonmouths. EMR/BLS 1. For any known or suspected bite, refer to Antivenin Bank Procedure 33. Evaluate for specific signs/symptoms: a) Distinct "fang marks" or puncture wounds. b) Swelling and pain at the site. c) Weakness, nausea, and vomiting. d) Paresthesia, fasciculations. e) Numbness and tingling around the face and head. f) Metallic taste, change in taste sensation.
    [Show full text]
  • Neutralizing Capacity of a New Monovalent Anti-Bothrops Atrox Antivenom: Comparison with Two Commercial Antivenoms
    BrazilianNeutralizing Journal capacity of Medical of a new and antivenom Biological againstResearch Bothrops (1997) atrox30: 375-379 375 ISSN 0100-879X Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms R. Otero1, V. Núñez1, 1Proyecto de Ofidismo, Facultad de Medicina, J.M. Gutiérrez4, A. Robles4, 2Facultad de Química Farmacéutica, and R. Estrada4, R.G. Osorio2, 3Facultad de Medicina Veterinaria y de Zootecnia, G. Del-Valle3, R. Valderrama1 Universidad de Antioquia, A.A.1226, Medellín, Colombia and C.A. Giraldo1 4Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica Abstract Correspondence Three horse-derived antivenoms were tested for their ability to neu- Key words R. Otero tralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic • Bothrops atrox Proyecto de Ofidismo activities induced by the venom of Bothrops atrox from Antioquia and • Snake venom Facultad de Medicina Chocó (Colombia). The following antivenoms were used: a) polyva- • Antivenom Universidad de Antioquia lent (crotaline) antivenom produced by Instituto Clodomiro Picado • Neutralization A.A.1226, Medellín • (Costa Rica), b) monovalent antibothropic antivenom produced by Antioquia Colombia • Chocó Fax: 57-4-263-8282 Instituto Nacional de Salud-INS (Bogotá), and c) a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Research supported by the Antioquia and Chocó. The three antivenoms neutralized all toxic Instituto Colombiano para el activities tested albeit with different potencies. The new monovalent Desarrollo de la Ciencia y la anti-B. atrox antivenom showed the highest neutralizing ability against Tecnología Francisco José de edema-forming and defibrinating effects of B.
    [Show full text]