Current Breeding Efforts in Salt‐And Drought-Tolerant Rootstocks –
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluating Resistance to Grape Phylloxera in Vitis Species with an in Vitro Dual Culture Assay WLADYSLAWA GRZEGORCZYK ~ and M
Evaluating Resistance to Grape Phylloxera in Vitis Species with an in vitro Dual Culture Assay WLADYSLAWA GRZEGORCZYK ~ and M. ANDREW WALKER 2. Forty-one accessions of 12 Vitis L. and Muscadinia Small species were evaluated for resistance to grape phylloxera (Daktulosphaira vitifoliae Fitch) using an in vitro dual culture system. The performance of the species tested in this study was consistent with previously published studies with whole plants and helps confirm the utility of in vitro dual culture for the study of grape/phylloxera interactions. This in vitro system provides rapid results (8 wk) and the ability to observe the phylloxera/grape interaction without interference from other factors. This system also provides an evaluation that overemphasizes susceptibility, thus providing more confidence in the resistance responses of a given species or accession. Among the unusual responses were the susceptibility of V. riparia Michx. DVIT 1411; susceptibility within V. berlandieri Planch.; relatively wide ranging responses in V. rupestris Scheele; and the lack of feeding on the roots of V. califomica Benth., in contrast to the severe foliar feeding damage that occurred on this species. Vitis califomica #11 and V. girdiana Munson DVIT 1379 were unusual because phylloxera on them had the shortest generation times. Such accessions might be used to examine how grape hosts influence phylloxera behavior. Very strong resistance was found within V. aestivalisMichx. DVIT 7109 and 7110; I/. berlandieric9031; V. cinereaEngelm; I/. riparia (excluding DVIT 1411 ); V. rupestris DVIT 1418 and 1419; and M. rotundifolia Small. These species and accessions seem to possess enough resistance to enable their use in breeding with minimal concern about phylloxera susceptibility. -
Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae. -
Wine Grape Terminology- the Lingo of Viticulture
Wine Grape Terminology- The Lingo of Viticulture Dr. Duke Elsner Small Fruit Educator Michigan State University Extension Traverse City, Michigan 2014 Wine Grape Vineyard Establishment Conference Viticulture Terminology Where to start? How far to go? – Until my time runs out! What are grapes? “…thornless, dark-stemmed, green- flowered, mostly shreddy-barked, high-climbing vines that climb by means of tendrils.” Cultivated species of grapes Vitis labrusca – Native to North America – Procumbent shoot growth habit – Concord, Niagara, dozens more Vitis vinifera – Eastern Europe, middle east – Upright shoot growth habit – Riesling, Chardonnay, Pinot Noir, Gewurztraminer, etc. Other important species of grapes Vitis aestivalis Summer grape Vitis riparia Riverbank grape Vitis rupestris Sand grape Vitis rotundifolia Muscadine grape Vitis cinerea Winter grape Variety A varient form of a wild plant that has been recognized as a true taxon ranking below sub- species. Cultivar A variety of a plant species originating and continuing in cultivation and given a name in modern language. Hybrid Cultivar A new cultivar resulting from the intentional crossing of selected cultivars, varieties or species. Hybrid Cultivar A new cultivar resulting from the intentional crossing of selected cultivars, varieties or species. Clone (clonal selection) A strain of grape cultivar that has been derived by asexual reproduction and presumably has a desirable characteristic that sets it apart from the “parent” variety. Pinot Noir = cultivar Pinot Noir Pommard = clone Grafted vine A vine produced by a “surgical” procedure that connects one or more desired fruiting cultivars onto a variety with desired root characteristics. Scion Above-graft part of a grafted vine, including leaf and fruit-bearing parts. -
Differences in Grape Phylloxera-Related Grapevine Root
PLANT PATHOLOGY HORTSCIENCE 34(6):1108–1111. 1999. ing vineyards may result in reduced phyllox- era numbers and phylloxera-related damage. The purpose of this work was to determine Differences in Grape Phylloxera- whether differences in phylloxera populations or phylloxera-related damage could be attrib- related Grapevine Root Damage in uted to organic or conventional management Organically and Conventionally regimes. Materials and Methods Managed Vineyards in California Two types of long-term vineyard manage- ment regimes were compared, organic and D.W. Lotter, J. Granett, and A.D. Omer conventional. Organically managed vineyards Department of Entomology, University of California, One Shields Avenue, (OMV) chosen for study were certified by the Davis, CA 95616-8584 California Certified Organic Farmers program (Santa Cruz) and were characterized by the Additional index words. Vitis vinifera, Daktulosphaira vitifoliae, organic farming, sustain- use of cover crops and composts and no syn- able agriculture, soil suppressiveness, Trichoderma thetic fertilizers or pesticides. Vineyards that had been organically certified for at least 5 Abstract. Secondary infection of roots by fungal pathogens is a primary cause of vine years and were infested with phylloxera were damage in phylloxera-infested grapevines (Vitis vinifera L.). In summer and fall surveys selected for this study. The time threshold of 5 in 1997 and 1998, grapevine root samples were taken from organically (OMVs) and years of organic management was chosen based conventionally managed vineyards (CMVs), all of which were phylloxera-infested. In both on experiences of organic farmers, consult- years, root samples from OMVs showed significantly less root necrosis caused by fungal ants, and researchers indicating that the full pathogens than did samples from CMVs, averaging 9% in OMVs vs. -
Rootstocks As a Management Strategy for Adverse Vineyard Conditions
FACT SHEET 14 MODULE 14 Rootstocks as a management strategy for adverse vineyard conditions AUTHOR: Catherine Cox - Phylloxera and Grape Industry Board of South Australia These updates are supported by the Australian Government through the Irrigation Industries Workshop Programme - Wine Industry Project in partnership with the Department of Agriculture, Fisheries and Forestry and the Grape and Wine Research and Development Corporation. waterandvine.gwrdc.com.au Rootstocks as a management strategy for adverse vineyard conditions Introduction 2 Understanding different rootstock This Fact Sheet consolidates current knowledge around the key characteristics rootstocks used in Australian Viticulture in terms of tolerance to V. riparia x V. rupestris drought, salinity and lime. These rootstocks offer low-moderate vigour to the scion, and in The aim of this module is to briefly summarise the pros and cons certain situations hasten ripening. They do not tolerate drought of each rootstock and showcase the existing industry resources conditions. These characteristics make them particularly suited that can be used to aid in the selection of rootstocks in the key to cool climate viticulture. These rootstocks perform best on growing regions within the Murray Darling Basin. soils that dry out slowly and have moderate-high water holding For more information and training contact your local Innovator’s capacities. They impart low vigour to the scion and hence are Network member or go to http://waterandvine.gwrdc.com.au. suitable to high fertility sites and growing conditions. V. berlandieri x V. riparia 1 Introduction to rootstocks These rootstocks offer moderate-high vigour to the scion Grapevine rootstocks are derived from American Vitis species that depending on the soil type. -
Vitis Riparia
OPTIMISATION OF SUSTAINABILITY OF GRAPEVINE VARIETIES BY SELECTING ROOTSTOCK VARIETIES UNDER DIFFERENT ENVIRONMENTAL CONDITIONS AND CREATING NEW ROOTSTOCK VARIETIES Joachim Schmid, Frank Manty, Ernst Rühl Geisenheim University Institut for Grapevine Breeding Joachim Schmid Entrance to UNESCO world heritage site Rüdesheim Joachim Schmid 16.01.2015Titel der 2 Präsentation Joachim Schmid • Rootstock breeding and the use of rootstocks is the result and the answer to the introduction of phylloxera • All present rootstocks are hybrids of wild Vitis species with specific characteristics Titel der Präsentation Joachim Schmid 16.01.2015 4 VITIS RIPARIA Advantages Phylloxera tolerant very high frost resistance (<‐40°C) early bud break, early ripening good rooting ability Disadvantages susceptible to drought Low lime tolerance Joachim Schmid 5 VITIS BERLANDIERI Advantages Phylloxera tolerant high lime tolerance salt tolerant medium to good drought tolerance Disadvantages poor rooting ability late ripening Joachim Schmid 6 VITIS RUPESTRIS Advantages Phylloxera tolerant good rooting ability average lime tolerance good drought tolerance – but susceptible on shallow soils Disadvantages low vigour (in the motherblock) early bud break Joachim Schmid 7 VITIS CINEREA Advantages Phylloxera resistant good drought tolerance Disadvantages poor rooting ability low lime tolerance late bud break Joachim Schmid 8 ROOTSTOCK BREEDERS IN HUNGARY, AUSRTRIA AND GERMANY Sigmund TELEKI (1854‐1910) & Franz KOBER (1864‐1943) Vitis berlandieri x Vitis riparia • Teleki 8 -
Transcriptome Analysis and Cell Morphology of Vitis Rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia Seriata
G C A T T A C G G C A T genes Article Transcriptome Analysis and Cell Morphology of Vitis rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia seriata Liang Zhao 1,2,†,‡ , Shuangmei You 1,2,†, Hui Zou 1,‡ and Xin Guan 1,2,* 1 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; [email protected] (L.Z.); [email protected] (S.Y.); [email protected] (H.Z.) 2 Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China * Correspondence: [email protected]; Tel.: +86-(0)23-6825-0483 † These authors contributed equally to the experimental part of this work. ‡ Current address: College of Horticulture, Northwest A&F University, Yangling 712100, China. Abstract: Diplodia seriata, one of the major causal agents of Botryosphaeria dieback, spreads world- wide, causing cankers, leaf spots and fruit black rot in grapevine. Vitis rupestris is an American wild grapevine widely used for resistance and rootstock breeding and was found to be highly resistant to Botryosphaeria dieback. The defense responses of V. rupestris to D. seriata 98.1 were analyzed by RNA-seq in this study. There were 1365 differentially expressed genes (DEGs) annotated with Gene Ontology (GO) and enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DEGs could be allocated to the flavonoid biosynthesis pathway and the plant–pathogen in- teraction pathway. Among them, 53 DEGs were transcription factors (TFs). The expression levels of 12 genes were further verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). -
Rôles Du Porte-Greffe Et Du Greffon Dans La Réponse À La Disponibilité En Phosphore Chez La Vigne
Rôles du porte-greffe et du greffon dans la réponse àla disponibilité en phosphore chez la Vigne Antoine Gautier To cite this version: Antoine Gautier. Rôles du porte-greffe et du greffon dans la réponse à la disponibilité en phosphore chez la Vigne. Biologie végétale. Université de Bordeaux, 2018. Français. NNT : 2018BORD0257. tel-02388497 HAL Id: tel-02388497 https://tel.archives-ouvertes.fr/tel-02388497 Submitted on 2 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX École doctorale des Sciences de la Vie et de la Santé Spécialité : Biologie Végétale Par Antoine GAUTIER Rôles du porte-greffe et du greffon dans la réponse à la disponibilité en phosphore chez la Vigne Sous la direction de : Sarah Jane COOKSON Soutenue le 30 novembre 2018 Membres du jury : Mme GENY, Laurence Professeur, Université de Bordeaux Présidente M. DOERNER, Peter Directeur de Recherche, University of Edinburgh Rapporteur M. PERET, Benjamin Chargé de Recherche, CNRS Montpellier Rapporteur M. HINSINGER, Philippe Directeur de Recherche, INRA Montpellier Examinateur Mme OLLAT, Nathalie Ingénieure de Recherche, INRA Bordeaux Invitée Mme COOKSON, Sarah J. -
Temperature Is an Important Environmental Factor Affecting Growth and Mycotoxin Production by Molds
Grapes, wine and other derivatives. OTA content. CHAPTER 6 GRAPES, WINE AND OTHER DERIVATIVES. OTA CONTENT 6.1. WORLD-WIDE PRODUCTION OF GRAPES, WINE AND OTHER GRAPE- DERIVATIVES Grape is the fruit of a vine in the family Vitaceae (Table 7). It is commonly used for making grape juice, wine, jelly, wine, grape seed oil and raisins (dried grapes), or can be eaten raw (table grapes). Table 7. Scientific classification of grapes. Kingdom: Plantae Division: Magnoliophyta Class: Magnoliopsida Order: Vitales Family: Vitaceae Genus: Vitis Many species of grape exist including: • Vitis vinifera, the European winemaking grapes. • Vitis labrusca, the North American table and grape juice grapes, sometimes used for wine. • Vitis riparia, a wild grape of North America, sometimes used for winemaking. • Vitis rotundifolia, the muscadines, used for jelly and sometimes wine. • Vitis aestivalis, the variety Norton is used for winemaking. • Vitis lincecumii (also called Vitis aestivalis or Vitis lincecumii), Vitis berlandieri (also called Vitis cinerea var. helleri), Vitis cinerea, Vitis rupestris are used for making hybrid wine grapes and for pest-resistant rootstocks. 73 CHAPTER 6 . The main reason for the use of most V. vinifera varieties in wine production is their high sugar content, which after fermentation, produce a wine with an alcohol content of 10 % or slightly higher. Grape varieties of V. vinifera have a great variation of composition. Skin pigment colours vary from greenish yellow to russet, pink, red, reddish violet or blue-black. The colour of red wines comes from the skin, not the juice. The juice is normally colourless, though some varieties have a pink to red colour. -
Modifications Induced by Rootstocks on Yield, Vigor and Nutritional
agronomy Article Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile Nicolás Verdugo-Vásquez 1 , Gastón Gutiérrez-Gamboa 2,* , Irina Díaz-Gálvez 3, Antonio Ibacache 4 and Andrés Zurita-Silva 1,* 1 Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n, La Serena 1700000, Chile; [email protected] 2 Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580000, Chile 3 Centro de Investigación Raihuén, Instituto de Investigaciones Agropecuarias INIA, Casilla 34, San Javier 3660000, Chile; [email protected] 4 Private Consultant, La Serena 1700000, Chile; [email protected] * Correspondence: [email protected] (G.G.-G.); [email protected] (A.Z.-S.) Abstract: Hyper-arid regions are characterized by extreme conditions for growing and lack of water (<100 mm annual rainfall average), where desertification renders human activities almost impossible. In addition to the use of irrigation, different viticultural strategies should be taken into account to face the adverse effects of these conditions in which rootstocks may play a crucial role. The research Citation: Verdugo-Vásquez, N.; aim was to evaluate the effects of the rootstock on yield, vigor, and petiole nutrient content in Syrah Gutiérrez-Gamboa, G.; Díaz-Gálvez, grapevines growing under hyper-arid conditions during five seasons and compare them to ungrafted I.; Ibacache, A.; Zurita-Silva, A. ones. St. George induced lower yield than 1103 Paulsen. Salt Creek induced higher plant growth Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status vigor and Cu petiole content than ungrafted vines in Syrah, which was correlated to P petiole content. -
Thesis Title
How does carbohydrate supply limit flower development in grape and kiwifruit vines? Annette Claire Richardson July 2014 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy School of Agricultural and Wine Sciences Charles Sturt University Wagga Wagga Australia i Table of Contents Table of Contents ii List of Figures vii List of Tables xix Certificate of Authorship xxvi Acknowledgements xxviii Abstract xxx Abbreviations xxxii 1 Literature review 1 1.1 Introduction 1 1.2 The flowering process 3 1.2.1 Floral Initiation 3 1.2.2 Floral organ morphogenesis 7 1.3 How does flowering behaviour of perennials affect crop yield? 11 1.3.1 Are yields of perennial fruiting crops similar? 11 1.4 Is low flower production typical of fruiting vines? 16 1.4.1 Are the flowering behaviours of grape and kiwifruit vines similar? 16 1.4.2 When do carbohydrates limit flower development of grape and kiwifruit? 24 1.5 Thesis aims and hypotheses 28 2 General materials and methods 31 2.1 Plant material 31 2.1.1 Commercial vines 31 2.1.2 Potted vines 35 2.2 Meteorological data 38 2.3 Vine phenology 38 2.3.1 Budbreak and flowering 38 2.3.2 Phenological stages of development 39 2.4 Leaf area estimation 42 2.5 Gas exchange 42 ii 2.6 Carbohydrate analysis 43 2.6.1 Tissue extraction 43 2.6.2 Starch determination 43 2.6.3 Soluble carbohydrate determination 44 2.7 Data handling and statistical analysis 44 2.7.1 Data handling 44 2.7.2 Data analysis 45 2.7.3 Data plots and curve fitting 45 3 Seasonal patterns of kiwifruit and grapevine development -
Effect of Rootstock on Vegetative Growth, Yield, and Fruit Composition of Norton Grapevines
Effect of Rootstock on Vegetative Growth, Yield, and Fruit Composition of Norton Grapevines A Thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Science By JACKIE LEIGH HARRIS Dr. Michele Warmund, Thesis Supervisor December 2013 The undersigned, appointed by the dean of the Graduate School, have examined the Thesis entitled EFFECT OF ROOTSTOCK ON VEGETATIVE GROWTH, YIELD, AND FRUIT COMPOSITION OF NORTON GRAPEVINES Presented by Jackie Leigh Harris A candidate for the degree of Master of Science And hereby certify that, in their opinion, it is worthy of acceptance. Michele Warmund David Trinklein Stephen Pallardy ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Michele Warmund, for her willingness to take me on as a graduate student and guide me through the writing process. Her insight and knowledge was extremely helpful these past couple of years. I would also like to that my other committee members, Dr. David Trinklein and Dr. Steven Pallardy for their valuable insight. Additionally, I would like to thank all the past and present faculty, staff, and students of the Grape and Wine Institute at the University of Missouri. In particular, Dr. Keith Striegler, Elijah Bergmeier, Dr. Anthony Peccoux, Dr. Misha Kwasniewski, and Dr. Ingolf Gruen for their guidance and encouragement. Also, I would like to thank my family for all their support throughout my studies. The assistance of all these individuals made the completion of my master’s a reality. Last but not least, I would like to thank the funding sources that contributed to my research.