Buck Odor Production in the Cornual Gland of the Male Goat, Capra Hircus– Validation with Histoarchitecture, Volatile and Proteomic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coyote Canis Latrans in 2007 IUCN Red List (Canis Latrans)
MAMMALS OF MISSISSIPPI 10:1–9 Coyote (Canis latrans) CHRISTOPHER L. MAGEE Department of Wildlife and Fisheries, Mississippi State University, Mississippi State, Mississippi, 39762, USA Abstract—Canis latrans (Say 1823) is a canid commonly called the coyote. It is dog-like in appearance with varied colorations throughout its range. Originally restricted to the western portion of North America, coyotes have expanded across the majority of the continent. Coyotes are omnivorous and extremely adaptable, often populating urban and suburban environments. Preferred habitats include a mixture of forested, open, and brushy areas. Currently, there exist no threats or conservation concerns for the coyote in any part of its range. This species is currently experiencing an increasing population trend. Published 5 December 2008 by the Department of Wildlife and Fisheries, Mississippi State University Coyote location (Jackson 1951; Young 1951; Berg and Canis latrans (Say, 1823) Chesness 1978; Way 2007). The species is sexually dimorphic, with adult females distinctly CONTEXT AND CONTENT. lighter and smaller than adult males (Kennedy Order Carnivora, suborder Caniformia, et al. 2003; Way 2007). Average head and infraorder Cynoidea, family Canidae, subfamily body lengths are about 1.0–1.5 m with a tail Caninae, tribe Canini. Genus Canis consists length of about Young 1951). The skull of the of six species: C. aureus, C. latrans, C. lupus, coyote (Fig. 2) progresses through 6 distinct C. mesomelas, C. simensis, and C. adustus. developmental stages allowing delineation Canis latrans has 19 recognized subspecies between the age classes of juvenile, immature, (Wilson and Reeder 2005). young, young adult, adult, and old adult (Jackson 1951). -
Exploiting Interspecific Olfactory Communication to Monitor Predators
Ecological Applications, 27(2), 2017, pp. 389–402 © 2016 by the Ecological Society of America Exploiting interspecific olfactory communication to monitor predators PATRICK M. GARVEY,1,2 ALISTAIR S. GLEN,2 MICK N. CLOUT,1 SARAH V. WYSE,1,3 MARGARET NICHOLS,4 AND ROGER P. PECH5 1Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand 2Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand 3Royal Botanic Gardens Kew, Wakehurst Place, RH17 6TN United Kingdom 4Centre for Wildlife Management and Conservation, Lincoln University, Canterbury, New Zealand 5Landcare Research, PO Box 69040, Lincoln, 7640 New Zealand Abstract. Olfaction is the primary sense of many mammals and subordinate predators use this sense to detect dominant species, thereby reducing the risk of an encounter and facilitating coexistence. Chemical signals can act as repellents or attractants and may therefore have applications for wildlife management. We devised a field experiment to investigate whether dominant predator (ferret Mustela furo) body odor would alter the behavior of three common mesopredators: stoats (Mustela erminea), hedgehogs (Erinaceus europaeus), and ship rats (Rattus rattus). We predicted that apex predator odor would lead to increased detections, and our results support this hypothesis as predator kairomones (interspecific olfactory messages that benefit the receiver) provoked “eavesdropping” behavior by mesopredators. Stoats exhib- ited the most pronounced responses, with kairomones significantly increasing the number of observations and the time spent at a site, so that their occupancy estimates changed from rare to widespread. Behavioral responses to predator odors can therefore be exploited for conserva- tion and this avenue of research has not yet been extensively explored. -
In the Mood Deer Have a Way of Advertising Their Wares and the Whereabouts– Scent, Sounds, and Body Language
A buck simulates reproductive response with flehman or lip curling to expose his vomeronasal organ to scent of a female’s urination. (frame from Quality Deer Management Assoc. video) In the Mood Deer have a way of advertising their wares and the whereabouts– scent, sounds, and body language J. Morton Galetto, CU Maurice River Last October I wrote an article about deer that included some aspects of their mating habits. It described mate guarding and the male deer or buck’s propensity to focus on following a female in estrus so as to insure he is the lucky suitor. During rut or the breeding season, when males spar competitively for reproductive rights over females, deer are on the move. The season begins in October and its height in our region is November 10- 20. Females that are not successfully fertilized will come into estrus a second time 28 days later, offering a second chance for them to produce young. All this moving around makes deer and drivers especially prone to road collisions. Bucks are particularly active during sunset and early morning. So slow down and stay alert. In last year’s story we offered lots of advice in this regard. White-tail deer are the local species here in Southern NJ. I thought it might be fun to talk about their indicators of lust – well, fun for me anyway. Deer employ three major methods of communications: scents, vocalizations, and body language. Deer are ungulates, meaning they are a mammal with a cloven hoof on each leg, split in two parts; you could describe them as toes or digits. -
(Antilope Cervicapra) in INDIA
FAECAL CORTISOL METABOLITES AS AN INDICATOR OF STRESS IN CAPTIVE SPOTTED DEER (Axis axis) AND BLACKBUCK (Antilope cervicapra) IN INDIA. BY NIKHIL SOPAN BANGAR (B.V.Sc. & A.H.) MAHARASHTRA ANIMAL AND FISHERY SCIENCES UNIVERSITY, INDIA A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR MASTER OF SCIENCE DEGREE IN WILDLIFE HEALTH AND MANAGEMENT (WHM) DEPARTMENT OF CLINICAL STUDIES, FACULTY OF VETERINARY MEDICINE UNIVERSITY OF NAIROBI 2019 DECLARATION ii DEDICATION I dedicate this thesis to my beloved mother, Mrs Suman Sopan Bangar and my father Mr Sopan Bhayappa Bangar for always being supportive and encouraging me to be who I am today. iii ACKNOWLEDGEMENTS My sincere gratitude to Dr Muchane Muchai for providing unswerving and continuous feedback throughout the period of my work in this project; Dr Andrew G. Thaiyah both for his support and guidance during the course of thesis; Professor Dhananjay Govind Dighe for valuable guidance while conducting my field work along with laboratory work in India. I am also grateful to Profes- sor Shailesh Ingole and Dr Javed Khan for guiding me throughout my laboratory work. It is with great thanks to Rajiv Gandhi Zoological Park and wildlife research centre management team; Director Dr Rajkumar Jadhav, Deputy Director Dr Navnath Nigot, Head animal keeper Mr Shyamrao Khude along with animal keepers Mr Navnath Memane and Mr Sandip Raykar: Thank you for your untiring inspiration to contribute to my field work. I was enthused every single day working with each of you and learned more than I could ever hope to in such a short time. I hope this work will help contribute to management and development of the zoo. -
Mammalian Pheromones – New Opportunities for Improved Predator Control in New Zealand
SCIENCE FOR CONSERVATION 330 Mammalian pheromones – new opportunities for improved predator control in New Zealand B. Kay Clapperton, Elaine C. Murphy and Hussam A. A. Razzaq Cover: Stoat in boulders in the Tasman River bed, Mackenzie Basin. Photo: John Dowding. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright August 2017, New Zealand Department of Conservation ISSN 1177–9241 (web PDF) ISBN 978–1–98–851436–9 (web PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Lynette Clelland. Publication was approved by the Director, Threats Unit, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 1 1. Introduction 2 1.1 The potential roles of pheromones in New Zealand predator control 2 1.2 Aim of this review 4 2. Pheromone identification and function in mammalian predator species 5 2.1 Mice 5 2.2 Rats 7 2.3 Rodent Major Urinary Proteins (MUPs) 9 2.4 Cats 10 2.5 Mustelids 11 2.6 Possums (with reference to other marsupials) 13 3. Odour perception and expression 14 3.1 How do animals perceive odours? 14 3.2 Influence of the MHC 16 4. -
Olfactory Communication in the Ferret (Mustela Furo L.) and Its Application in Wildlife Management
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. OLFACTORY COMMUNICATION IN THE FERRET (MUSTELA FURO L.) AND ITS APPLICATION IN WILDLIFE MANAGEMENT A Thesis Prepared in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Zoology at Massey University Barbara Kay Clapperton 1985 �;·.;L��:"·;�� �is Copyrigj;lt Fonn Title:·J.;:E,:£j;esis: O\fgc:..�O("j CoW\I"'h.JA"lC,citQC\ � �� '�'Jd" � (�tJ.o.kgL.) � -\� C\�ic..Q;"er.. \h wA�·�. (1) ta.W-:> I give permission for my thesis to be rrede a���;�d�� .. -; ':: readers in the Massey University Library under conditi¥?� . C • determined by the Librarian. ; �dO n�t�sh my..,):hesi�o be�de�ai�e � _ _ re er/l.thout""my wmtten c6nse� for _ -<-L_ nths. ' ... ' � (2 ) �l.--.::�;. I � t � thej>'is, ov& c0er. rrej0Se s� ¥ I :.. an �r n�t ' ut ¥1h undef'condrtion srdeterdU.n6§. � t e rarl. I do not wish my thesis, or a copy, to be sent to another institution without my written consent for 12 nonths. (3 ) I agree that my thesis rrey be copied for Library use.: . �� ... Signed �,t. .... : B K Clappe n ;" Date (� �v � ; .. \, The cct1m�t of this thesis belongs to the author. Readers must sign t��::�arre in the space below to show that they recognise this. lmy· · are asked to add their perm:ment address. -
The Saola Or Spindlehorn Bovid Pseudoryx Nghetinhensis in Laos
ORYX VOL 29 NO 2 APRIL 1995 The saola or spindlehorn bovid Pseudoryx nghetinhensis in Laos George B. Schaller and Alan Rabinowitz In 1992 the discovery of a new bovid, Pseudoryx nghetinhensis, in Vietnam led to speculation that the species also occurred in adjacent parts of Laos. This paper describes a survey in January 1994, which confirmed the presence of P. ngethinhensis in Laos, although in low densities and with a patchy distribution. The paper also presents new information that helps clarify the phylogenetic position of the species. The low numbers and restricted range ofP. ngethinhensis mean that it must be regarded as Endangered. While some admirable moves have been made to protect the new bovid and its habitat, more needs to be done and the authors recommend further conservation action. Introduction area). Dung et al. (1994) refer to Pseudoryx as the Vu Quang ox, but, given the total range of In May 1992 Do Tuoc and John MacKinnon the animal and its evolutionary affinities (see found three sets of horns of a previously un- below), we prefer to call it by the descriptive described species of bovid in the Vu Quang local name 'saola'. Nature Reserve of west-central Vietnam The village of Nakadok, where saola horns (Stone, 1992). The discovery at the end of the were found, lies at the end of the Nakai-Nam twentieth century of a large new mammal in a Theun National Biodiversity Conservation region that had been visited repeatedly by sci- Area (NNTNBCA), which at 3500 sq km is the entific and other expeditions (Delacour and largest of 17 protected areas established by Jabouille, 1931; Legendre, 1936) aroused in- Laos in October 1993. -
Volatile Cues Influence Host-Choice in Arthropod Pests
animals Review Volatile Cues Influence Host-Choice in Arthropod Pests Jacqueline Poldy Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia; [email protected]; Tel.: +61-2-6218-3599 Received: 1 October 2020; Accepted: 22 October 2020; Published: 28 October 2020 Simple Summary: Many significant human and animal diseases are spread by blood feeding insects and other arthropod vectors. Arthropod pests and disease vectors rely heavily on chemical cues to identify and locate important resources such as their preferred animal hosts. Although there are abundant studies on the means by which biting insects—especially mosquitoes—are attracted to humans, this focus overlooks the veterinary and medical importance of other host–pest relationships and the chemical signals that underpin them. This review documents the published data on airborne (volatile) chemicals emitted from non-human animals, highlighting the subset of these emissions that play a role in guiding host choice by arthropod pests. The paper exposes some of the complexities associated with existing methods for collecting relevant chemical features from animal subjects, cautions against extrapolating the ecological significance of volatile emissions, and highlights opportunities to explore research gaps. Although the literature is less comprehensive than human studies, understanding the chemical drivers behind host selection creates opportunities to interrupt pest attack and disease transmission, enabling more efficient pest management. Abstract: Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts’ ‘volatilome’. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic. -
Introduction to Antelope & Buffalo
WildlifeCampus – The Behaviour Guide to African Herbivores 1 Module # 2 – Component # 2 Introduction to Antelope & Buffalo Tribe African African Genera Species Cephalophini: duikers 2 16 Neotragini: pygmy antelopes (dik-dik, suni, royal 6 13 antelope, klipspringer, oribi) Antilopini: gazelles, springbok, gerenuk 4 12 Reduncini: reedbuck, kob, waterbuck, lechwe 2 8 Peleini: Vaal rhebok 1 1 Hippotragini: horse antelopes (roan, sable, oryx, 3 5 addax) Alcelaphini: hartebeest, hirola, topi, biesbok, 3 7 wildebeest Aepycerotini: impala 1 1 Tragelaphini: spiral-horned antelopes (bushbuck, 1 9 sitatunga, nyalu, kudu, bongo, eland) Bovini: buffalo, cattle 1 1 Caprini: ibex, Barbary sheep 2 2 Total 26 75 FAMILY TRAITS Horns borne by males of all species and by females in 43 of the 75 African species. Size range: from 1.5 kg and 20 cm high (royal antelope) to 950 kg and 178 cm (eland); maximum weight in family, 1200 kg (Asian water buffalo, Bubalus bubalis); maximum height: 200 cm (gaur, Bos gaurus). Teeth: 30 or 32 total (see Component # 1 of this Module - Introduction to Ruminants). Coloration: from off-white (Arabian oryx) to black (buffalo, black wildebeest) but mainly shades of brown; cryptic and disruptive in solitary species to revealing with bold, distinctive markings in sociable plains species. Eyes: laterally placed with horizontally elongated pupils (providing good rear view). Introduction to Antelope and Buffalo © WildlifeCampus WildlifeCampus – The Behaviour Guide to African Herbivores 2 Scent glands: developed (at least in males) in most species, diffuse or absent in a few (kob, waterbuck, bovines). Mammae: 1 or 2 pairs. Horns. True horns consist of an outer sheath composed mainly of keratin over a bony core of the same shape which grows from the frontal bones. -
GUIDES NEWSLETTER JULY 2019 Written by Isaiah Banda
GUIDES NEWSLETTER JULY 2019 Written By Isaiah Banda The mercury dropped to 3.1 degrees Celsius in the beginning of the month until mid-month here at Safari Plains. Different days of the month it was only at 3.6, but different parts of the reserve experience slight temperature variations, as down in the western side of the lodge was the coldest I’ve felt in a couple of years, and I was in different areas on the reserve during the month, when it didn’t feel as bad. I’m confident it was only just above freezing in some of the depressions this month. I was in a sighting with the Madjuma pride but was particularly loathed to take off my gloves to work the camera, as I knew the kind of pain they would be in within seconds. Not cold… pain! Luckily, I had a company of Riette Smit, she did not hesitate to take her camera out. WWW.SAFARIPLAINS.CO.ZA Invariably in the mornings, the first hour of the drive is quiet. Predators aren’t moving around quite as much, probably conserving energy. It’s usually only when the temperature starts to rise that the action starts, and suddenly the tracking efforts start finding success, and the number of sightings starts to spike. The bush has essentially followed that pattern for the past month; we leave the lodge before sunrise bundled up in at least four layers, numb our faces for an hour or so until we start speaking incoherently, and then just as it’s almost time for a warm cup of coffee, outcomes the wildlife! Curiosity Killed the…. -
The Social and Spatial Organisation of the Beira Antelope (): a Relic from the Past? Nina Giotto, Jean-François Gérard
The social and spatial organisation of the beira antelope (): a relic from the past? Nina Giotto, Jean-François Gérard To cite this version: Nina Giotto, Jean-François Gérard. The social and spatial organisation of the beira antelope (): a relic from the past?. European Journal of Wildlife Research, Springer Verlag, 2009, 56 (4), pp.481-491. 10.1007/s10344-009-0326-8. hal-00535255 HAL Id: hal-00535255 https://hal.archives-ouvertes.fr/hal-00535255 Submitted on 11 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur J Wildl Res (2010) 56:481–491 DOI 10.1007/s10344-009-0326-8 ORIGINAL PAPER The social and spatial organisation of the beira antelope (Dorcatragus megalotis): a relic from the past? Nina Giotto & Jean-François Gerard Received: 16 March 2009 /Revised: 1 September 2009 /Accepted: 17 September 2009 /Published online: 29 October 2009 # Springer-Verlag 2009 Abstract We studied the social and spatial organisation of Keywords Dwarf antelope . Group dynamics . Grouping the beira (Dorcatragus megalotis) in arid low mountains in pattern . Phylogeny. Territory the South of the Republic of Djibouti. Beira was found to live in socio-spatial units whose ranges were almost non- overlapping, with a surface area of about 0.7 km2. -
MAMMALIAN EXOCRINE SECRETIONS XV. CONSTITUENTS of SECRETION of VENTRAL GLAND of MALE DWARF HAMSTER, Phodopus Sungorus Sungorus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository MAMMALIAN EXOCRINE SECRETIONS XV. CONSTITUENTS OF SECRETION OF VENTRAL GLAND OF MALE DWARF HAMSTER, Phodopus sungorus sungorus B. V. BURGER, D. SMIT, H. S. C. SPIES Laboratory for Ecological Chemistry, Department of Chemistry, University of Stellenbosch, Stellenbosch, 7600, South Africa. C. SCHMIDT, U. SCHMIDT Zoological Institute, University of Bonn, Poppelsdorfer Schloss, D-53115 Bonn, Germany. A. Y. TELITSINA, Institute of Animal Evolutionary Morphology and Ecology, Russian Academy of Sciences, Leninsky 33, Moscow, 117071, Russia. G. R. GRIERSON Rothmans International, Stellenbosch 7600, South Africa. Abstract In a study aimed at the chemical characterization of constituents of the ventral gland secretion of the male dwarf hamster, Phodopus sungorus sun- gorus, 48 compounds, including saturated alcohols, saturated and unsaturated ketones, saturated and unsaturated straight-chain carboxylic acids, iso- and an- teisocarboxylic acids, 3-phenylpropanoic acid, hydroxyesters, 2-piperidone, and some steroids were identified in the secretion. The position of the double bonds in γ -icosadienyl-γ -butyrolactone and γ - henicosadienyl-γ -butyrolactone, and the position of methylbranching in seven C16 –C21 saturated ketones could not be established. Several constituents with typically steroidal mass spectra also remained unidentified. The female dwarf hamster’s ventral gland either does not produce secretion