Interview with Frank E. Marble

Total Page:16

File Type:pdf, Size:1020Kb

Interview with Frank E. Marble FRANK E. MARBLE (1918–2014) INTERVIEWED BY SHIRLEY K. COHEN January–March, 1994, April 21, 1995 By Floyd Clark, 1974. Courtesy CIT Public Relations ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Engineering, aeronautical engineering Abstract An interview in seven sessions, January 1994-April 1995, with Frank E. Marble, Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion, Emeritus. Marble discusses his undergraduate and early graduate study at Case School of Applied Science, his work at the NACA Engine Research Lab in Cleveland, where he was in charge of large-engine research project for B-26 bomber, and his arrival at Caltech in 1946 to complete his doctoral degree in 1948. He discusses his graduate students, including Benoit Mandelbrot and Chuang Feng-kan, his colleagues Clark Millikan, Hans Liepmann, Duncan Rannie, and Arthur Erdélyi; and the beginning of his close and enduring friendship with Theodore von Kármán. Recalls his first visit to Europe in 1949, his meeting with Moe Berg in Switzerland, and his appointment that same year as the first new faculty member of Caltech’s Jet Propulsion Center, and the group of courses in jet propulsion he developed for the Center. Besides his discussion of his work in combustion in jet-propulsion systems, flame stabilization, and propagation of acoustic waves, the interview contains his recollections of Tsien Hsue-shen and McCarthy-era politics, the army’s refusal to renew Tsien’s security clearance in 1950 and Dan Kimball’s role in the Tsien case, and Tsien’s deportation five years later. Recalls his visiting professorship at http://resolver.caltech.edu/CaltechOH:OH_Marble_F Cornell University, spring and summer 1956; his involvement with the Advisory Group for Aeronautical Research and Development of NATO; the development of engineering at Caltech; influence of Felix Klein; and Robert Knapp and the Hydrodynamics Lab. Comments on the GALCIT complex; Homer Joe Stewart; Ed Zukoski; and Ann Karagozian, his only female PhD student. Concludes the interview with his work on compressors; development of supersonic transport and jet noise; turbulent flow; vortex-combustion theory; work in the 1980s; “The Marble Problem;” very-high-speed flight; invitation to teach in China (1982) and seeing Tsien and his family again; Lee DuBridge; and the Caltech Flying Club. Administrative information Access The interview is unrestricted. Copyright Copyright has been assigned to the California Institute of Technology © 1997, 2007. All requests for permission to publish or quote from the transcript must be submitted in writing to the University Archivist. Preferred citation Marble, Frank E. Interview by Shirley K. Cohen. Pasadena, California, January- March, 1994, April 21, 1995. Oral History Project, California Institute of Technology Archives. Retrieved [supply date of retrieval] from the World Wide Web: http://resolver.caltech.edu/CaltechOH:OH_Marble_F Contact information Archives, California Institute of Technology Mail Code 015A-74 Pasadena, CA 91125 Phone: (626)395-2704 Fax: (626)793-8756 Email: [email protected] Graphics and content © 2007 California Institute of Technology. http://resolver.caltech.edu/CaltechOH:OH_Marble_F CALIFORNIA INSTITUTE OF TECHNOLOGY ORAL HISTORY PROJECT INTERVIEW WITH FRANK E. MARBLE BY SHIRLEY K. COHEN PASADENA, CALIFORNIA Caltech Archives, 1997 Copyright © 1997, 2006 by the California Institute of Technology http://resolver.caltech.edu/CaltechOH:OH_Marble_F Marble–ii TABLE OF CONTENTS INTERVIEW WITH FRANK E. MARBLE Family Background, Childhood, 1918-1936 1-6 Grandfather, Frank E. Marble; parents, Louis C. Marble and Blanche Rayburn; sister, Rosalind; boyhood in Cleveland; fly fishing; musical ability, trombone; early interest in mathematics, physics; operas, the public library; early interest in airplanes; National Air Races at Cleveland; model airplanes. Undergraduate Education, 1937-1940 6-10 Decision to go to Case School of Applied Science; mathematics, aeronautics; John R. Weske, Lionel Marks; Richard Burington; class size; hears of Theodore von Kármán; Burington’s anti- Semitism; Robert Shankland and Dayton Miller’s work on ether drift experiments; Shankland’s friendship with William Houston. Early Graduate Study, Marriage, NACA, 1940-1946 10-14 Desire to go to Caltech; summer research at Harvard wind tunnel; met William Bollay; returned to Case for master’s degree; Pearl Harbor; hired to work at the NACA Engine Research Lab in Cleveland; marriage to Ora Lee; honeymoon, received draft induction notice; Ora Lee’s education. 14-17 NACA Lab—in charge of large engine-research project for B-26 bomber; George W. Lewis; jet propulsion activity; made chief of fundamental turbine-compressor research branch; work on Boeing B-29, Abe Silverstein and Eastman Jacobs, Oscar Schey; father’s death. 17-20 National Research Council predoctoral fellowship; enrolled at Caltech in aeronautics; driving trailer across country with Ora Lee; continued association with John Weske; wartime work at the Engine Research Lab. Graduate Work at Caltech, 1946-1948 21-26 Arrival in Pasadena; first impressions of the Guggenheim Aeronautical Lab; Ernest Sechler, Geraldine Ellis; Franklin Thomas, Fred Lindvall; book series by William Frederick Durand; shared office with Alberta Panpeyan, Harold Martin; impressions of Clark Millikan, Hans Liepmann; students with war experience, Milton Van Dyke and Dean Chapman; Liepmann’s group; transonic flow work, Duncan Rannie and Homer Joe Stewart; work as a teaching assistant for Liepmann and Millikan; Jesse Greenstein; completion of doctoral degree in two years. http://resolver.caltech.edu/CaltechOH:OH_Marble_F Marble–iii 26-29 Physics and math courses: William Fowler, Morgan Ward, Harry Bateman, Arthur Erdélyi. Teaching at Caltech, 1948-1950s 29-33 Persuaded to stay by Clark Millikan; cooling-off with Liepmanns; met von Kármán; Bill Sears; first International Congress of Astrophysics and Gas Dynamics in Paris, 1949; Moe Berg; travel in Europe; Josephine (Pipö) de Kármán. 33-37 Interviewing for jobs; Francis Clauser; Bill Sears; Tsien Hsue-shen; Johns Hopkins, MIT; Guggenheim Foundation support for Jet Propulsion Centers; offer from Caltech; Tsien and Clark Millikan; Sol Penner; Duncan Rannie; work at the ramjet section of JPL (1948-1958). 38-42 Faculty and teaching at the Guggenheim Jet Propulsion Center; Pol Duwez, David Altman, Howard Siefert; ramjet section of JPL; Duncan Rannie, Theodore von Kármán and the Tacoma Bridge failure; Stephen Timoshenko; fundamental combustion research group. Tsien Hsue-shen at Caltech, 1950-1955 42-48 Tsien’s trouble with Immigration and Naturalization (1950)—McCarthy-era politics; 1930s radicalism—Frank Malina, Tsien, Pol Duwez; Toward New Horizons; Tsien in Washington, Dan Kimball; Tsien’s detention, loss of house; Albert Del Guerico; protected by Lee DuBridge; Grant Cooper; Polly and Mark Mills post bail; Richard N. Lewis’s deposition; deportation order; Tsien leaves for five years (1955). Graduate Students 48-51 Gerald Monroe, Benoit Mandelbrot, Chuang Feng-kan; students at the Jet Propulsion Center— Artur Mager, Jack Kerrebrock, Thomas Adamson, Ed Zukoski; socializing with students. Engineering at Caltech, NATO-AGARD, 1950s-1960s 52-55 Tsien’s departure—Duncan Rannie replaces him; Bill Sears encourages Marble to come to Cornell; moved to Cornell for nine months; decision to stay at Caltech, leave JPL (1956-57); growth of JPL, new emphasis on space activities; salary negotiations; Grant Brownlee. 55-58 Melvin Gerstein; AGARD [Advisory Group for Aeronautical Research and Development of NATO]; Jean Fabri, Brian Mullins, Kármán; travel to NATO countries; first AGARD meeting, http://resolver.caltech.edu/CaltechOH:OH_Marble_F Marble–iv Rome 1952; Kármán’s role; Jean Surugue; impressions of political climate in Italy. 58-62 Engineering at Caltech; Fred Lindvall, Theodore von Kármán; applied mathematics at Brown; Richard Courant, Felix Klein; changing name of Division of Engineering; old Hydrodynamics Lab, Robert Knapp; classified work, officer Newton. 62-65 Lab given to Caltech by Aerojet General Corp.; Firestone Laboratory of Aeronautics; description of the GALCIT complex; Kármán’s role in 1946 when DuBridge arrived; Ernest Sechler, Hans Liepmann and Lester Lees; Lees’ involvement with the Environmental Quality Lab. Research at Caltech 66-69 Engineering vs. pure science; master’s at Case School of Applied Science, John Weske; axial- flow fan work; NACA Engine Research Laboratory in Cleveland; engine-cooling work, turbomachinery problems for jet propulsion; doctoral thesis at Caltech; Duncan Rannie, Homer Joe Stewart, Hans Liepmann. 69-73 Combustion work at JPL; Tom Adamson, Ed Zukoski; flame stabilization; support for research at JPL; instability in the combustion process; United Technologies Research Center; Don Rogers and the “screech” phenomenon. 73-75 Return to turbo machinery work; Howard Emmons and work on compressors—compressor-stall phenomenon; laboratory in the Thomas building; C.S. Draper, Edward Taylor and overtures made by MIT; Jack Kerrebrock. 75-80 Combustion process in intercontinental ballistic missiles (ICBMs); multiphase gas dynamics; AGARD Meeting, Braunschweig, 1962; Minuteman rocket; structure of shock waves, George Carrier; low-pressure stages of steam turbines; propagation of acoustic waves (1970-1978); development of supersonic transport and jet noise; Sébastien Candel; David Wooten. 80-81 Year in Cambridge (1972-1973), Whittle
Recommended publications
  • Dayton C. Miller by Peter Hoekje
    The newsletter of The Acoustical Society of America Volume 13, Number 1 Winter 2003 Dayton C. Miller by Peter Hoekje ayton Clarence Miller (1866–1941), a founding member a full body composite of himself, and an injured railroad brake- and second president of the Acoustical Society of man. This latter is claimed to be the first use of x-rays for sur- DAmerica, is remembered for his distinctive gical purposes. Tragically, his laboratory assistant died contributions in the early 20th century in several in 1905, apparently from radiation-related illness. fields. Acousticians appreciate his pioneering With the encouragement of Edward Morley, analysis of sound waveforms and spectra, his Miller revisited the 1887 Michelson-Morley accurate measurements of the speed of sound aether drift experiment with a new interfer- in air, and his study of flutes and their ometer in 1902, and continued working on acoustics. But, he is also known for metic- this problem for nearly 30 years. In making ulous measurementsThe newsletterof aether drift, for of the measurements, the interferometer would first surgical x-ray, and for the huge flute be set in motion once and would rotate collection he donated to the Library of freely for an hour while the experimenter Congress. He balanced an outstanding made observations of the fractional scientific research career with a devotion fringe displacement, several times to the arts and education. throughout each rotation. Miller claimed As a small boy, Dayton started his to have walked 160 miles and made musical and acoustic explorations on his 200,000 observations of fringes in the father’s fife.1 His father bought him his course of his experiments! He consistent- first full-size flute on his thirteenth birth- ly arrived at an observed aether drift speed day, but it was too big for his small fingers.
    [Show full text]
  • A Plausible Resolution to Hilbert's Failed Attempt to Unify Gravitation & Electromagnetism
    Prespacetime Journal| December 2018 | Volume 9 | Issue 10 | pp. xxx-xxx 1000 Christianto, V., Smarandache, F., & Boyd, R. N., A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Exploration A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Victor Christianto1*, Florentin Smarandache2 & Robert N. Boyd3 1Malang Institute of Agriculture (IPM), Malang, Indonesia 2Dept. of Math. Sci., Univ. of New Mexico, Gallup, USA 3Independent Researcher, USA Abstract In this paper, we explore the reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed and outline a plausible resolution of this problem. The latter is based on Gödel’s incompleteness theorem and Newton’s aether stream model. Keywords: Unification, gravitation, electromagnetism, Hilbert, resolution. Introduction Hilbert and Einstein were in race at 1915 to develop a new gravitation theory based on covariance principle [1]. While Einstein seemed to win the race at the time, Hilbert produced two communications which show that he was ahead of Einstein in term of unification of gravitation theory and electromagnetic theory. Hilbert started with Mie’s electromagnetic theory. However, as Mie theory became completely failed, so was the Hilbert’s axiomatic program to unify those two theories [1]. Einstein might be learning from such an early failure of Hilbert to unify those theories, and years later returned to Mie theory [1]. What we would say here is that Hilbert’s axiomatic failure can be explained by virtue of Gödel’s incompleteness theorem: which says essentially that any attempt to build a consistent theory based on axiomatic foundations can be shown to be inconsistent.
    [Show full text]
  • Electrical Engineer Disproves Einsteins Relativity Theory: the Ruins of 106 Years Relativity
    Arend Lammertink: Electrical Engineer disproves Einsteins Relativity Theory: The Ruins of 106 Years Relativity. http://tuks.nl/wiki/index.php/Main/Ruins96YearsEinsteinRelativity Electrical Engineer disproves Einsteins Relativity Theory: The Ruins of 106 Years Relativity. Last week the newspapers were filled with the discovery of "impossible" particles traveling faster than the speed of light. A month ago an "impossible" star was discovered and earlier the Pioneer space probes also refused to adhere to the law. This way, the scientific establishment will slowly but surely be forced to return to reality, the reality of the existence of a real, physical ether with fluid-like properties. The inevitable result of that will be that Einstein’s relativity theory will go down in the history books as one of the biggest fallacies ever brought forth by science. In the future they will look back to relativity with equal disbelief as to the "Earth is flat" concept. The relativity theory not only goes against common sense, as Tesla already said in 1932, a fundamental thinking error has been made by Maxwell in his equations. This eventually lead to the erroneous relativity theory, as is proven in this article. It is therefore no exaggeration to state that the scientific establishment is going to have a religious experience. source: Tesla’s Ambassadors The scientific establishment has been completely beside the mark by worshiping Albert Einstein and forgetting about Nikola Tesla. This logically thinking realist already wiped the floor with the theory of relativity in 1932 and thus proved for the umpteenth time to be far ahead of his time: 1 of 12 06/08/13 23:15 "It might be inferred that I am alluding to the curvature of space supposed to exist according to the teachings of relativity, but nothing could be further from my mind.
    [Show full text]
  • Spring 2017 • May 7, 2017 • 12 P.M
    THE OHIO STATE UNIVERSITY 415TH COMMENCEMENT SPRING 2017 • MAY 7, 2017 • 12 P.M. • OHIO STADIUM Presiding Officer Commencement Address Conferring of Degrees in Course Michael V. Drake Abigail S. Wexner Colleges presented by President Bruce A. McPheron Student Speaker Executive Vice President and Provost Prelude—11:30 a.m. Gerard C. Basalla to 12 p.m. Class of 2017 Welcome to New Alumni The Ohio State University James E. Smith Wind Symphony Conferring of Senior Vice President of Alumni Relations Russel C. Mikkelson, Conductor Honorary Degrees President and CEO Recipients presented by The Ohio State University Alumni Association, Inc. Welcome Alex Shumate, Chair Javaune Adams-Gaston Board of Trustees Senior Vice President for Student Life Alma Mater—Carmen Ohio Charles F. Bolden Jr. Graduates and guests led by Doctor of Public Administration Processional Daina A. Robinson Abigail S. Wexner Oh! Come let’s sing Ohio’s praise, Doctor of Public Service National Anthem And songs to Alma Mater raise; Graduates and guests led by While our hearts rebounding thrill, Daina A. Robinson Conferring of Distinguished Class of 2017 Service Awards With joy which death alone can still. Recipients presented by Summer’s heat or winter’s cold, Invocation Alex Shumate The seasons pass, the years will roll; Imani Jones Lucy Shelton Caswell Time and change will surely show Manager How firm thy friendship—O-hi-o! Department of Chaplaincy and Clinical Richard S. Stoddard Pastoral Education Awarding of Diplomas Wexner Medical Center Excerpts from the commencement ceremony will be broadcast on WOSU-TV, Channel 34, on Monday, May 8, at 5:30 p.m.
    [Show full text]
  • Studies in Using Aerospace Systems and Methods
    F._ .v High Technology on Earth: Studies in Using Aerospace Systems and Methods Paul A. Hanle, Editor ' *• V SMITHSONIAN STUDIES IN AIR AND SPACE - NUMBER 3 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given sub­ stantive review.
    [Show full text]
  • Miller's Waves
    Miller’s Waves An Informal Scientific Biography William Fickinger Department of Physics Case Western Reserve University Copyright © 2011 by William Fickinger Library of Congress Control Number: 2011903312 ISBN: Hardcover 978-1-4568-7746-0 - 1 - Contents Preface ...........................................................................................................3 Acknowledgments ...........................................................................................4 Chapter 1-Youth ............................................................................................5 Chapter 2-Princeton ......................................................................................9 Chapter 3-His Own Comet ............................................................................12 Chapter 4-Revolutions in Physics..................................................................16 Chapter 5-Case Professor ............................................................................19 Chapter 6-Penetrating Rays ..........................................................................25 Chapter 7-The Physics of Music....................................................................31 Chapter 8-The Michelson-Morley Legacy......................................................34 Chapter 9-Paris, 1900 ...................................................................................41 Chapter 10-The Morley-Miller Experiment.....................................................46 Chapter 11-Professor and Chair ...................................................................51
    [Show full text]
  • Memorial Tributes: Volume 5
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/1966 SHARE Memorial Tributes: Volume 5 DETAILS 305 pages | 6 x 9 | HARDBACK ISBN 978-0-309-04689-3 | DOI 10.17226/1966 CONTRIBUTORS GET THIS BOOK National Academy of Engineering FIND RELATED TITLES Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 i Memorial Tributes National Academy of Engineering Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 ii Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 iii National Academy of Engineering of the United States of America Memorial Tributes Volume 5 NATIONAL ACADEMY PRESS Washington, D.C. 1992 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 MEMORIAL TRIBUTES iv National Academy Press 2101 Constitution Avenue, NW Washington, DC 20418 Library of Congress Cataloging-in-Publication Data (Revised for vol. 5) National Academy of Engineering. Memorial tributes. Vol. 2-5 have imprint: Washington, D.C. : National Academy Press. 1. Engineers—United States—Biography. I. Title. TA139.N34 1979 620'.0092'2 [B] 79-21053 ISBN 0-309-02889-2 (v.
    [Show full text]
  • A Debate on Magnetic Current: the Troubled Einstein–Ehrenhaft Correspondence
    BJHS 44(3): 371–400, September 2011. © British Society for the History of Science 2010 doi:10.1017/S0007087410001299 First published online 8 October 2010 A debate on magnetic current: the troubled Einstein–Ehrenhaft correspondence GILDO MAGALHÃES SANTOS* Abstract. The unconventional correspondence between physicists Albert Einstein and Felix Ehrenhaft, especially at the height of the alleged production by the latter of magnetic monopoles, is examined in the following paper. Almost unknown by the general public, it is sometimes witty, yet it can be pathetic, and certainly bewildering. At one point the arguments they exchanged became a poetic duel between Einstein and Ehrenhaft’s wife. Ignored by conventional Einstein biographies, this episode took place during the initial years of the Second World War, but was rooted in disputes dating back to the early years of the twentieth century. The interesting intersection of a series of scientific controversies also highlights some aspects of the personal dramas involved, and after so many years the whole affair in itself is still intriguing. The issues in the Ehrenhaft–Einstein epistolary Science has now practically forgotten the polemic figure of Felix Albert Ehrenhaft (1879–1952), an Austrian physicist who in the 1900s and 1910s assumed the existence of electric charges smaller than the electron, based on his experimental work. Three decades later, Ehrenhaft came up with what appeared to be another heresy, insisting that he had observed isolated magnetic poles. He maintained a correspondence with Albert Einstein on these subjects for about thirty years, trying to convince Einstein of the validity of his arguments, while Einstein attacked Ehrenhaft’s conclusions, but followed his experimental work.
    [Show full text]
  • Biographical Notes
    Appendix Biographical Notes Bursian, Viktor Robertovich (1886–1945), a Russian and Soviet theoretical physi- cist. He worked on a range of physical problems, firstly using classical, then later quantum physics from 1918 to 1932 under Joffe at the Physico-Technical Insti- tute in Leningrad (LFTI). From 1932 until his arrest in 1936 “for participation in a fascist-Trotskyite-Zinovievite organization” he was professor then director of the Scientific-Research Institute of Physics at Leningrad University. He carried out work in mineral prospecting in the 1920s, one of the founders of the technique of electrical geo-exploration. For more details see Bursian (1988). Bursian was sentenced in 1937 by the Supreme Military Court to 10 years in a labor camp, which he spent in the technical special office of the NKVD carrying out thermal calculations. Egorshin, Vasilii Petrovich (1898–1985), born into a peasant family, joined the Russian Social Democratic Labor Party in 1915. After the revolution in 1921 he taught courses at Moscow University and from 1924 taught physics at the Communist University. Like Hessen he then studied at the IKP. He also joined the Deborin group, but turned against them in the late 1920s. Fock, Vladimir Aleksandrovich (1898–1974), a major Soviet theoretical physicist, known internationally for his foundational work in quantum mechanics and QED, where he introduced key mathematical concepts such as Fock space. Graduating from Petrograd University where he was a postgraduate, becoming a professor there in 1932. He collaborated with the Physico-Technical Institute in Leningrad (LFTI) from 1924 to 1936 and had periods of collaboration with the Vavilov State Optical Institute in Petrograd (now St.
    [Show full text]
  • A Plausible Resolution to Hilbert's Failed Attempt to Unify Gravitation & Electromagnetism
    University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 12-2018 A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Florentin Smarandache Victor Christianto Robert Neil Boyd Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Cosmology, Relativity, and Gravity Commons, External Galaxies Commons, Mathematics Commons, Other Astrophysics and Astronomy Commons, and the Physical Processes Commons Prespacetime Journal| December 2018 | Volume 9 | Issue 10 | pp. xxx-xxx 1000 Christianto, V., Smarandache, F., & Boyd, R. N., A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Exploration A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Victor Christianto1*, Florentin Smarandache2 & Robert N. Boyd3 1Malang Institute of Agriculture (IPM), Malang, Indonesia 2Dept. of Math. Sci., Univ. of New Mexico, Gallup, USA 3Independent Researcher, USA Abstract In this paper, we explore the reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed and outline a plausible resolution of this problem. The latter is based on Gödel’s incompleteness theorem and Newton’s aether stream model. Keywords: Unification, gravitation, electromagnetism, Hilbert, resolution. Introduction Hilbert and Einstein were in race at 1915 to develop a new gravitation theory based on covariance principle [1]. While Einstein seemed to win the race at the time, Hilbert produced two communications which show that he was ahead of Einstein in term of unification of gravitation theory and electromagnetic theory. Hilbert started with Mie’s electromagnetic theory. However, as Mie theory became completely failed, so was the Hilbert’s axiomatic program to unify those two theories [1].
    [Show full text]
  • Asa@Seventyfive
    Chapter 1 Short History of the Society’s First Seventy Five Years Charles E. Schmid & Elaine Moran asa@seventyfi ve 7 Short History of the Society’s First Seventy Five Years Charles E. Schmid, Executive Director & Elaine Moran, Offi ce Manager lot can happen in 75 years, whether it be to a Looking back there were a number of reasons why person’s life or the life of a Society. In fact much the idea for a new society on acoustics emerged at that A of the history of the Acoustical Society of Amer- particular time. First, other societies were not fulfi lling ica was built upon the professional lives of its members. the needs of acousticians. In 1929 Harvey Fletcher had Since there was no one source of information for writ- just published his book Speech and Hearing which set the ing this historical account of the Society, information foundation for the fi eld of airborne acoustics to accom- from ASA correspondence fi les, from personal recollec- pany all the new devices which were being invented. He tions, and from the Journal of the Acoustical Society of noted that presenting his papers at the meetings of the America (JASA) and other articles have been gathered to- American Physical Society had been less than stimulating gether to write this informal history. To make it easier to because there were so few people there interested in the read about the entire 75 years—or just segments of those work he was doing. A second reason is given by Dayton years—this history has been organized into six chrono- Miller in his 1935 book Anecdotal History of the Science of logical time segments: Sound to the Beginning of the 20th Century.
    [Show full text]
  • How Hilbert's Attempt to Unify Gravitation and Electromagnetism
    How Hilbert’s attempt to unify gravitation and electromagnetism failed completely, and a plausible resolution Victor Christianto*1 & Florentin Smarandache2 & Robert N. Boyd3 1Malang Institute of Agriculture, Indonesia 2Dept. Math. & Sci., Univ. of New Mexico, USA. Email: [email protected] 3 Consulting physicist for Princeton Biotechnology Corporation, Dept. Information Physics Research. Email: [email protected] *Email: [email protected]. URL: http://researchgate.net/profile/Victor_Christianto Abstract In the present paper, these authors argue on actual reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed completely. An outline of plausible resolution of this problem is given here, based on: a) Gödel’s incompleteness theorem, b) Newton’s aether stream model. And in another paper we will present our calculation of receding Moon from Earth based on such a matter creation hypothesis. More experiments and observations are called to verify this new hypothesis, albeit it is inspired from Newton’s theory himself. We hear within ourselves the constant cry: There is the problem, seek the solution. You can find it through pure thought. –D. Hilbert, The Problems of Mathematics Introduction First of all, it is known that Hilbert and Einstein were in race at 1915 to develop a new gravitation theory based on covariance principle.[1] While Einstein seemed to win the race at the time, Hilbert produced two communications which show that he was ahead of Einstein in term of unification of gravitation theory and electromagnetic theory. Hilbert started *Correspondence: Victor Christianto, Independent Researcher. Email: [email protected] 1 | P a g e with Mie’s electromagnetic theory.
    [Show full text]