Sliwa 1996 Aardwolf

Total Page:16

File Type:pdf, Size:1020Kb

Sliwa 1996 Aardwolf A functional analysis of scent marking and mating behaviour in the aardwolf , Proteles cristatus (Sparrman, 1783) by Alexander Sliwa Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Biological and Agricultural Sciences University of Pretoria May 1996 ii A functional analysis of scent marking and mating behaviour in the aardwolf, Proteles cristatus (Sparrman 1783) by Alexander Sliwa Supervisor: Dr. Philip R.K. Richardson Department of Zoology and Entomology University of Pretoria ABSTRACT This study attempted to answer how scent marks function in terms of aardwolf Proteles cristatus year- round territory maintenance and mating success. A functional analysis of scent marking in the aardwolf was conducted in a two and a half year field study whilst recording 42 000 paste marks. The anatomy and histology of the anal pouch revealed an efficient organ for producing copious amounts of long- lasting fatty pasting secretion, and the apparatus for applying it onto grass stalks. The histology of the penile pad of aardwolf males was similarly geared to production and application of secretion, though its exact function is still not clear. Aardwolves started practising scent marking motor patterns early in life, but physiological maturation of secretion was complete with eight months and independence from their parents only. Cubs practised paste marking by overmarking scent marks of their parents, adjusting their mark-rate to that of the adult followed. After physical and behavioural maturation of paste marking subadults ceased to mark, coinciding with parental aggression, and some remained in their parent’s territories for another year. They started to paste again only when attempting to establish their own territory. Aardwolves scent marked almost exclusively by pasting with their anal pouch. Uncovered faeces away from established middens and urine deposited on middens, predominately by males during the mating season, were however likely to act as additional scent marking agents. iii During the non-mating season scent marking patterns suggested that scent marks functioned as a representation of an aardwolf’s claim to a territory area and its readiness to resort to physical escalation. Female and male motivation for territorial marking might differ slightly. There was a great deal of variation in marking activity due to territory size, individual effort, and territory establishment. Aardwolves responded to greater perceived intruder pressure by increasing their marking activity. Midden and den marking and general usage was adapted as well. Borders where intrusions were most likely were marked selectively more than others. Variation in scent marking activity was even stronger during the mating season. Both sexes increased their rate of marking ouside of their territories in order to advertise to neighbouring mating partners in the weeks around the females’ oestrus. Females only increased their mark-rates when not in attendance by males. Males with high mark-rates scouted in territories of females in pro-oestrus indicating their determination to mate to both their neighbouring males and females. After the mating season when resources, mating partners and food, were scarce scent marking activity was low to increase again when re-establishing territorial borders. At least 62% of observed copulations were extra-pair copulations (EPCs). Males either tried to mate at the critical point for female fertilisation by aggressive intervention or by sneaking copulations avoiding physical escalation. Female encouraged EPCs but still were eager to copulate longer with their partners. They were able to influence the course of the copulation considerably. By defending an exceptionally large territory, as well as having two females, weakened one male’s ability to guard his female partners efficiently from EPCs. In 43 experiment nights the response of aardwolves was monitored when finding 164 translocated scent marks collected from known aardwolves. An increase of scent marking activity at relevant borders and the demonstration that intimidation was transmitted without physical presence of the marker provided support for the intimidation hypothesis. Aardwolves changed their occupied den in response to it being scent marked by a same-sex intruder. Translocated scent marks of a female in pro-oestrus were able to elicit a visitation of her territory by the neighbouring male suggesting sex attractants in female scent marks. Seasonally the messages transmitted by scent marking changed coinciding with a shift in principally defended resource, food or mating opportunity. The study contributes to the understanding of the function of scent marking in the solitary aardwolf, by exposing their capability to transmit messages efficiently and their ability of interpretation to secure their food resources and mating opportunities. iv “Anyone who has spent days and nights watching another animal in the wild will realise that each species perceives a world of its own - totally unlike any other” David Day 1981 v ACKNOWLEDGEMENTS It is a great pleasure that I write these acknowledgements, giving me the opportunity to thank the many people who helped me in all aspects of this thesis. First I would like to thank my parents for introducing me to the magic of travelling and nurturing my deep love and interest for nature. Their ever-present spiritual and financial assistance has enabled me to see many places and transform my early dreams into a professional career. Despite living in Germany they spent many nights out in the field with me, always enthusiastic to learn about the complicated family affairs of the aardwolves. De Beer's Consolidated Mines provided me with unlimited access to the study area on Benfontein farm. I am most grateful to have been allowed to stay in their spacious house at Joint Shaft, close to the study area. Financial support was provided by the Deutscher Akademischer Austausch Dienst (DAAD) for two years, and a University of Pretoria research assistant bursary for two and a half years. The Gibbs family on Benfontein farm, Peter, Jennifer, Gregory, and Nicola provided me with much help, from the first basic needs of comfortable life, to constant help with my highly stressed vehicle as well as the many Sunday lunch invitations. I am most grateful to the staff of the McGregor Museum for providing me with computer access and unlimited use of their equipment, notably Corne Anderson, Tania Anderson who drew the Figure 3.2, Mr. Stockwell and Ivan Swart. Everybody was most helpful in providing assistance when problems arose. I also enjoyed our conversations during my day visits which were very important for my mental health, which was otherwise restricted to the aardwolves out in the veld. If I have to single out one person who helped me more than any other both in the veld and at the Museum, that person must certainly be Beryl Wilson. Despite the dust, mosquitoes, heat and cold, and incredibly heavy spotlamps, she cheerfully braved many nights, going through the agony of watching me miss many of my first shots trying to dart aardwolves. Any problem or issue which asked for a quick, reliable and intelligent solution by discussion and action she handled sovereignly. She probably knows more about aardwolf-researchers’ fads than anyone else. I thank Mark and Tania Anderson for their friendship, always ready to give advice, help at any time of the day or night, especially in the early days of frustration, and tried to relax my single minded aardwolf and cat thoughts with enjoyable birding excursions and tennis games. My supervisor, Philip Richardson introduced me to the aardwolves of Benfontein, and watched anxiously my first ‘hands on’ attempts at collecting scent marks and steering my vehicle clear of termite mounds. Later on for sharing many nights of darting aardwolves and deciphering the first drafts of my thesis and going through them again and again. I profited greatly from his ideas and discussions on aardwolf behaviour and data analysis. vi In Pretoria I was introduced to the subtleties of gas-chromatography by Peter Apps. I am most appreciative of the friendship and enthusiasm of Mike van der Linde at the University's Research Support Department. Particularly for his many months of tireless enthusiasm and help to get the SAS programs working on the vast amounts of data I had amassed as well as writing new programs and translating my summary into afrikaans. Without his help the analysis of my data would have been so much poorer. During the numerous visits to Pretoria I would like to thank Debbie Morris and Uli Rosendahl, and later Philip and Lynne Richardson, Rob Davies, and Tim Jackson for their generous hospitality and ever-present help and support. My sister Karen and her husband Uli Hähnle provided the delicacy-starved temporary bachelor with many delicious meals and a nice place to stay. Stan Harvey of the Kimberley Hospital provided medical supplies ad libitum and always had an ear open to listen to the aardwolves’ story. Without his help my histological analysis would have been impossible. I also would like to thank Andreas Popp from the Bayer’s Toxicology Lab in Wuppertal, Germany for professional help with the histology. Among the many people who joined me in the field and shared my enthusiasm for the aardwolves I mention here Arne Lawrenz, Angus and Ian Burns, Shawn Truscott, and Kathrine Voigt who helped with the darting of aardwolves. Gus van Dyk and Martin Haupt went out of their way to construct some excellent radio-collars. The people from C&B Communications often helped in fixing bent cables and soldering loose connections. For the recording of aardwolf vocalisations Laura Frehsen from the Transvaal Museum provided a generous supply of tapes and the ‘Rolls Royce of sound recorders’, the Nagra IV with microphones. Gustav Peters from the Zoologisches Forschungsinstitut und Museum Alexander Koenig in Bonn, Germany, guided me into the subtleties of recording and analysing sounds.
Recommended publications
  • Canid, Hye A, Aardwolf Conservation Assessment and Management Plan (Camp) Canid, Hyena, & Aardwolf
    CANID, HYE A, AARDWOLF CONSERVATION ASSESSMENT AND MANAGEMENT PLAN (CAMP) CANID, HYENA, & AARDWOLF CONSERVATION ASSESSMENT AND MANAGEMENT PLAN (CAMP) Final Draft Report Edited by Jack Grisham, Alan West, Onnie Byers and Ulysses Seal ~ Canid Specialist Group EARlliPROMSE FOSSIL RIM A fi>MlY Of CCNSERVA11QN FUNDS A Joint Endeavor of AAZPA IUCN/SSC Canid Specialist Group IUCN/SSC Hyaena Specialist Group IUCN/SSC Captive Breeding Specialist Group CBSG SPECIES SURVIVAL COMMISSION The work of the Captive Breeding Specialist Group is made possible by gellerous colltributiolls from the following members of the CBSG Institutional Conservation Council: Conservators ($10,000 and above) Federation of Zoological Gardens of Arizona-Sonora Desert Museum Claws 'n Paws Australasian Species Management Program Great Britain and Ireland BanhamZoo Darmstadt Zoo Chicago Zoological Society Fort Wayne Zoological Society Copenhagen Zoo Dreher Park Zoo Columbus Zoological Gardens Gladys Porter Zoo Cotswold Wildlife Park Fota Wildlife Park Denver Zoological Gardens Indianapolis Zoological Society Dutch Federation of Zoological Gardens Great Plains Zoo Fossil Rim Wildlife Center Japanese Association of Zoological Parks Erie Zoological Park Hancock House Publisher Friends of Zoo Atlanta and Aquariums Fota Wildlife Park Kew Royal Botanic Gardens Greater Los Angeles Zoo Association Jersey Wildlife Preservation Trust Givskud Zoo Miller Park Zoo International Union of Directors of Lincoln Park Zoo Granby Zoological Society Nagoya Aquarium Zoological Gardens The Living Desert Knoxville Zoo National Audubon Society-Research Metropolitan Toronto Zoo Marwell Zoological Park National Geographic Magazine Ranch Sanctuary Minnesota Zoological Garden Milwaukee County Zoo National Zoological Gardens National Aviary in Pittsburgh New York Zoological Society NOAHS Center of South Africa Parco Faunistico "La To:rbiera" Omaha's Henry Doorly Zoo North of Chester Zoological Society Odense Zoo Potter Park Zoo Saint Louis Zoo Oklahoma City Zoo Orana Park Wildlife Trust Racine Zoological Society Sea World, Inc.
    [Show full text]
  • Coyote Canis Latrans in 2007 IUCN Red List (Canis Latrans)
    MAMMALS OF MISSISSIPPI 10:1–9 Coyote (Canis latrans) CHRISTOPHER L. MAGEE Department of Wildlife and Fisheries, Mississippi State University, Mississippi State, Mississippi, 39762, USA Abstract—Canis latrans (Say 1823) is a canid commonly called the coyote. It is dog-like in appearance with varied colorations throughout its range. Originally restricted to the western portion of North America, coyotes have expanded across the majority of the continent. Coyotes are omnivorous and extremely adaptable, often populating urban and suburban environments. Preferred habitats include a mixture of forested, open, and brushy areas. Currently, there exist no threats or conservation concerns for the coyote in any part of its range. This species is currently experiencing an increasing population trend. Published 5 December 2008 by the Department of Wildlife and Fisheries, Mississippi State University Coyote location (Jackson 1951; Young 1951; Berg and Canis latrans (Say, 1823) Chesness 1978; Way 2007). The species is sexually dimorphic, with adult females distinctly CONTEXT AND CONTENT. lighter and smaller than adult males (Kennedy Order Carnivora, suborder Caniformia, et al. 2003; Way 2007). Average head and infraorder Cynoidea, family Canidae, subfamily body lengths are about 1.0–1.5 m with a tail Caninae, tribe Canini. Genus Canis consists length of about Young 1951). The skull of the of six species: C. aureus, C. latrans, C. lupus, coyote (Fig. 2) progresses through 6 distinct C. mesomelas, C. simensis, and C. adustus. developmental stages allowing delineation Canis latrans has 19 recognized subspecies between the age classes of juvenile, immature, (Wilson and Reeder 2005). young, young adult, adult, and old adult (Jackson 1951).
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • Exploiting Interspecific Olfactory Communication to Monitor Predators
    Ecological Applications, 27(2), 2017, pp. 389–402 © 2016 by the Ecological Society of America Exploiting interspecific olfactory communication to monitor predators PATRICK M. GARVEY,1,2 ALISTAIR S. GLEN,2 MICK N. CLOUT,1 SARAH V. WYSE,1,3 MARGARET NICHOLS,4 AND ROGER P. PECH5 1Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand 2Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand 3Royal Botanic Gardens Kew, Wakehurst Place, RH17 6TN United Kingdom 4Centre for Wildlife Management and Conservation, Lincoln University, Canterbury, New Zealand 5Landcare Research, PO Box 69040, Lincoln, 7640 New Zealand Abstract. Olfaction is the primary sense of many mammals and subordinate predators use this sense to detect dominant species, thereby reducing the risk of an encounter and facilitating coexistence. Chemical signals can act as repellents or attractants and may therefore have applications for wildlife management. We devised a field experiment to investigate whether dominant predator (ferret Mustela furo) body odor would alter the behavior of three common mesopredators: stoats (Mustela erminea), hedgehogs (Erinaceus europaeus), and ship rats (Rattus rattus). We predicted that apex predator odor would lead to increased detections, and our results support this hypothesis as predator kairomones (interspecific olfactory messages that benefit the receiver) provoked “eavesdropping” behavior by mesopredators. Stoats exhib- ited the most pronounced responses, with kairomones significantly increasing the number of observations and the time spent at a site, so that their occupancy estimates changed from rare to widespread. Behavioral responses to predator odors can therefore be exploited for conserva- tion and this avenue of research has not yet been extensively explored.
    [Show full text]
  • The Effect of Grazing on Aardwolves and How Farmers in Namibia Perceive the Aardwolf
    The effect of grazing on Aardwolves and how farmers in Namibia perceive the Aardwolf Jessica Fagerudd Arbetsgruppen för Tropisk Ekologi Minor Field Study 114 Committee of Tropical Ecology Uppsala University, Sweden September 2005 Uppsala The effect of grazing on Aardwolves and how farmers in Namibia perceive the Aardwolf Jessica Fagerudd Master Thesis in Zoo ecology, 20 p, Spring 2004 Department of Animal Ecology, Centre for Evolutionary Biology (EBC) Uppsala University, Uppsala, Sweden Supervisors: Professor Mats Björklund and Doctor Jennifer Lalley Abstract The distribution of the aardwolf (Proteles cristatus) is entirely dependent on the presence of termites, on which it feeds almost exclusively. Farmlands that are grazed by livestock are often suitable habitats for termites and hence for the aardwolf. However, many farmlands are nowadays being intensely grazed and this, together with difficult climate conditions, can act as a threat against the biodiversity and the wildlife, including the aardwolf. To test if the grazing of livestock affects this animal, a comparison of the relative population density of aardwolves was made between an ungrazed reserve and a grazed farm in the semi-desert of Namibia. The study was performed between March and May 2004. The results imply that grazing at a medium level favours the aardwolf. It also seems as intense grazing negatively affects termites, and if that is the case, the aardwolf would be negatively affected as well. Another possible threat against the aardwolf is that it sometimes is being killed because of the misbelief that it attacks livestock. To get an idea of this problem a limited number of interviews were done with farmers in the northern part of Namibia.
    [Show full text]
  • In the Mood Deer Have a Way of Advertising Their Wares and the Whereabouts– Scent, Sounds, and Body Language
    A buck simulates reproductive response with flehman or lip curling to expose his vomeronasal organ to scent of a female’s urination. (frame from Quality Deer Management Assoc. video) In the Mood Deer have a way of advertising their wares and the whereabouts– scent, sounds, and body language J. Morton Galetto, CU Maurice River Last October I wrote an article about deer that included some aspects of their mating habits. It described mate guarding and the male deer or buck’s propensity to focus on following a female in estrus so as to insure he is the lucky suitor. During rut or the breeding season, when males spar competitively for reproductive rights over females, deer are on the move. The season begins in October and its height in our region is November 10- 20. Females that are not successfully fertilized will come into estrus a second time 28 days later, offering a second chance for them to produce young. All this moving around makes deer and drivers especially prone to road collisions. Bucks are particularly active during sunset and early morning. So slow down and stay alert. In last year’s story we offered lots of advice in this regard. White-tail deer are the local species here in Southern NJ. I thought it might be fun to talk about their indicators of lust – well, fun for me anyway. Deer employ three major methods of communications: scents, vocalizations, and body language. Deer are ungulates, meaning they are a mammal with a cloven hoof on each leg, split in two parts; you could describe them as toes or digits.
    [Show full text]
  • Human Impacts on Carnivore Biodiversity Inside and Outside
    HUMAN IMPACTS ON CARNIVORE BIODIVERSITY INSIDE AND OUTSIDE PROTECTED AREAS IN TANZANIA MAURUS JANUARY MSUHA PhD THESIS UNIVERSITY COLLEGE LONDON (UCL) AND INSTITUTE OF ZOOLOGY, ZOOLOGICAL SOCIETY OF LONDON 2009 1 DECLARATION I, Maurus January Msuha hereby declare that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated. The material contained in this thesis has not been previously submitted for a degree at University College London or any other university. ©The copyright of this thesis rests with the author. No quotation of this thesis should be published without the author’s prior written consent and information derived from this should be acknowledged. Thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy, University College London, 2009 SUMMARY 2 Conservation of biodiversity throughout the world is often characterized by the establishment of protected areas. The implementation of this approach is extremely challenging particularly in developing countries due to expanding human population and demand for resources. Yet, information that is needed to guide managers and policy makers to develop effective conservation strategies is scarce in most of these countries. This thesis aimed to explore the impact of human activities on carnivore biodiversity inside and outside Tarangire National Park in Tanzania using camera traps, and to assess attitudes of agropastoralists towards carnivores using interviews. Results showed no significant difference in carnivore species richness between the park and communal grazing areas outside the park, but was a significantly different between the park and cultivated areas outside it.
    [Show full text]
  • Rangeland Ecology & Management
    Rangeland Ecology & Management 79 (2021) 64–76 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: www.elsevier.com/locate/rama Local-Scale Variation in Land Use Practice Supports a Diverse Carnivore ✩ Guild on Namibian Multiple-Use Rangeland ∗ Stijn Verschueren 1,2, , Willem D. Briers-Louw 1,3, Pedro Monterroso 4, Laurie Marker 1 1 Cheetah Conservation Fund, Otjiwarongo, Namibia 2 Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium 3 Zambeze Delta Conservation, Marromeu, Mozambique 4 CIBIO/InBIO, Biodiversity and Genetic Resources Research Center, University of Biodiversity and Genetic Resources Research Center, University of Porto, Vairão Campus, 4485-661 Vairão, Portugal a r t i c l e i n f o a b s t r a c t Article history: Many rangelands worldwide are threatened by human population growth, so there is an urgent need Received 19 October 2020 for understanding how we can preserve functional diversity across these systems. The conservation and Revised 7 July 2021 restoration of mammalian carnivores (order Carnivora) is critical because they impart important trophic Accepted 15 July 2021 cascading effects. Land use practice on rangelands may determine carnivore distributions and abun- dances; thus, to effectively facilitate coexistence between carnivores and humans, it is essential to under- Key Words: stand carnivore community functioning in human-dominated landscapes. We conducted a camera trap- camera trap ping survey on multiple-use rangeland in north-central Namibia to investigate the spatial ecology of free- coexistence ranging carnivores in a farming system that comprises both livestock farming activities and wildlife-based farmland land uses. We hypothesized that carnivore diversity and occupancy would be determined by farm type occupancy seasonality and predicted the associations of carnivore distributions with covariates related to resource availability, spatial ecology intraguild interactions, and anthropogenic influence.
    [Show full text]
  • Mammalian Pheromones – New Opportunities for Improved Predator Control in New Zealand
    SCIENCE FOR CONSERVATION 330 Mammalian pheromones – new opportunities for improved predator control in New Zealand B. Kay Clapperton, Elaine C. Murphy and Hussam A. A. Razzaq Cover: Stoat in boulders in the Tasman River bed, Mackenzie Basin. Photo: John Dowding. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright August 2017, New Zealand Department of Conservation ISSN 1177–9241 (web PDF) ISBN 978–1–98–851436–9 (web PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Lynette Clelland. Publication was approved by the Director, Threats Unit, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 1 1. Introduction 2 1.1 The potential roles of pheromones in New Zealand predator control 2 1.2 Aim of this review 4 2. Pheromone identification and function in mammalian predator species 5 2.1 Mice 5 2.2 Rats 7 2.3 Rodent Major Urinary Proteins (MUPs) 9 2.4 Cats 10 2.5 Mustelids 11 2.6 Possums (with reference to other marsupials) 13 3. Odour perception and expression 14 3.1 How do animals perceive odours? 14 3.2 Influence of the MHC 16 4.
    [Show full text]
  • Olfactory Communication in the Ferret (Mustela Furo L.) and Its Application in Wildlife Management
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. OLFACTORY COMMUNICATION IN THE FERRET (MUSTELA FURO L.) AND ITS APPLICATION IN WILDLIFE MANAGEMENT A Thesis Prepared in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Zoology at Massey University Barbara Kay Clapperton 1985 �;·.;L��:"·;�� �is Copyrigj;lt Fonn Title:·J.;:E,:£j;esis: O\fgc:..�O("j CoW\I"'h.JA"lC,citQC\ � �� '�'Jd" � (�tJ.o.kgL.) � -\� C\�ic..Q;"er.. \h wA�·�. (1) ta.W-:> I give permission for my thesis to be rrede a���;�d�� .. -; ':: readers in the Massey University Library under conditi¥?� . C • determined by the Librarian. ; �dO n�t�sh my..,):hesi�o be�de�ai�e � _ _ re er/l.thout""my wmtten c6nse� for _ -<-L_ nths. ' ... ' � (2 ) �l.--.::�;. I � t � thej>'is, ov& c0er. rrej0Se s� ¥ I :.. an �r n�t ' ut ¥1h undef'condrtion srdeterdU.n6§. � t e rarl. I do not wish my thesis, or a copy, to be sent to another institution without my written consent for 12 nonths. (3 ) I agree that my thesis rrey be copied for Library use.: . �� ... Signed �,t. .... : B K Clappe n ;" Date (� �v � ; .. \, The cct1m�t of this thesis belongs to the author. Readers must sign t��::�arre in the space below to show that they recognise this. lmy· · are asked to add their perm:ment address.
    [Show full text]
  • Classification
    Classification Grouping & Identifying Living Things Taxonomy • The study of how living things are classified • Classification is the sorting of organisms based on similar characteristics • Carolus Linnaeus is known as the Father of Taxonomy Levels of Classification • Domain • Dear • Most General • Kingdom • King • Phylum • Phillip • Class • Came • Order • Over • Family • For • Genus • Good • Species • Spaghetti • Most Specific Genus and Species • The last two levels make up an organisms scientific name – This is called Binomial Nomenclature • Bi—two • Nomial—Name Acer grandidentatum Penicillium Felis Concolor chrysogenum Test your Knowledge • http://www.lexington.k12.il.us/teachers/me nata/7%20science/Classification/levelsord er.htm Classification Aardwolf Gray Wolf Coyote Lion Blue Whale Level Kingdom Animalia Animalia Animalia Animalia Animalia Phylum Chordata Chordata Chordata Chordata Chordata Class Mammalia Mammalia Mammalia Mammalia Mammalia Order Carnivora Carnivora Carnivora Carnivora Cetacea Family Hyaenidae Canidae Canidae Felidae Balenopteridae Genus Proteles Canis Canis Panthera Balaenoptera Species Proteles Canis lupus Canis Panthera Balaenoptera cristatus latrans leo musculus Classifying Living Things • We put livings things into three Domains Eukarya Bacteria Archaea • Which are divided into 6 Kingdoms Plant Animal Fungi Protist Eubacteria Archaebacteria • We are in the Domain Eukarya and the Kingdom Animalia Prokaryotes no nucleus Do have a nucleus Animal Kingdom • All animals are multi-cellular! • All animal cells are eukaryotic! – What does this mean? • Their cells have a nucleus and membrane bound organelles. • Animal cells are only surrounded by cell membranes…no cell wall! • Animals are heterotrophs • Most reproduce sexually through the joining of an egg and sperm cell • Most animals can move Animal Kingdom • All animals have specialized parts that do specific jobs.
    [Show full text]
  • Caracal Caracal – Caracal
    Caracal caracal – Caracal Common names: Caracal, African Caracal, Asian Caracal, Desert Lynx (English), Rooikat, Lynx (Afrikaans), Indabutshe (Ndebele), Thwane (Setswana), Thooane, Thahalere (Sotho), Nandani (Tsonga), Thwani (Venda), Ingqawa, Ngada (Xhosa), Indabushe (Zulu) Taxonomic status: Species Taxonomic notes: The Caracal has been classified variously with Lynx and Felis in the past, but molecular evidence supports a monophyletic genus. It is closely allied with the African Golden Cat (Caracal aurata) and the Serval (Leptailurus serval), having diverged around 8.5 mya (Janczewski et al. 1995; Johnson & O’Brien 1997; Johnson et al. 2006). Seven subspecies have been recognised in Africa (Smithers 1975), of which two occur in southern Africa: C. c. damarensis from Namibia, the Northern Cape, southern Botswana and southern and central Angola; and the nominate C. c. caracal from the remainder of the species’ range in southern Africa (Meester et al. 1986). According to Stuart and Stuart (2013), however, these subspecies should best be considered as geographical variants. Assessment Rationale Caracals are widespread within the assessment region. They are considered highly adaptable and, within their distribution area, are found in virtually all habitats except the driest part of the Namib. They also tolerate high levels Marine Drouilly of human activity, and persist in most small stock areas in southern Africa, despite continuously high levels of Regional Red List status (2016) Least Concern persecution over many decades. In some regions it is National Red List status (2004) Least Concern even expected that Caracal numbers might have increased. Thus, the Least Concern listing remains. The Reasons for change No change use of blanket control measures over vast areas and the uncontrolled predation management efforts over virtually Global Red List status (2016) Least Concern the total assessment region are, however, of concern.
    [Show full text]