New Records of Scarab Insect Pests of Cacao (Theobroma Cacao L.) in the Philippines

Total Page:16

File Type:pdf, Size:1020Kb

New Records of Scarab Insect Pests of Cacao (Theobroma Cacao L.) in the Philippines Philippine Journal of Science 150 (5): 1197-1206, October 2021 ISSN 0031 - 7683 Date Received: 05 Apr 2021 New Records of Scarab Insect Pests of Cacao (Theobroma cacao L.) in the Philippines Orlando A. Calcetas1* , Joel L. Adorada2 , Jessamyn R. Adorada3, Barbara L. Caoili3, Avelita M. Rosales4, and Eda F. Dimapilis4 1Department of Agriculture, Regional Field Unit 4 CALABARZON Rizal Agricultural Research and Experiment Station Tanay, Rizal 1980 Philippines 2Bureau of Plant Industry–Los Baños National Crop Research, Development, and Production Support Center Timugan, Los Baños 4030 Laguna, Philippines 3Institute of Weed Science, Entomology and Plant Pathology College of Agriculture and Food Science University of the Philippines Los Baños, College 4031 Laguna, Philippines 4Department of Agriculture, Regional Field Unit 4 CALABARZON Marawoy, Lipa City 4217 Batangas, Philippines New records of scarab pests of cacao (Theobroma cacao L.) were reported in the Philippines: the rhizotrogine chafer, Holotrichia bipunctata Brenske, 1892 (Coleoptera: Scarabaeidae: Melolonthinae: Rhizotrogini) and diplotaxine chafer Apogonia palawana Heller, 1897 (Coleoptera: Scarabaeidae: Melolonthinae: Diplotaxini). The feeding patterns of the two insect pests are characterized, and some integrated pest management recommendations were cited. Keywords: diplotaxine chafer, June beetle, rhizotrogine chafer, scarabs INTRODUCTION CABI (2021) recorded five major scarab pests of cacao – namely, Adoretus compressus (Weber, 1801), A. sinicus Cacao [Theobroma cacao L. (Malvales: Sterculiaceae)] Burmeister, 1855, A. versutus Harold, 1869, Anomala is native to Central America and was cultivated by the pallida F., 1775, and Apogonia cribricollis Burmeister, Mayas and Aztecs in Central America. The Olmec and 1855; one minor insect pest is Phyllophaga sp., and one Mayan civilization believed that it had a divine origin and scarab pest associated with and but not feeding on cacao regarded as “food of the gods” (Coe and Coe 2006). The is Apogonia blanchardi Ritsema, 1898. plant is the source of chocolate and other valuable products such as cocoa cake, butter, powder, and liquor. The plant The rhizotrogine chafer beetle infestation was first was first introduced into the Philippines by the Spaniards reported to the Regional Crop Protection Center IV four centuries ago. In fact, the country was the first in CALABARZON of the Department of Agriculture (DA) Asia to actively produce cocoa beans in the latter part of regarding the foliage feeding damage on cacao in a 4-ha the 1600s in San Jose, Batangas (PCG 2020). Currently, plantation in Purok Ibaiw, Brgy. Ilayang Dupay, Lucena City, Quezon (southeastern part of Luzon) on 19 Feb *Corresponding Author: [email protected] 2019. The cacao varieties grown in the area are UF18 [email protected] 1197 Philippine Journal of Science Calcetas et al.: Scarab Insect Pests of Cacao in the Philippines Vol. 150 No. 5, October 2021 and BR25. However, no insect specimen was caught, H. apoensis Matsumoto, 2008 under the Holotrichia and only damaged leaves were collected and submitted. constricta species group, which is also widely distributed After more than a year, the same damage was reported in in Java and Ambon Island. The genus Apogonia Kirby, a 3-ha farm with approximately 500 trees in Magallanes, 1819 represents a species-rich taxon distributed mainly Cavite and planted with the same cacao varieties in Lucena in the Ethiopian and Oriental Regions, with several City. During that time, farmers were advised to monitor at species also known from southern parts of the Palaearctic night and catch the elusive nocturnal feeding pests around Region (China, Korea, and Japan) while one species the plantation. A month later, three adult specimens of was described from eastern Iran (Bezděk 2004). The Holotrichia bipunctata were observed and documented. genus Apogonia is known from nearly all Philippine In addition, three adults of diplotaxine leaf-feeding chafer islands (Bezděk 2004). Schultze (1916) recorded 15 beetle, Apogonia palawana, were also collected feeding species of Apogonia Kirby in the Philippines. There on cacao leaves in the same locality (Figures 12 and 13). are three species occurring in the Manila, Laguna, and Similar damage incidence was also reported two months Quezon areas: A. bakeri Moser; A. squamifera Moser, later in Bongabong, Nueva Ecija (Central Luzon) in 1913; and A. cuprescens Blanchard, 1851. However, April 2020 by the Los Baños National Crop Research, Apogonia palawana Heller can also be found on the Development, and Production Support Center of the nearby island of Borneo. Currently, in the Philippines, Bureau of Plant Industry (Figure 11). there are 51 species, 24 of which were described from Luzon Island (Bezděk 2004; Kobayashi 2013, 2014). The genus Holotrichia Hope, 1837 is a noxious group of Taxonomic revision is badly needed because the majority insect pests damaging groundnut, cereals, millets, pulses, of Philippine Apogonia species are known only from the soybean, sugarcane, pigeon pea crops, vegetables, and original type series. plantation crops in India, South Vietnam, and many other countries (David et al. 1986; Dadmal et al. 2013; Rao et Peacock (1913), upon observing the insect pests of cacao al. 2006). It is found in 18 countries of the Far East, North or cocoa bean in Southern Nigeria, recorded two insect and Central Asia, South East, and South Asia (Dalla pest species: the chafers Apogonia nitidula Thomson, Torre 1912). Itoh (2003a, b) and Matsumoto (2008a, b, 1858 (Scarabaeidae: Melolonthinae: Diplotaxini) and c; 2010) studied the Holotrichia constricta group in the Trochalus sp. (Scarabaeidae: Melolonthinae: Sericini). Philippines and identified 19 species from these studies. Arrow (1917) reported three species of the sericine chafers Also, Matsumoto (2008b) transferred H. burmeisteri Pseudotrochalus concolor (Kolbe, 1883), Triodonta Brenske, 1892 to Metatrogus based on the material procera Lansberge, and Aserica variegata Arrow, 1917 from the Philippines, Palau, the Caroline Islands, on cacao in the Democratic Republic of Congo. In and Australia. Schultze (1916) recorded 10 species Malaya, adults of Apogonia cribricolis Burmeister, A. of Holotrichia in the Philippines. On the other hand, expeditionis Ritsema, 1896, Chaetadoretus cribratus Brenske (1892) reported Holotrichia bipunctata and (White, 1844), and Adoretus compressus attack and feed later he described H. bipunctata minor Brenske, 1894 for on the leaves of cacao (Lever 1953). Entwistle (1985) the somewhat smaller specimens from the Philippines. reported three genera of leaf-feeding chafer beetles on This manuscript does not address the taxonomic status cacao: Apogonia, Anomala, and Chaetadoretus. Capco of this subspecies. Matsumoto (2008c) made a review (1957) and Gabriel (1997) recorded five species of of H. bipunctata and recorded its new distribution in the chewing beetles on cacao: the scarab beetle (Adoretus Cordillera Administrative Region in the Northern part sp.), the chrysomelid beetle (Phytorus lineolatus Weise, of Luzon (Mt. Province, Ifugao, Banaue, and Baguio). 1923), the corn silk beetle [Monolepta bifasciata The species was previously recorded in Mt. Banahaw, (Hornstedt, 1788), Chrysomelidae], the leaf roller Cavite, and Tagaytay. He also noted some geographic beetle [Apoderus (Strigapoderus) javanicus (Jekel, variations between male and female populations in north 1860) Attelabidae], and the pachyrhynchid beetle and central Luzon. The majority of the female population (Pachyrhynchus monileferus Germar, Curculionidae). in central Luzon has a pair of clear, deep concavities However, Caballero et al. (1987) reported a pyrgotid near the anterior margin of the pronotum. However, this fly parasitic on Adoretus ranunculus Burmeister, 1844 character is absent and the small impunctate portions infesting cacao in Davao Del Sur, Philippines. The paper were absent in a few specimens in the population. aims to catalog the scarab beetle insect pest of cacao in Nonetheless, the north Luzon population has a pair of the world, diagnose the morphological differences of shallow concavities or impunctate portions near the the two new pest records, discuss and differentiate their anterior margin. This is the first recorded host plant of feeding damages to other known scarab pest species of H. bipunctata in the country. This species is endemic in cacao, and summarize some integrated pest management the Philippines. However, Matsumoto (2008c) classified strategies done against them. H. bipunctata, H. amboinae (Brenske, 1894), and 1198 Philippine Journal of Science Calcetas et al.: Scarab Insect Pests of Cacao in the Philippines Vol. 150 No. 5, October 2021 MATERIALS AND METHODS Distribution: Japan and Taiwan, Southeast Asia, China, Indonesia, Cambodia, Singapore, Thailand, Vietnam, The insect pests were monitored around the cacao the Mariana Islands, the Caroline Islands, and many plantation and sampled at night using light traps and other Pacific Islands ocular/manual sampling with the aid of a flashlight and sweep net. Documentation of the insect damage was Food plant: cacao (Pemberton 1964; Mau and Kessing taken recorded using Samsung® J7 cellular phone. The 1991; McQuate and Jameson 2011; CABI 2021) specimens were placed in glass vials, preserved in 80% ethyl alcohol, and later dried, pinned, and dissected Adoretus versutus Harold, 1869 accordingly. Distribution: Madagascar, Mauritius, Reunion, Saint Color
Recommended publications
  • Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 12-2009 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson Wichita State University, [email protected] Darcy E. Oishi 2Hawaii Department of Agriculture, Plant Pest Control Branch, Honolulu, [email protected] Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Grant T. McQuate USDA-ARS-PBARC, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz; Oishi, Darcy E.; Ratcliffe, Brett C.; and McQuate, Grant T., "Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii" (2009). Papers in Entomology. 147. https://digitalcommons.unl.edu/entomologypapers/147 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AProcddition. HawaiianAl inv AEsiventomol scA.r SAocbs. in(2009) HAwA 41:25–30ii 25 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson1, Darcy E. Oishi2, Brett C. Ratcliffe3, and Grant T. McQuate4 1Wichita State University, Department of Biological Sciences, 537 Hubbard Hall, Wichita, Kansas 67260 [email protected]; 2Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King St., Honolulu, HI 96814 [email protected]; 3University of Nebraska State Museum, Systematics Research Collections, W436 Nebraska Hall, University of Nebraska, Lincoln, Nebraska 68588 [email protected]; 4USDA-ARS-PBARC, U.S.
    [Show full text]
  • Classification, Natural History, and Evolution of Epiphloeinae (Coleoptera: Cleridae)
    A N N A L E S Z O O L O G I C I (Warszawa), 2008, 58(1): 1-34 CLASSIFICATION, NATURAL HISTORY, AND EVOLUTION OF EPIPHLOEINAE (COLEOPTERA: CLERIDAE). PART VI. THE GENERA EPIPHLAEUS SPINOLA AND OPITZIUS BARR WESTON OPITZ Kansas Wesleyan University, Department of Biology, 100 East Claflin Avenue, Salina KS 67401-6196, USA; e-mail: [email protected] Abstract.— New World genus Epiphlaeus is redefined and evolutionarily linked to its sister genus Opitzius Barr. Epiphlaeus includes six species as follows: E. adonis sp. nov., E. duo- decimmaculatus (Klug), E. fundurufus sp. nov., E. princeps (Gorham), E. pulcherrimus (Gorham), E. quattuordecimmaculatus Chevrolat, and E. tigrinus sp. nov. The monotypic Opitzius is based on O. thoracicus Barr. Specimens of these two genera are variously deposited in 37 institutional and private collections. These checkered beetles frequent the surface of felled tree boles to forage on adults and immatures of lignicolous insects. Their large size and mobility make them very noticeable on the bark of fallen trees. It is postulated that they are participants in a mimetic ring with log-inhabiting mutillids and flies part of the mimetic mix. Hennigian principles were applied to 22 adult morphological characters, which yielded a nearly totally resolved phylogenetic hypothesis between Epiphlaeus and Opitzius, and among Epiphlaeus species groups. The combined geographical range of the inclusive species extends from northwestern Nicaragua to southeastern Brazil. It is hypothesized that ancestral Epiphlaeus – Opitzius evolved in South America with some descendants entering Insular Central America after closure of the Panamanian portals during the Miocene. Pleistocene climatic factors are thought to have influenced species diversity, and perhaps speciation events in conjunction with aspects of dispersal, vicariance, and taxon pulse dynamics.
    [Show full text]
  • Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use
    NAPPO Discussion Document DD 04: Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use Prepared by members of the Pest Risk Analysis Panel of the North American Plant Protection Organization (NAPPO) December 2011 Contents Introduction ...........................................................................................................................3 Purpose ................................................................................................................................4 Scope ...................................................................................................................................4 1. Background ....................................................................................................................4 2. Description of the Commodity ........................................................................................6 3. Assessment of Pest Risks Associated with Wooden Articles Intended for Indoor and Outdoor Use ...................................................................................................................6 Probability of Entry of Pests into the NAPPO Region ...........................................................6 3.1 Probability of Pests Occurring in or on the Commodity at Origin ................................6 3.2 Survival during Transport .......................................................................................... 10 3.3 Probability of Pest Surviving Existing Pest Management Practices .......................... 10 3.4 Probability
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • The Contribution of Cacao Agroforests to the Conservation of Lower Canopy Ant and Beetle Diversity in Indonesia
    10.1007/s10531-007-9196-0 Biodiversity and Conservation © Springer Science+Business Media B.V. 2007 10.1007/s10531-007-9196-0 Original Paper The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia Merijn M. Bos1, 2 , Ingolf Steffan-Dewenter1 and Teja Tscharntke1 (1) Department of Crop Science, Agroecology, University of Göttingen, Waldweg 26, Gottingen, 37073, Germany (2) Present address: State Museum of Natural History, Rosenstein 1, D-70191 Stuttgart, Germany Merijn M. Bos Email: [email protected] Received: 31 March 2006 Accepted: 13 August 2006 Published online: 13 June 2007 Abstract The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees.
    [Show full text]
  • A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum, University of Nebraska State Museum 2003 A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B. T. Smith University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, and the Other Ecology and Evolutionary Biology Commons Smith, Andrew B. T., "A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini)" (2003). Bulletin of the University of Nebraska State Museum. 3. http://digitalcommons.unl.edu/museumbulletin/3 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B. T. Smith Bulletin of the University of Nebraska State Museum Volume 15 A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) by Andrew B. T. Smith UNIVERSITY. OF, ( NEBRASKA "-" STATE MUSEUM Published by the University of Nebraska State Museum Lincoln, Nebraska 2003 Bulletin of the University of Nebraska State Museum Volume 15 Issue Date: 7 July 2003 Editor: Brett C. Ratcliffe Cover Design: Angie Fox Text design and layout: Linda J. Ratcliffe Text fonts: New Century Schoolbook and Arial Bulletins may be purchased from the Museum. Address orders to: Publications Secretary W436 Nebraska Hall University of Nebraska State Museum Lincoln, NE 68588-0514 U.S.A.
    [Show full text]
  • Check List of the Rutelinae (Coleoptera, Scarabaeidae) of Oceania
    CHECK LIST OF THE RUTELINAE (COLEOPTERA, SCARABAEIDAE) OF OCEANIA By FRIEDRICH OHAUS BERNICE P. BISHOP MUSEUM OCCASIONAL PAPERS VOLUME XI, NUMBER 2 HONOLULU, HAWAII PUBLISHED BY THE MUSJ-:UM 1935 CHECK LIST OF THE RUTELINAE (COLEOPTERA, SCARABAEIDAE) OF OCEANIA By FRIEDRICH OHAUS MAINZ, GERMANY BIOLOGY The RuteIinae are plant feeders. In Parastasia the beetle (imago) visits flowers, and the grub (larva) lives in dead trunks of more or less hard wood. In Anomala the beetle is a leaf feeder, and the grub lives in the earth, feeding on the roots of living plants. In Adoretus the beetle feeds on flowers and leaves; the grub lives in the earth and feeds upon the roots of living plants. In some species of Anornala and Adoretus, both beetles and grubs are noxious to culti­ vated plants, and it has been observed that eggs or young grubs of these species have been transported in the soil-wrapping around roots or parts of roots of such plants as the banana, cassava, and sugar cane. DISTRIBUTION With the exception of two species, the Rutelinae found on the continent of Australia (including Tasmania) belong to the subtribe Anoplognathina. The first exception is Anomala (Aprosterna) antiqua Gyllenhal (australasiae Blackburn), found in northeast Queensland in cultivated places near the coast. This species is abundant from British India and southeast China in the west to New Guinea in the east, stated to be noxious here and there to cultivated plants. It was probably brought to Queensland by brown or white men, as either eggs or young grubs in soil around roots of bananas, cassava, or sugar cane.
    [Show full text]
  • Adoretus Versutus Harold 1869] in the Sandy Rhizosphere of Acacia Nilotica Subsp
    INT. J. BIOL. BIOTECH., 10 (2): 319-325, 2013. THE OCCURRENCE OF WHITE GRUB [ADORETUS VERSUTUS HAROLD 1869] IN THE SANDY RHIZOSPHERE OF ACACIA NILOTICA SUBSP. NILOTICA SEEDLINGS IRRIGATED WITH MODERATELY SALINE WATER D. Khan1, Zulfiqar Ali Sahito1 and Imtiaz Ahmad2 1Department of Botany, University of Karachi, Karachi - 75270, Pakistan. 2MAH Qadri Biological Research Centre, University of Karachi, Karachi 75270, Pakistan. ABSTRACT Ten white grub larvae (third instar) were found in the sandy rhizospheres of Acacia nilotica ssp. nilotica seedlings irrigated with saline water of EC: 9.23 and 12.81dS.m-1 for more than two months in Biosalinity Experimental Field, department of Botany, University of Karachi. These larvae were incubated in laboratory. The soil was once sprinkled with tap water to maintain moisture level. After eight days the eight of the larvae died but two turned up into pupa which after around six to eight days gave rise to adult leaf chafer beetle. This organism on the basis of external morphology and genitalia was identified as Adoretus versutus Harold, 1869) - a serious pest on rose and several other plants. The grubs appeared to be tolerant to moderate level of salinity Key Words: White Grub, Leaf Chafer Adoretus versutus Harold, Acacia nilotica ssp. nilotica seedlings, Saline water irrigation. INTRODUCTION In the month of November, 2012, during harvest of Acacia nilotica ssp. nilotica seedlings subject to an experiment pertaining to the salinity tolerance of this plant, a number of white grubs (10 in number) were recovered from the basic (pH: 8.09) sandy loam soil of pots irrigated with saline water of EC: 9.23 and 12.81dS.m-1.
    [Show full text]
  • Taxonomic Studies on Adoretus Dejean, 1833 (Rutelinae
    Journal of Entomology and Zoology Studies 2016; 4(6): 01-11 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2016; 4(6): 01-11 Taxonomic studies on Adoretus Dejean, 1833 © 2016 JEZS (Rutelinae: Scarabaeidae) of Buxa Tiger Reserve Received: 01-09-2016 Accepted: 02-10-2016 (a forest under biodiversity hotspot zone), Dooars, Subhankar Kumar Sarkar Department of Zoology, West Bengal, India University of Kalyani, Kalyani, Nadia, West Bengal, India Subhankar Kumar Sarkar, Sumana Saha and Dinendra Raychaudhuri Sumana Saha Department of Zoology, Barasat Abstract Govt. College, 10 K.N.C Road, Taxonomy of Adoretus Dejean, 1833 fauna included within the subfamily Rutelinae recorded from Buxa Barasat (North 24 Parganas), Tiger Reserve, Dooars, West Bengal, India are dealt herewith. The generated data is the outcome of long Kolkata, West Bengal, India term faunistic investigations of the authors. Each of the species is redescribed and illustrated, Dinendra Raychaudhuri supplemented by digital images. A key for identification of all the species recorded from the study area Department of Agricultural along with their distribution in India is also provided. Biotechnology, IRDM Faculty Centre, Ramakrishna Mission Keywords: Adoretus, Buxa tiger reserve, Dooars, India, new records Vivekananda University, Narendrapur, Kolkata, West Introduction Bengal, India The authorship of Adoretus Dejean, 1833 was bit controversial until Krell [1] when he put forward a critical review of the genus and favored for the attribution of authorship to Dejean [2] in place of Castelnau [3]. Krell [1] has also pointed out that the type species designation of the genus by many authors including Arrow [4] is also not valid and should be designated as [2] Melolontha nigrifrons Steven, 1809, since the same was originally included by Dejean .
    [Show full text]
  • Biological Control of the Japanese Beetle from 1920 to 1964 Might Be More Available to Other Entomologists and the General Public
    ~ 12.8 ~1112.5 11.0 :it il~~ "I"~ 1.0 W .. !lMI :: W12.2 :: w 12.2 ~ IW .. L:I. W !!!ll!iIil III : ~ '_0 :: ~ 2.0 1.1 ........ ~ 1.1 .. .... ~ --- - 1111,1.8 '"" 1.8 25 111111.25 111111.4 111111.6 111111. 1/11/1. 4 111111. 6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAl, BUReAU or STANDARDS·1963·A NATIONAL BUREAU or STANDARDS·1963-A BIOL()GICAL CONTROL Of The JAPi\NESE BEETLE By 'W~lter E. Fleming Technical Bulletin No. 1383 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued February 1968 Forsale hy the S u peri n tenden t ofDoeumen ts, U.S. Go,",ernmentPrinting Office Washington, H.C. 20402 - l)rice 30 eents Contents Page Predators and parasites for control of beetle______________________________ 3 Xative predators llnd parasites______________________________________ 3 fnsedivorous birds__ _ _ ______ ._______________________________ 3 Tonds _________________________________________________ ------ 4 11anlnln~ _____________________________________________ ----- - 4 Predt\ceous insects _________________________________ --- ___ - ----- 5 Parasit ie insects ______________________________________ -------- - 6 Foreign predaceous and p:lrasitic insects_____________________________ 6 Explorations _____________ --________________________ - ________ -- 7 Biology of import:mt parasites and a predator in Far EasL ________ - 8 Hyperparasites in Far East.____________________________________ 18 Shipping parasites and predalors lo United Slales_________________ 19 Rearing imported
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Habitat Divergence Shapes the Morphological Diversity Of
    www.nature.com/scientificreports OPEN Habitat divergence shapes the morphological diversity of larval insects: insights from scorpionfies Received: 5 March 2018 Lu Jiang1,2, Yuan Hua1,3, Gui-Lin Hu1 & Bao-Zhen Hua1 Accepted: 21 August 2019 Insects are the most diverse group of organisms in the world, but how this diversity was achieved is Published: xx xx xxxx still a disputable and unsatisfactorily resolved issue. In this paper, we investigated the correlations of habitat preferences and morphological traits in larval Panorpidae in the phylogenetic context to unravel the driving forces underlying the evolution of morphological traits. The results show that most anatomical features are shared by monophyletic groups and are synapomorphies. However, the phenotypes of body colorations are shared by paraphyletic assemblages, implying that they are adaptive characters. The larvae of Dicerapanorpa and Cerapanorpa are epedaphic and are darkish dorsally as camoufage, and possess well-developed locomotory appendages as adaptations likely to avoid potential predators. On the contrary, the larvae of Neopanorpa are euedaphic and are pale on their trunks, with shallow furrows, reduced antennae, shortened setae, fattened compound eyes on the head capsules, and short dorsal processes on the trunk. All these characters appear to be adaptations for the larvae to inhabit the soil. We suggest that habitat divergence has driven the morphological diversity between the epedaphic and euedaphic larvae, and may be partly responsible for the divergence of major clades within the Panorpidae. Insects are the most diverse organisms on the earth, exhibiting the most diverse morphological features and occupying a wide range of ecological niches1,2.
    [Show full text]