Current Breeding Efforts in Salt‐And Drought-Tolerant Rootstocks –

Total Page:16

File Type:pdf, Size:1020Kb

Current Breeding Efforts in Salt‐And Drought-Tolerant Rootstocks – 12/12/2017 Current Breeding Efforts in Salt‐and Drought-Tolerant Rootstocks – Andy Walker ([email protected]) California Grape Rootstock Improvement Commission / California Grape Rootstock Research Foundation CDFA NT, FT, GV Improvement Advisory Board California Table Grape Commission American Vineyard Foundation E&J Gallo Winery Louise Rossi Endowed Chair in Viticulture Rootstock Breeding Objectives • Develop better forms of drought and salinity tolerance • Combine these tolerances with broad nematode resistance and high levels of phylloxera resistance • Develop better fanleaf degeneration tolerant rootstocks • Develop rootstocks with “Red Leaf” virus tolerance 1 12/12/2017 V. riparia Missouri River V. rupestris Jack Fork River, MO 2 12/12/2017 V. berlandieri Fredericksburg, TX Which rootstock to choose? • riparia based – shallow roots, water sensitive, low vigor, early maturity: – 5C, 101-14, 16161C (3309C) • rupestris based – broadly distributed roots, relatively drought tolerant, moderate to high vigor, midseason maturity: – St. George, 1103P, AXR#1 (3309C) 3 12/12/2017 Which rootstock to choose? • berlandieri based – deeper roots, drought tolerant, higher vigor, delayed maturity: – 110R, 140Ru (420A, 5BB) • champinii based – deeper roots, drought tolerant, salt tolerance, but variable in hybrids – Dog Ridge, Ramsey (Salt Creek) – Freedom, Harmony, GRNs • Site trumps all… soil depth, rainfall, soil texture, water table V. monticola V. candicans 4 12/12/2017 CP‐SSR LN33 1613-59 V. riparia x V. rupestris Couderc 1613 14 markers 22 haplotypes Harmony Freedom V. berlandieri x V. riparia Couderc 1616 Ramsey Vitis rupestris cv Witchita refuge V. berlandieri x V. rupestris 157-11 (Couderc) 3306 (Couderc) V. berlandieri x V. vinifera 3309 (Couderc) Vitis riparia cv. Gloire de Montpellier Dog Ridge GRN1 (8909-05) GRN5 (9407-14) Vitis rupestris cv Ade Serres Vitis rupestris cv. du Lot (St. George) Cosmo 10 COSMO 10 Cosmo 2 Oppenheim #4 Kober 125AA Teleki 8B Teleki 8B Ferrari Teleki 5C Teleki 5A Kober 5BB 99 Richter 140 Ruggeri 110 Richter 57 Richter 1447 Paulsen 1103 Paulsen 1045 Paulsen 775 Paulsen Evex 13-5 Vitis berlandieri Rességuier n. 2 Boutin Berlandieri #10 Salomon #1 Salomon GRN2 GRN4 GRN3 Malègue 44-53 Schwarzmann 101-14 Vitis rupestris cv. Martin 333 EM Millardet et de Grasset 41B Mazade Las Sorres Resseguier #1 d'Angeac 420A Mgt 161-49 Couderc Chiendent 01.berlandieri 9031 44-53 Malegue Multi-stage screening for chloride exclusion - Increasing resource intensity - Increasing stringency of Phase 1 results Phase 2 Phase 3 5 12/12/2017 V.#girdiana# V.#mustangensis# Hybrid' V.#arizonica# V.#riparia,#V.#acerifolia# V.#berlandieri,#V.#cinerea# V.#rupestris# Claire Heinitz Shadehouse Cl- Screen 75mM acerifolia 140Ru treleasei Ramse y girdiana Riparia Gloire Schwarzmann 6 12/12/2017 Greenhouse chloride screen: Leaf phenotype index 7 12/12/2017 Vitis acerifolia • North Texas to Oklahoma and New Mexico, a southern riparia, a.k.a. solonis and acerifolia • Sandy to gravelly gullies and ravines • Deep roots, some drought tolerance • Variable nematode resistance, resists phylloxera, easy to propagate “Here then is another wild treasure, from which may spring a grand family of grapes for the arid regions of the West.” - Munson 1909 8 12/12/2017 Vitis berlandieri collections – Over 100 collected; rooting, drought, salt, nematodes, lime, and compare with old selections – Jake Uretsky Dallas Austin Houston San Antonio Brownsville 9 12/12/2017 Variance among populations VarComp = 0.66 %Var = 14.3 Φ = 0.14 p-value = 0.001 10 12/12/2017 Boron exclusion in grapes: Does it exist? Daniele Grossi, Joaquin Fraga, Kevin Fort, M. Andrew Walker Symptom results 11 12/12/2017 May 2014 Wild species [B] Breeding Rootstocks to Tolerate Drought • Understanding drought adaption vs drought resistance • The ability to continue growth and maintain crop yield with less water • Can we un-couple rooting angle/depth from drought adaptation/resistance? • What about root architecture, root density, fine root recovery, uptake through structural and suberized roots, hydraulic lift? • Kevin Fort, Jake Uretsky, Jean Dodson, Joaquin Fraga, Andrew McElrone 12 12/12/2017 Root fibrosity as a predictor of drought tolerance Riparia Gloire Digitized root Ramsey system Drought Resistance – Kevin Fort • Digital analysis of field-grown vines produces strong correlation to drought resistance Thick roots Fibrous roots 13 12/12/2017 110R produces thick main roots with limited lateral branching. 101-14 Mgt produces finer main roots and abundant lateral branching. 10 cm 101‐14Mgt 110R 14 12/12/2017 Root diameter distributions in the greenhouse Root diameter distributions after one and two years in the field 15 12/12/2017 Fine root hydraulic conductivity during water stress and recovery What does all this mean? 1. 110R seems to have a more efficient root system for uptake of mobile (and deep) resources like water 2. The response to water stress in 110R, although more pronounced than in 101‐14Mgt, seems to facilitate recovery after re‐watering. 3. These combined traits make sense in an ecological context, particularly regarding the parental species V. berlandieri and V. riparia. 16 12/12/2017 THANK YOU! European Conference on Xylella fastidiosa 2017: finding answers to a global problem 33 Thanks! 17 12/12/2017 GRN Rootstock Summary Citrus Ring Phylloxera Rooting Nematode Nematode Nodosities Depth GRN-1 R R HR D GRN-2 MS S HR S GRN-3 R S R M GRN-4 R MS R M They all resist all 3 strains of root-knot, X. index, these combined, and at high temperatures GRN 5 R MR MS D 2015/16 Gallo Lodi – Malbec, Wye trellis 6x10, 2012 planting 18 12/12/2017 2015/16 Gallo Lodi – Malbec, Wye trellis 6x10, 2012 planting Gallo Lodi 2016 19 12/12/2017 Gallo Lodi Gallo Lodi 2016 20.
Recommended publications
  • Evaluating Resistance to Grape Phylloxera in Vitis Species with an in Vitro Dual Culture Assay WLADYSLAWA GRZEGORCZYK ~ and M
    Evaluating Resistance to Grape Phylloxera in Vitis Species with an in vitro Dual Culture Assay WLADYSLAWA GRZEGORCZYK ~ and M. ANDREW WALKER 2. Forty-one accessions of 12 Vitis L. and Muscadinia Small species were evaluated for resistance to grape phylloxera (Daktulosphaira vitifoliae Fitch) using an in vitro dual culture system. The performance of the species tested in this study was consistent with previously published studies with whole plants and helps confirm the utility of in vitro dual culture for the study of grape/phylloxera interactions. This in vitro system provides rapid results (8 wk) and the ability to observe the phylloxera/grape interaction without interference from other factors. This system also provides an evaluation that overemphasizes susceptibility, thus providing more confidence in the resistance responses of a given species or accession. Among the unusual responses were the susceptibility of V. riparia Michx. DVIT 1411; susceptibility within V. berlandieri Planch.; relatively wide ranging responses in V. rupestris Scheele; and the lack of feeding on the roots of V. califomica Benth., in contrast to the severe foliar feeding damage that occurred on this species. Vitis califomica #11 and V. girdiana Munson DVIT 1379 were unusual because phylloxera on them had the shortest generation times. Such accessions might be used to examine how grape hosts influence phylloxera behavior. Very strong resistance was found within V. aestivalisMichx. DVIT 7109 and 7110; I/. berlandieric9031; V. cinereaEngelm; I/. riparia (excluding DVIT 1411 ); V. rupestris DVIT 1418 and 1419; and M. rotundifolia Small. These species and accessions seem to possess enough resistance to enable their use in breeding with minimal concern about phylloxera susceptibility.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • Wine Grape Terminology- the Lingo of Viticulture
    Wine Grape Terminology- The Lingo of Viticulture Dr. Duke Elsner Small Fruit Educator Michigan State University Extension Traverse City, Michigan 2014 Wine Grape Vineyard Establishment Conference Viticulture Terminology Where to start? How far to go? – Until my time runs out! What are grapes? “…thornless, dark-stemmed, green- flowered, mostly shreddy-barked, high-climbing vines that climb by means of tendrils.” Cultivated species of grapes Vitis labrusca – Native to North America – Procumbent shoot growth habit – Concord, Niagara, dozens more Vitis vinifera – Eastern Europe, middle east – Upright shoot growth habit – Riesling, Chardonnay, Pinot Noir, Gewurztraminer, etc. Other important species of grapes Vitis aestivalis Summer grape Vitis riparia Riverbank grape Vitis rupestris Sand grape Vitis rotundifolia Muscadine grape Vitis cinerea Winter grape Variety A varient form of a wild plant that has been recognized as a true taxon ranking below sub- species. Cultivar A variety of a plant species originating and continuing in cultivation and given a name in modern language. Hybrid Cultivar A new cultivar resulting from the intentional crossing of selected cultivars, varieties or species. Hybrid Cultivar A new cultivar resulting from the intentional crossing of selected cultivars, varieties or species. Clone (clonal selection) A strain of grape cultivar that has been derived by asexual reproduction and presumably has a desirable characteristic that sets it apart from the “parent” variety. Pinot Noir = cultivar Pinot Noir Pommard = clone Grafted vine A vine produced by a “surgical” procedure that connects one or more desired fruiting cultivars onto a variety with desired root characteristics. Scion Above-graft part of a grafted vine, including leaf and fruit-bearing parts.
    [Show full text]
  • Differences in Grape Phylloxera-Related Grapevine Root
    PLANT PATHOLOGY HORTSCIENCE 34(6):1108–1111. 1999. ing vineyards may result in reduced phyllox- era numbers and phylloxera-related damage. The purpose of this work was to determine Differences in Grape Phylloxera- whether differences in phylloxera populations or phylloxera-related damage could be attrib- related Grapevine Root Damage in uted to organic or conventional management Organically and Conventionally regimes. Materials and Methods Managed Vineyards in California Two types of long-term vineyard manage- ment regimes were compared, organic and D.W. Lotter, J. Granett, and A.D. Omer conventional. Organically managed vineyards Department of Entomology, University of California, One Shields Avenue, (OMV) chosen for study were certified by the Davis, CA 95616-8584 California Certified Organic Farmers program (Santa Cruz) and were characterized by the Additional index words. Vitis vinifera, Daktulosphaira vitifoliae, organic farming, sustain- use of cover crops and composts and no syn- able agriculture, soil suppressiveness, Trichoderma thetic fertilizers or pesticides. Vineyards that had been organically certified for at least 5 Abstract. Secondary infection of roots by fungal pathogens is a primary cause of vine years and were infested with phylloxera were damage in phylloxera-infested grapevines (Vitis vinifera L.). In summer and fall surveys selected for this study. The time threshold of 5 in 1997 and 1998, grapevine root samples were taken from organically (OMVs) and years of organic management was chosen based conventionally managed vineyards (CMVs), all of which were phylloxera-infested. In both on experiences of organic farmers, consult- years, root samples from OMVs showed significantly less root necrosis caused by fungal ants, and researchers indicating that the full pathogens than did samples from CMVs, averaging 9% in OMVs vs.
    [Show full text]
  • Rootstocks As a Management Strategy for Adverse Vineyard Conditions
    FACT SHEET 14 MODULE 14 Rootstocks as a management strategy for adverse vineyard conditions AUTHOR: Catherine Cox - Phylloxera and Grape Industry Board of South Australia These updates are supported by the Australian Government through the Irrigation Industries Workshop Programme - Wine Industry Project in partnership with the Department of Agriculture, Fisheries and Forestry and the Grape and Wine Research and Development Corporation. waterandvine.gwrdc.com.au Rootstocks as a management strategy for adverse vineyard conditions Introduction 2 Understanding different rootstock This Fact Sheet consolidates current knowledge around the key characteristics rootstocks used in Australian Viticulture in terms of tolerance to V. riparia x V. rupestris drought, salinity and lime. These rootstocks offer low-moderate vigour to the scion, and in The aim of this module is to briefly summarise the pros and cons certain situations hasten ripening. They do not tolerate drought of each rootstock and showcase the existing industry resources conditions. These characteristics make them particularly suited that can be used to aid in the selection of rootstocks in the key to cool climate viticulture. These rootstocks perform best on growing regions within the Murray Darling Basin. soils that dry out slowly and have moderate-high water holding For more information and training contact your local Innovator’s capacities. They impart low vigour to the scion and hence are Network member or go to http://waterandvine.gwrdc.com.au. suitable to high fertility sites and growing conditions. V. berlandieri x V. riparia 1 Introduction to rootstocks These rootstocks offer moderate-high vigour to the scion Grapevine rootstocks are derived from American Vitis species that depending on the soil type.
    [Show full text]
  • Vitis Riparia
    OPTIMISATION OF SUSTAINABILITY OF GRAPEVINE VARIETIES BY SELECTING ROOTSTOCK VARIETIES UNDER DIFFERENT ENVIRONMENTAL CONDITIONS AND CREATING NEW ROOTSTOCK VARIETIES Joachim Schmid, Frank Manty, Ernst Rühl Geisenheim University Institut for Grapevine Breeding Joachim Schmid Entrance to UNESCO world heritage site Rüdesheim Joachim Schmid 16.01.2015Titel der 2 Präsentation Joachim Schmid • Rootstock breeding and the use of rootstocks is the result and the answer to the introduction of phylloxera • All present rootstocks are hybrids of wild Vitis species with specific characteristics Titel der Präsentation Joachim Schmid 16.01.2015 4 VITIS RIPARIA Advantages Phylloxera tolerant very high frost resistance (<‐40°C) early bud break, early ripening good rooting ability Disadvantages susceptible to drought Low lime tolerance Joachim Schmid 5 VITIS BERLANDIERI Advantages Phylloxera tolerant high lime tolerance salt tolerant medium to good drought tolerance Disadvantages poor rooting ability late ripening Joachim Schmid 6 VITIS RUPESTRIS Advantages Phylloxera tolerant good rooting ability average lime tolerance good drought tolerance – but susceptible on shallow soils Disadvantages low vigour (in the motherblock) early bud break Joachim Schmid 7 VITIS CINEREA Advantages Phylloxera resistant good drought tolerance Disadvantages poor rooting ability low lime tolerance late bud break Joachim Schmid 8 ROOTSTOCK BREEDERS IN HUNGARY, AUSRTRIA AND GERMANY Sigmund TELEKI (1854‐1910) & Franz KOBER (1864‐1943) Vitis berlandieri x Vitis riparia • Teleki 8
    [Show full text]
  • Transcriptome Analysis and Cell Morphology of Vitis Rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia Seriata
    G C A T T A C G G C A T genes Article Transcriptome Analysis and Cell Morphology of Vitis rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia seriata Liang Zhao 1,2,†,‡ , Shuangmei You 1,2,†, Hui Zou 1,‡ and Xin Guan 1,2,* 1 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; [email protected] (L.Z.); [email protected] (S.Y.); [email protected] (H.Z.) 2 Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China * Correspondence: [email protected]; Tel.: +86-(0)23-6825-0483 † These authors contributed equally to the experimental part of this work. ‡ Current address: College of Horticulture, Northwest A&F University, Yangling 712100, China. Abstract: Diplodia seriata, one of the major causal agents of Botryosphaeria dieback, spreads world- wide, causing cankers, leaf spots and fruit black rot in grapevine. Vitis rupestris is an American wild grapevine widely used for resistance and rootstock breeding and was found to be highly resistant to Botryosphaeria dieback. The defense responses of V. rupestris to D. seriata 98.1 were analyzed by RNA-seq in this study. There were 1365 differentially expressed genes (DEGs) annotated with Gene Ontology (GO) and enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DEGs could be allocated to the flavonoid biosynthesis pathway and the plant–pathogen in- teraction pathway. Among them, 53 DEGs were transcription factors (TFs). The expression levels of 12 genes were further verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR).
    [Show full text]
  • Rôles Du Porte-Greffe Et Du Greffon Dans La Réponse À La Disponibilité En Phosphore Chez La Vigne
    Rôles du porte-greffe et du greffon dans la réponse àla disponibilité en phosphore chez la Vigne Antoine Gautier To cite this version: Antoine Gautier. Rôles du porte-greffe et du greffon dans la réponse à la disponibilité en phosphore chez la Vigne. Biologie végétale. Université de Bordeaux, 2018. Français. NNT : 2018BORD0257. tel-02388497 HAL Id: tel-02388497 https://tel.archives-ouvertes.fr/tel-02388497 Submitted on 2 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX École doctorale des Sciences de la Vie et de la Santé Spécialité : Biologie Végétale Par Antoine GAUTIER Rôles du porte-greffe et du greffon dans la réponse à la disponibilité en phosphore chez la Vigne Sous la direction de : Sarah Jane COOKSON Soutenue le 30 novembre 2018 Membres du jury : Mme GENY, Laurence Professeur, Université de Bordeaux Présidente M. DOERNER, Peter Directeur de Recherche, University of Edinburgh Rapporteur M. PERET, Benjamin Chargé de Recherche, CNRS Montpellier Rapporteur M. HINSINGER, Philippe Directeur de Recherche, INRA Montpellier Examinateur Mme OLLAT, Nathalie Ingénieure de Recherche, INRA Bordeaux Invitée Mme COOKSON, Sarah J.
    [Show full text]
  • Temperature Is an Important Environmental Factor Affecting Growth and Mycotoxin Production by Molds
    Grapes, wine and other derivatives. OTA content. CHAPTER 6 GRAPES, WINE AND OTHER DERIVATIVES. OTA CONTENT 6.1. WORLD-WIDE PRODUCTION OF GRAPES, WINE AND OTHER GRAPE- DERIVATIVES Grape is the fruit of a vine in the family Vitaceae (Table 7). It is commonly used for making grape juice, wine, jelly, wine, grape seed oil and raisins (dried grapes), or can be eaten raw (table grapes). Table 7. Scientific classification of grapes. Kingdom: Plantae Division: Magnoliophyta Class: Magnoliopsida Order: Vitales Family: Vitaceae Genus: Vitis Many species of grape exist including: • Vitis vinifera, the European winemaking grapes. • Vitis labrusca, the North American table and grape juice grapes, sometimes used for wine. • Vitis riparia, a wild grape of North America, sometimes used for winemaking. • Vitis rotundifolia, the muscadines, used for jelly and sometimes wine. • Vitis aestivalis, the variety Norton is used for winemaking. • Vitis lincecumii (also called Vitis aestivalis or Vitis lincecumii), Vitis berlandieri (also called Vitis cinerea var. helleri), Vitis cinerea, Vitis rupestris are used for making hybrid wine grapes and for pest-resistant rootstocks. 73 CHAPTER 6 . The main reason for the use of most V. vinifera varieties in wine production is their high sugar content, which after fermentation, produce a wine with an alcohol content of 10 % or slightly higher. Grape varieties of V. vinifera have a great variation of composition. Skin pigment colours vary from greenish yellow to russet, pink, red, reddish violet or blue-black. The colour of red wines comes from the skin, not the juice. The juice is normally colourless, though some varieties have a pink to red colour.
    [Show full text]
  • Modifications Induced by Rootstocks on Yield, Vigor and Nutritional
    agronomy Article Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile Nicolás Verdugo-Vásquez 1 , Gastón Gutiérrez-Gamboa 2,* , Irina Díaz-Gálvez 3, Antonio Ibacache 4 and Andrés Zurita-Silva 1,* 1 Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n, La Serena 1700000, Chile; [email protected] 2 Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580000, Chile 3 Centro de Investigación Raihuén, Instituto de Investigaciones Agropecuarias INIA, Casilla 34, San Javier 3660000, Chile; [email protected] 4 Private Consultant, La Serena 1700000, Chile; [email protected] * Correspondence: [email protected] (G.G.-G.); [email protected] (A.Z.-S.) Abstract: Hyper-arid regions are characterized by extreme conditions for growing and lack of water (<100 mm annual rainfall average), where desertification renders human activities almost impossible. In addition to the use of irrigation, different viticultural strategies should be taken into account to face the adverse effects of these conditions in which rootstocks may play a crucial role. The research Citation: Verdugo-Vásquez, N.; aim was to evaluate the effects of the rootstock on yield, vigor, and petiole nutrient content in Syrah Gutiérrez-Gamboa, G.; Díaz-Gálvez, grapevines growing under hyper-arid conditions during five seasons and compare them to ungrafted I.; Ibacache, A.; Zurita-Silva, A. ones. St. George induced lower yield than 1103 Paulsen. Salt Creek induced higher plant growth Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status vigor and Cu petiole content than ungrafted vines in Syrah, which was correlated to P petiole content.
    [Show full text]
  • Thesis Title
    How does carbohydrate supply limit flower development in grape and kiwifruit vines? Annette Claire Richardson July 2014 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy School of Agricultural and Wine Sciences Charles Sturt University Wagga Wagga Australia i Table of Contents Table of Contents ii List of Figures vii List of Tables xix Certificate of Authorship xxvi Acknowledgements xxviii Abstract xxx Abbreviations xxxii 1 Literature review 1 1.1 Introduction 1 1.2 The flowering process 3 1.2.1 Floral Initiation 3 1.2.2 Floral organ morphogenesis 7 1.3 How does flowering behaviour of perennials affect crop yield? 11 1.3.1 Are yields of perennial fruiting crops similar? 11 1.4 Is low flower production typical of fruiting vines? 16 1.4.1 Are the flowering behaviours of grape and kiwifruit vines similar? 16 1.4.2 When do carbohydrates limit flower development of grape and kiwifruit? 24 1.5 Thesis aims and hypotheses 28 2 General materials and methods 31 2.1 Plant material 31 2.1.1 Commercial vines 31 2.1.2 Potted vines 35 2.2 Meteorological data 38 2.3 Vine phenology 38 2.3.1 Budbreak and flowering 38 2.3.2 Phenological stages of development 39 2.4 Leaf area estimation 42 2.5 Gas exchange 42 ii 2.6 Carbohydrate analysis 43 2.6.1 Tissue extraction 43 2.6.2 Starch determination 43 2.6.3 Soluble carbohydrate determination 44 2.7 Data handling and statistical analysis 44 2.7.1 Data handling 44 2.7.2 Data analysis 45 2.7.3 Data plots and curve fitting 45 3 Seasonal patterns of kiwifruit and grapevine development
    [Show full text]
  • Effect of Rootstock on Vegetative Growth, Yield, and Fruit Composition of Norton Grapevines
    Effect of Rootstock on Vegetative Growth, Yield, and Fruit Composition of Norton Grapevines A Thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Science By JACKIE LEIGH HARRIS Dr. Michele Warmund, Thesis Supervisor December 2013 The undersigned, appointed by the dean of the Graduate School, have examined the Thesis entitled EFFECT OF ROOTSTOCK ON VEGETATIVE GROWTH, YIELD, AND FRUIT COMPOSITION OF NORTON GRAPEVINES Presented by Jackie Leigh Harris A candidate for the degree of Master of Science And hereby certify that, in their opinion, it is worthy of acceptance. Michele Warmund David Trinklein Stephen Pallardy ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Michele Warmund, for her willingness to take me on as a graduate student and guide me through the writing process. Her insight and knowledge was extremely helpful these past couple of years. I would also like to that my other committee members, Dr. David Trinklein and Dr. Steven Pallardy for their valuable insight. Additionally, I would like to thank all the past and present faculty, staff, and students of the Grape and Wine Institute at the University of Missouri. In particular, Dr. Keith Striegler, Elijah Bergmeier, Dr. Anthony Peccoux, Dr. Misha Kwasniewski, and Dr. Ingolf Gruen for their guidance and encouragement. Also, I would like to thank my family for all their support throughout my studies. The assistance of all these individuals made the completion of my master’s a reality. Last but not least, I would like to thank the funding sources that contributed to my research.
    [Show full text]