The Saola Or Spindlehorn Bovid Pseudoryx Nghetinhensis in Laos

Total Page:16

File Type:pdf, Size:1020Kb

The Saola Or Spindlehorn Bovid Pseudoryx Nghetinhensis in Laos ORYX VOL 29 NO 2 APRIL 1995 The saola or spindlehorn bovid Pseudoryx nghetinhensis in Laos George B. Schaller and Alan Rabinowitz In 1992 the discovery of a new bovid, Pseudoryx nghetinhensis, in Vietnam led to speculation that the species also occurred in adjacent parts of Laos. This paper describes a survey in January 1994, which confirmed the presence of P. ngethinhensis in Laos, although in low densities and with a patchy distribution. The paper also presents new information that helps clarify the phylogenetic position of the species. The low numbers and restricted range ofP. ngethinhensis mean that it must be regarded as Endangered. While some admirable moves have been made to protect the new bovid and its habitat, more needs to be done and the authors recommend further conservation action. Introduction area). Dung et al. (1994) refer to Pseudoryx as the Vu Quang ox, but, given the total range of In May 1992 Do Tuoc and John MacKinnon the animal and its evolutionary affinities (see found three sets of horns of a previously un- below), we prefer to call it by the descriptive described species of bovid in the Vu Quang local name 'saola'. Nature Reserve of west-central Vietnam The village of Nakadok, where saola horns (Stone, 1992). The discovery at the end of the were found, lies at the end of the Nakai-Nam twentieth century of a large new mammal in a Theun National Biodiversity Conservation region that had been visited repeatedly by sci- Area (NNTNBCA), which at 3500 sq km is the entific and other expeditions (Delacour and largest of 17 protected areas established by Jabouille, 1931; Legendre, 1936) aroused in- Laos in October 1993. Laos plans a major hy- tense interest. Four subsequent Vietnamese droelectric project on the Nam Theun, a river surveys produced the remains of over 20 par- whose primary watershed is the Conservation tial specimens of the bovid, which has been Area. The dam will inundate some of the low- given the scientific name Pseudoryx nghetinhen- lands in the conservation area. During January sis (Dung et al., 1993). One local name for the 1994 we collaborated with the Department of animal is saola, spindlehorn, because its long Forestry, Lao People's Democratic Republic, in tapered horns resemble a weaver's spindle a survey of the status of large mammals in the (Dung et al., 1994). Because all Vietnamese dis- region. During this survey we repeatedly found tribution records of saola were from the evidence of saola. A survey of this species out- forests of the Annamite Mountain range along side the conservation area is planned for the the Vietnam-Laos border, Dung et al. (1993) near future. Here we present preliminary data assumed that the species could also occur in that confirm the presence of saola in Laos and Laos. The first evidence of saola in Laos was indicate that a breeding population with a found by Robert Dobias who in early 1993 saw fairly extensive distribution exists. a set of horns at the village of Nakadok near the Vietnam border (Salter, 1993). The local people there knew the animal as saola or yang Study methods (not to be confused with yeang, the serow Naemorhedus sumatraensis, which is in size We interviewed villagers and other local peo- similar to the saola and also occurs in that ple about saola and walked about 415 km to ©1995FFPS 107 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 26 Sep 2021 at 17:33:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605300020974 G. B. SCHALLER AND A. RABINOWITZ Two Hmong tribesmen at the village of Nape with the horns of a female saola (George B. Schaller). assess the relative abundance and distribution montane evergreen broad-leaved forest at of large mammals in the Conservation Area. 200-2000 m a.s.l. (Dung et ah, 1993). The Local people living in or near the forest hunt Laotian side of the Annamites has terrain and and trap wildlife extensively, and this makes vegetation similar to that on the Vietnamese them usually reliable informants about the side, and the saola is probably found through- status of species within their area. The saola is out that part as well; however, our work has encountered so infrequently and has such a so far confirmed the species only in the south- distinctive appearance that hunters and others ern half (Figure 1). Vietnamese hunters com- remember for years the location and the de- monly cross the border and some of the tails of a killing or sighting. Because villagers specimens examined by Dung et al. (1993) in usually consume all edible parts of a carcass, Vietnam may have been killed in Laos. including the skin, and domestic pigs and Villagers also informed us that they had sold dogs dispose of the bones, physical evidence their saola horns to Vietnamese. of a killed saola does not persist for long; how- Figure 1 shows 23 localities where local peo- ever, on occasion the horns, sometimes with a ple sighted or killed saola; about half the part of the skull, are nailed to a hut wall and records are from 1990 onward. The records these were measured. The horns of 10 saola, cluster in or near the northern end of the con- some attached to the top half of the skull, as servation area, partly because our surveys well as the rotting hide and one hoof of an were mostly done there and partly because adult female were examined. the species appears to become scarcer to the south. For example, saola were once found around the village of Navang, but only one Distribution animal has been killed there in recent times, about 6 years ago. Visits to the south-eastern The saola's known range in Vietnam extends portion and along the southern boundary of from the Song Ca River at about 19°25'N, the conservation area indicated that most vil- 104°05'E south to about 18°05'N, 105°50'E lagers are unfamiliar with the saola or had along 225 km of the Annamite Mountains. It heard of its occurrence to the north. We were encompasses about 4000 sq km primarily of told that saola tend to concentrate in certain 108 © 1995 FFPS, Oryx, Vol 29, No 2 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 26 Sep 2021 at 17:33:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605300020974 THE SAOLA OR SPINDLEHORN BOVID PSEUDORYX NGHETINHENSIS IN LAOS LAOS THAILAND Saola records 1990-94 \ \ Thakhek \ Saola records 1960s-80s \ \ A "\ Known range in Vietnam %.._> I 25 50 104 I Figure 1. Distribution of saola or spindlehorn bovid in Laos and Vietnam. The data for Vietnam are based on the map in Dung et ah (1993). localities, leaving others unoccupied. If so, an understorey of saplings, bamboo, and pockets of animals may exist in the palms. About half of the records were at Conservation Area along the Vietnam border 500-1000 m a.s.l. and the rest up to about 1400 where villagers seldom go. m. Although the species is usually encoun- Most of the records come from steep but not tered in primary forest, it may frequent sec- precipitous mountains covered with a closed ondary growth. Dogs flushed a female with canopy of evergreen broad-leaved forest and young from a thicket near Nakadok and © 1995 FFPS, Oryx, Vol 29, No 2 109 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 26 Sep 2021 at 17:33:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605300020974 G. B. SCHALLER AND A. RABINOWITZ Table 1. Horn measurements of Length of Circumference Width between saola longest horn of horn base horn tips Sex* (cm) (cm) (cm) Female 9.5 6.4 6.8 Male 18.8 8.4 - Male 36.2 12.2 11.0 Male 39.5 12.1 8.2 Male 45.5 13.0 6.0 Female 45.0 11.8 - Female 45.1 11.0 3.5 Female 50.4 11.2 11.5 Unknown 42.6 11.2 8.7 Unknown 49.5 10.8 18.4 * The sex of specimens was determined through questioning either the hunter who killed the animal or a second party who had direct knowledge of the kill. Our questioning revealed that the first two animals in this list were subadults and the rest were presumed adults. villagers clubbed the young to death. al. (1993, 1994) provide a partial description of Two old records are from a considerable the saola. On the basis of examining fragmen- distance west of the conservation area and tary specimens we provide additional infor- two are to the south. These four are from mation that helps to clarify the phylogenetic karst, a rugged topography of Silurian lime- position of the species within the subfamily. stone consisting of great grey slabs of rock, The saola may weigh up to an estimated 100 serrated ridges and sheer isolated domes with kg and reach a shoulder height of 80-90 cm forest draping the base and the ravines. Karst (Dung et ah, 1993). It has a compact neck and at low altitudes tends to be dry, covered with body, but the head is rather delicately shaped semideciduous or deciduous forest and scrub, with a narrow muzzle and arched nasal bones.
Recommended publications
  • Boselaphus Tragocamelus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1.
    [Show full text]
  • Vega Etal Procroyalsocb Synchronous Diversification
    Canterbury Christ Church University’s repository of research outputs http://create.canterbury.ac.uk Please cite this publication as follows: Frantz, Laurent A. F., Rudzinski, A., Mansyursyah Surya Nugraha, A., Evin, A., Burton, J., Hulme-Beaman, A., Linderholm, A., Barnett, R., Vega, R., Irving-Pease, E., Haile, J., Allen, R., Leus, K., Shephard, J., Hillyer, M., Gillemot, S., van den Hurk, J., Ogle, S., Atofanei, C., Thomas, M., Johansson, F., Haris Mustari, A., Williams, J., Mohamad, K., Siska Damayanti, C., Djuwita Wiryadi, I., Obbles, D., Mona, S., Day, H., Yasin, M., Meker, S., McGuire, J., Evans, B., von Rintelen, T., Hoult, S., Searle, J., Kitchener, A., Macdonald, A., Shaw, D., Hall, R., Galbusera, P. and Larson, G. (2018) Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events. Proceedings of the Royal Society B: Biological Sciences. Link to official URL (if available): http://dx.doi.org/10.1098/rspb.2017.2566. This version is made available in accordance with publishers’ policies. All material made available by CReaTE is protected by intellectual property law, including copyright law. Any use made of the contents should comply with the relevant law. Contact: [email protected] Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events Authors Laurent A. F. Frantz1,2,a,*, Anna Rudzinski3,*, Abang Mansyursyah Surya Nugraha4,c,*, , Allowen Evin5,6*, James Burton7,8*, Ardern Hulme-Beaman2,6, Anna Linderholm2,9, Ross Barnett2,10, Rodrigo Vega11 Evan K. Irving-Pease2, James Haile2,10, Richard Allen2, Kristin Leus12,13, Jill Shephard14,15, Mia Hillyer14,16, Sarah Gillemot14, Jeroen van den Hurk14, Sharron Ogle17, Cristina Atofanei11, Mark G.
    [Show full text]
  • Prion Protein Gene (PRNP) Variants and Evidence for Strong Purifying Selection in Functionally Important Regions of Bovine Exon 3
    Prion protein gene (PRNP) variants and evidence for strong purifying selection in functionally important regions of bovine exon 3 Christopher M. Seabury†, Rodney L. Honeycutt†‡, Alejandro P. Rooney§, Natalie D. Halbert†, and James N. Derr†¶ †Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467; ‡Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258; and §National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604-3999 Communicated by James E. Womack, Texas A&M University, College Station, TX, September 1, 2004 (received for review December 19, 2003) Amino acid replacements encoded by the prion protein gene indel polymorphism has not been observed within the octapep- (PRNP) have been associated with transmissible and hereditary tide repeat region of ovine PRNP exon 3 (8, 10–20), whereas spongiform encephalopathies in mammalian species. However, an studies of cattle and other bovine species have yielded three indel association between bovine spongiform encephalopathy (BSE) and isoforms possessing five to seven octapeptide repeats (20–31). bovine PRNP exon 3 has not been detected. Moreover, little is Despite the importance of cattle both to agricultural practices currently known regarding the mechanisms of evolution influenc- worldwide and to the global economy, surprisingly little is known ing the bovine PRNP gene. Therefore, in this study we evaluated about PRNP allelic diversity for cattle collectively and͞or how the patterns of nucleotide variation associated with PRNP exon 3 this gene evolves in this lineage. In addition, although several for 36 breeds of domestic cattle and representative samples for 10 nondomesticated species of Bovinae contracted transmissible additional species of Bovinae.
    [Show full text]
  • Ungulate Tag Marketing Update Aza Midyear Conference 2015 Columbia, Sc
    UNGULATE TAG MARKETING UPDATE AZA MIDYEAR CONFERENCE 2015 COLUMBIA, SC Brent Huffman - Toronto Zoo Michelle Hatwood - Audubon Species Survival Center RoxAnna Breitigan - Cheyenne Mountain Zoo Species Marketing Original Goals Began in 2011 Goal: Focus institutional interest Need to stop declining trend in captive populations Target: Animal decision makers Easy accessibility 2015 Picked 12 priority species to specifically market for sustainability Postcards mailed to 212 people at 156 institutions Postcards Printed on recycled paper Program Leaders asked to provide feedback Interest Out of the 12 Species… . 8 Program Leaders were contacted by new interested parties in 2014 Sitatunga- posters at AZA meeting Bontebok- Word of mouth, facility contacted TAG Urial- Received Ungulate postcard Steenbok- Program Leader initiated contact Bactrian Wapiti- Received Ungulate postcard Babirusa- Program Leader initiated contact Warty Pigs- WPPH TAG website Arabian Oryx- Word of mouth Results Out of the 12 Species… . 4 Species each gained new facilities Bontebok - 1 Steenbok - 1 Warty Pig - 2 (but lost 1) Babirusa - 4 Moving Forward Out of the 12 Species… . Most SSP’s still have animals available . Most SSP’s are still looking for new institutions . Babirusa- no animals available . Anoa- needs help to work with private sector to get more animals . 170 spaces needed to bring these programs up to population goals Moving Forward Ideas for new promotion? . Continue postcards? Posters? Promotional items? Advertisements? Facebook? Budget? To be announced
    [Show full text]
  • (Antilope Cervicapra) in INDIA
    FAECAL CORTISOL METABOLITES AS AN INDICATOR OF STRESS IN CAPTIVE SPOTTED DEER (Axis axis) AND BLACKBUCK (Antilope cervicapra) IN INDIA. BY NIKHIL SOPAN BANGAR (B.V.Sc. & A.H.) MAHARASHTRA ANIMAL AND FISHERY SCIENCES UNIVERSITY, INDIA A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR MASTER OF SCIENCE DEGREE IN WILDLIFE HEALTH AND MANAGEMENT (WHM) DEPARTMENT OF CLINICAL STUDIES, FACULTY OF VETERINARY MEDICINE UNIVERSITY OF NAIROBI 2019 DECLARATION ii DEDICATION I dedicate this thesis to my beloved mother, Mrs Suman Sopan Bangar and my father Mr Sopan Bhayappa Bangar for always being supportive and encouraging me to be who I am today. iii ACKNOWLEDGEMENTS My sincere gratitude to Dr Muchane Muchai for providing unswerving and continuous feedback throughout the period of my work in this project; Dr Andrew G. Thaiyah both for his support and guidance during the course of thesis; Professor Dhananjay Govind Dighe for valuable guidance while conducting my field work along with laboratory work in India. I am also grateful to Profes- sor Shailesh Ingole and Dr Javed Khan for guiding me throughout my laboratory work. It is with great thanks to Rajiv Gandhi Zoological Park and wildlife research centre management team; Director Dr Rajkumar Jadhav, Deputy Director Dr Navnath Nigot, Head animal keeper Mr Shyamrao Khude along with animal keepers Mr Navnath Memane and Mr Sandip Raykar: Thank you for your untiring inspiration to contribute to my field work. I was enthused every single day working with each of you and learned more than I could ever hope to in such a short time. I hope this work will help contribute to management and development of the zoo.
    [Show full text]
  • NUTRITIONAL ANALYSIS of ANOA (Bubalus Depressicornis and Bubalus Quarlesi) FOOD PLANTS in TANJUNG PEROPA WILDLIFE RESERVE, SOUTHEAST SULAWESI
    Media Konservasi Vol. 16, No. 2 Agustus 2011 : 92 ± 94 NUTRITIONAL ANALYSIS OF ANOA (Bubalus depressicornis and Bubalus quarlesi) FOOD PLANTS IN TANJUNG PEROPA WILDLIFE RESERVE, SOUTHEAST SULAWESI (Analisis Kandungan Nutrisi Pakan Anoa Bubalus spp. di Suaka Margasatwa Tanjung Peropa Sulawesi Tenggara) ABDUL HARIS MUSTARI1) 1)Department of Forest Resources Conservation, Faculty of Forestry Bogor Agricultural University ([email protected]) Diterima 24 Jannuary 2011/Disetujui 27 Juli 2011 ABSTRAK Sebanyak 46 jenis tumbuhan dan dua jenis buah dikumpulkan dari habitat asli anoa (insitu) di Suaka Margasatwa Tanjung Peropa Sulawesi Tenggara. Analisis kandungan nutrisi makanan anoa diketahui dengan menggunakan metode Proximate Analyses. Hasil penelitian menunjukkan bahwa persentase kandungan nutrisi makanan anoa di habitat aslinya bervariasi. Kandungan protein bervariasi 5,58 -21,60 (rataan 12,70; SD 4,34), sementara kandungan serat kasar bervariasi dari 14,68 sampai 62,68 (rataan 36,93; SD 12,07). Persentase Ektrak Ether adalah 0,91-11,5 (rataan 2,38; SD 1,75). Persentase kandungan NFE (Nitrogen-Free Extractives) berkisar 0,76 dan 52,31 (rataan 24,64; SD 15,20), dan kandungan energi kasar adalah 2419-3583 kal/gram (rataan 3093; SD 282,82). Kata kunci: Anoa, Bubalus spp., kandungan nutrisi. INTRODUCTION METHODS Very little is known about the dietary ecology of Study site these animals in their natural habitats because of their This study was conducted in Kalobo Forest of secretive nature and their occupation of the most remote Tanjung Peropa wildlife reserve from 2000 to 2003. The tropical rain forests on the island including lowland wildlife reserve situated between 1220 45‘ ± 1220 45‘ forests, rocky-cliff forests and mountainous forests.
    [Show full text]
  • I Vividly Remember Reading About the Discovery of the Saola (Pseudoryx
    I vividly remember reading about the discovery of the Saola (Pseudoryx nghetinhensis) in the BBC Wildlife Magazine whilst sitting in my traditional English school library. I was transfixed by the discovery of a distinctive, one-and-a-half-meter long, 70 kilogram ungulate with long tapered horns in the forests of Vietnam. I vowed there and then to work on and help the species however I could. Twenty-six years later I am still keeping that vow, but time is running out. It is going to take an incredible effort to stave off extinction and put the Saola on the path to recovery toward a fully functioning population. The discovery of the Saola in 1992 has been heralded as one of the most spectacular zoological discoveries of the 20th century, not only because of the size and beauty of the species, but also because of its phylogenetic distinctiveness; the Saola sits alone in a monotypic genus. Its morphological and genetic characteristics suggest it is a primitive member of the tribe Bovini, along with the cattle and buffalo, within the family Bovidae. The Saola is found in the North and Central Annamite Mountains of Vietnam and Laos where it is restricted to climatically wet evergreen, broadleaf forest habitats. These forests are subjected to an up to 10-month long rainy season, with no month receiving less than 40 mm of rain. This level of rainfall is the result of two monsoons, and determines the Saola’s distribution. The western and southern distribution of the Saola are bounded by the rain shadow of mountain chains with the western extent expanding deeper into Laos where the mountains dip, allowing deeper penetration of the northeast winter monsoon.
    [Show full text]
  • Volatile Cues Influence Host-Choice in Arthropod Pests
    animals Review Volatile Cues Influence Host-Choice in Arthropod Pests Jacqueline Poldy Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia; [email protected]; Tel.: +61-2-6218-3599 Received: 1 October 2020; Accepted: 22 October 2020; Published: 28 October 2020 Simple Summary: Many significant human and animal diseases are spread by blood feeding insects and other arthropod vectors. Arthropod pests and disease vectors rely heavily on chemical cues to identify and locate important resources such as their preferred animal hosts. Although there are abundant studies on the means by which biting insects—especially mosquitoes—are attracted to humans, this focus overlooks the veterinary and medical importance of other host–pest relationships and the chemical signals that underpin them. This review documents the published data on airborne (volatile) chemicals emitted from non-human animals, highlighting the subset of these emissions that play a role in guiding host choice by arthropod pests. The paper exposes some of the complexities associated with existing methods for collecting relevant chemical features from animal subjects, cautions against extrapolating the ecological significance of volatile emissions, and highlights opportunities to explore research gaps. Although the literature is less comprehensive than human studies, understanding the chemical drivers behind host selection creates opportunities to interrupt pest attack and disease transmission, enabling more efficient pest management. Abstract: Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts’ ‘volatilome’. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic.
    [Show full text]
  • Introduction to Antelope & Buffalo
    WildlifeCampus – The Behaviour Guide to African Herbivores 1 Module # 2 – Component # 2 Introduction to Antelope & Buffalo Tribe African African Genera Species Cephalophini: duikers 2 16 Neotragini: pygmy antelopes (dik-dik, suni, royal 6 13 antelope, klipspringer, oribi) Antilopini: gazelles, springbok, gerenuk 4 12 Reduncini: reedbuck, kob, waterbuck, lechwe 2 8 Peleini: Vaal rhebok 1 1 Hippotragini: horse antelopes (roan, sable, oryx, 3 5 addax) Alcelaphini: hartebeest, hirola, topi, biesbok, 3 7 wildebeest Aepycerotini: impala 1 1 Tragelaphini: spiral-horned antelopes (bushbuck, 1 9 sitatunga, nyalu, kudu, bongo, eland) Bovini: buffalo, cattle 1 1 Caprini: ibex, Barbary sheep 2 2 Total 26 75 FAMILY TRAITS Horns borne by males of all species and by females in 43 of the 75 African species. Size range: from 1.5 kg and 20 cm high (royal antelope) to 950 kg and 178 cm (eland); maximum weight in family, 1200 kg (Asian water buffalo, Bubalus bubalis); maximum height: 200 cm (gaur, Bos gaurus). Teeth: 30 or 32 total (see Component # 1 of this Module - Introduction to Ruminants). Coloration: from off-white (Arabian oryx) to black (buffalo, black wildebeest) but mainly shades of brown; cryptic and disruptive in solitary species to revealing with bold, distinctive markings in sociable plains species. Eyes: laterally placed with horizontally elongated pupils (providing good rear view). Introduction to Antelope and Buffalo © WildlifeCampus WildlifeCampus – The Behaviour Guide to African Herbivores 2 Scent glands: developed (at least in males) in most species, diffuse or absent in a few (kob, waterbuck, bovines). Mammae: 1 or 2 pairs. Horns. True horns consist of an outer sheath composed mainly of keratin over a bony core of the same shape which grows from the frontal bones.
    [Show full text]
  • 242-243244-245
    Index │242-243244-245 88551 White Lion Cub - Walking 089 88824 African Civet 090 88681 Spotted Seal Pup 134 88554 Red River Hog 086 88829 Père David's Deer 097 88710 South African Penguin 127 88001 Red Fox 110 88560 Brown Bear 105 88830 Common Zebra 091 88726 Blacktip Reef Shark 125 88002 Rabbit 111 88561 Brown Bear Cub 105 88831 Ring-Tailed Lemur 080 88729 Great White Shark - Open Jaw 121 88003 Barn Owl 110 88562 Waterbuck 086 88832 White-Tailed Deer 112 88761 Blainville's Beaked Whale 130 88012 Brown Hare 111 88563 Giant Eland Antelope 084 88833 Hippopotamus 087 88765 Wandering Albatross 127 88015 Eurasian Badger 111 88564 Giant Sable Antelope Male 085 88837 Musk Ox 113 88766 Dugong 126 88025 African Elephant 085 88565 Lynx 097 88844 Timber Wolf Howling 113 88788 124 88026 African Elephant Calf 085 88566 Striped Hyena 082 88845 Timber Wolf Hunting 114 88804 120 88053 Common Otter 110 88578 Giant Sable Antelope Female 084 88850 Zebra Foal 091 88806 Leopard Seal 134 88089 White Rhinoceros Calf 090 88595 Maned Wolf 116 88852 White Rhinoceros 091 88834 Blue Whale 130 88090 Hippopotamus Calf 087 88596 Baird's Tapir 116 88859 Porcupine 096 88835 Sperm Whale 130 88166 Giant Panda 104 88597 Tapir Calf 116 88865 Dama Gazelle 090 88836 Gray Whale 128 88167 Giant Panda Cub - Standing 104 88602 Przewalski Stallion 096 88866 African Leopard 090 88851 King Crab 124 88204 Baboon Male 088 88604 Dartmoor Pony Bay 110 88881 Malayan Tapir 098 88862 Minke Whale 129 88207 Flamingo 118 88607 Fennec Fox 083 88890 Black Leopard 091 88895 126 88208 Dromedary
    [Show full text]
  • Appetite for Destruction (Summary Report)
    APPETITE FOR DESTRUCTION SUMMARY REPORT © RUDOLF SVEN 2 APPETITE FOR DESTRUCTION S ON / WW EXECUTIVE SUMMARY F Food is at the heart of many of the issues WWF focuses on. Through our work on sustainable diets, we know a lot of people are aware of the impact a meat-based diet has on water, land and habitats, and the implications of its associated greenhouse gas emissions. But few know the largest impact comes from the crop- based feed the animals eat. In a world where more and more people adopt a Western diet – one that’s high in meat, dairy and processed food – producing crops to feed our livestock is putting an enormous strain on our natural resources and is a driving force behind wide-scale biodiversity loss. The UK food supply alone is directly linked to the extinction of an estimated 33 species at home and abroad. WWF’s vision of a future where people and nature thrive is threatened by this current food system. This report looks at the impacts our appetite for animal protein – and in particular the associated hidden impacts of animal feed – has on our planet. We focus on the production of soy as feed for chicken, pork and fish and the consequences this has for the environment. We link the increased use of feed to the reduced nutritional value of these animal products, before exploring solutions through changing diets and alternative feed production systems. THE UK FOOD SUPPLY ALONE IS DIRECTLY LINKED TO THE extinction OF AN ESTIMated 33 SPECIES at HOME AND ABROAD © ALFFOTO © T OM V 7 A N L IMPT/HOLL A ND S E HOOGTE/L FOOD, FEED AND BIODIVERSITY Rarely a week goes by without a headline about the negative effects of meat on our health or our environment.
    [Show full text]
  • GUIDES NEWSLETTER JULY 2019 Written by Isaiah Banda
    GUIDES NEWSLETTER JULY 2019 Written By Isaiah Banda The mercury dropped to 3.1 degrees Celsius in the beginning of the month until mid-month here at Safari Plains. Different days of the month it was only at 3.6, but different parts of the reserve experience slight temperature variations, as down in the western side of the lodge was the coldest I’ve felt in a couple of years, and I was in different areas on the reserve during the month, when it didn’t feel as bad. I’m confident it was only just above freezing in some of the depressions this month. I was in a sighting with the Madjuma pride but was particularly loathed to take off my gloves to work the camera, as I knew the kind of pain they would be in within seconds. Not cold… pain! Luckily, I had a company of Riette Smit, she did not hesitate to take her camera out. WWW.SAFARIPLAINS.CO.ZA Invariably in the mornings, the first hour of the drive is quiet. Predators aren’t moving around quite as much, probably conserving energy. It’s usually only when the temperature starts to rise that the action starts, and suddenly the tracking efforts start finding success, and the number of sightings starts to spike. The bush has essentially followed that pattern for the past month; we leave the lodge before sunrise bundled up in at least four layers, numb our faces for an hour or so until we start speaking incoherently, and then just as it’s almost time for a warm cup of coffee, outcomes the wildlife! Curiosity Killed the….
    [Show full text]