Natural Recovery of Steppe Vegetation on Vehicle Tracks in Central Mongolia

Total Page:16

File Type:pdf, Size:1020Kb

Natural Recovery of Steppe Vegetation on Vehicle Tracks in Central Mongolia Natural recovery of steppe vegetation on vehicle tracks in central Mongolia SHENG-GONG LI*, MAKI TSUJIMURA†, ATSUKO SUGIMOTO‡, GOMBO DAVAA§ and MICHIAKI SUGITA† Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan †Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan ‡Graduate School of Environmental Earth Science, Hokkaido University, Sapporo Hokkaido 060–0810, Japan §Institute of Meteorology and Hydrology, Khudaldaany Gudamj–5, Ulaanbaatar 210646, Mongolia *Corresponding author (Fax, 81-29-8536878; Email, [email protected]) Steppe desertification due to vehicle travel is a severe environmental issue in Mongolia. We studied natural vegeta- tion recovery on abandoned vehicle tracks in the central Mongolia steppe through vegetation surveys and stable iso- topic techniques. The following issues were addressed: (i) invasion of pioneering plant species, (ii) alteration of soil surface features, and (iii) contribution of revegetated plants to soil organic matter (SOM). The pioneering plant species that firstly invaded the abandoned tracks are those that could germinate, root and survive in the compacted track surface. Salsola collina is one of these candidate plants. Due to revegetation, soil surface hardness was reduced. With the improvement of surface microenvironmental conditions, other plants began to colonize and establish; con- comitantly species richness and species diversity increased. Carbon isotope ratios of SOM at the top surface layer indicated that C4-derived carbon contributed more to SOM in the early phase of recovery and decreased with further recovery. [Li S-G, Tsujimura M, Sugimoto A, Davaa G and Sugita M 2006 Natural recovery of steppe vegetation on vehicle tracks in central Mongolia; J. Biosci. 31 85–93] 1. Introduction other human-related factors such as deforestation, improper agronomic management, fuel wood gathering, excessive Desertification is usually defined as land degradation in arid, water use, mining, and vehicle tracks are also important semiarid and dry subhumid areas caused by combined effects contributors (Batjargal 1997). of various natural and anthropogenic factors (UNEP 1992; Le With rapid economic and social transformation in Houérou 1996). Over 90% of territory in Mongolia belongs Mangolia starting from the early 1990s, the number of vehi- to arid, semiarid and dry subhumid regions, and is ecologi- cles increased tremendously from 43792 in 1990 to 81693 cally fragile and susceptible to economic overexploitation in 2000 with an annual increase of about 9% (NSOM 2000). (Batjargal 1997; MNEM 1997a). Over three fourth of the ter- This rapid growth in the number of vehicles far exceeded restrial ecosystems in the country (ca. 1.2 × 106 sq. km) is the growth of the capacity for road construction. As of 2001, subjected to various degrees of desertification, which is the total road length in Mongolia was 11100 km, out of critically affecting sustainable development of the Mongolian which only 11.9% was asphalt-paved, 12.5% gravel-paved, economy (Batjargal 1997; MNEM 1999). Although the and the remaining 75.6% earthy (UNESCAP 2001). The primary cause for desertification is overgrazing, however, unpaved earthy tracks are created on-site by compaction Keywords. Degradation; Mongolian steppe; recovery; soil organic matter; stable carbon isotope ratio; vehicle track http://www.ias.ac.in/jbiosci J. Biosci. 31(1), March 2006, 85–93, Indian Academy of Sciences 85 86 Sheng-Gong Li et al caused by many vehicles driving on the same spoor. As of 2. Materials and methods 1997, vehicle tracks have led to ca. 8000–10000 km2 of desertified land across the country, and were the primary The research site was located in Kherlenbayan-Ulaan (KBU), cause for steppe degradation in some places (MNEM Hentiy province, Mongolia (47°12.838’N, 108°44.240’E, 1997b). Vehicle tracks are, therefore, one of the serious 1235 m asl) (figure 1). People in this area have maintained environmental issues in Mongolia. When a vehicle track is the traditional nomadic life style for centuries. The climate abandoned, revegetation (recovery) may occur via self- is continental in the temperate zone. The season from rehabilitation mechanisms (Whisenant 1999). In this paper, November to late April is long, cold and dry. The spring by investigating vegetation and soil surface changes on from May to June is windy and dry. The summer from June abandoned vehicle tracks in a central Mongolian steppe, to September is warm and relatively wet. The growing we attempt to address: (i) which plants are the first to invade season is about six months from late April to late the abandoned tracks, (ii) how soil surface conditions October (Li et al 2005). According to the report of the KBU change with the recovery, and (iii) to what extent native Weather Station (averages from 1993–2002), the mean plants contribute to soil organic matter during the recovery annual air temperature of the region is 1.2°C. Mean daily process. temperatures for January and July are –22.9 and 21.4° C, UB KBU Figure 1. Location of the study site: Kherlenbayan-Ulaan (KBU), about 250 km away from Ulaanbaatar (UB), the capital of Mongolia. A, B, C, and D represent the current vehicle track (track A), the track abandoned for three to five years (track B), the track abandoned for ten to fifteen years (track C), and the native steppe (D) respectively. J. Biosci. 31(1), March 2006 Natural recovery of steppe vegetation on vehicle tracks in central Mongolia 87 respectively. Mean annual precipitation is 196 mm, of with a soil corer (0.06 m in diameter). The soil at each depth which 88% falls between June and September. The soil is a was collected from three cores (holes, about 0.5 to 1.0 m typical chestnut soil (Kastanozem), characterized by low apart), mixed and passed through a 2 mm sieve on the spot. organic matter content, low levels of nitrogen, thin in depth, To avoid spatial heterogeneity, the soil profile samples at and sandy in texture (Asano 2004). There are scattered the sites excluding track A had three replicates from three stones on the surface and in the soil. Lime (sometimes gyp- locations (20 m apart). The soil profile sample at track A sum) often accumulates in the subsoil. The short-grass had no replication, but was collected from 5 soil cores (10 steppe is the major vegetation type in the region, and is m apart), and respectively mixed for each depth. In addition, dominated by cool-season C3 species, including mainly sunny healthy leaf samples from dominant plant species at Stipa krylovii (feather-grass), Carex duriuscula (needle-leaf the native steppe were collected for isotope analysis. Soil sedge), Artemisia frigida (fringed sagebrush), Allium mon- samples were oven-dried at 105°C for three days in the lab golicum (Mongolian onion), Leymus chinensis (Chinese while the leaf samples were air-dried in the field and then wild-ryegrass), and Caragana microphylla (littleleaf oven-dried in the lab at 65°C for three days. Coarse grind- peashrub), and a few C4 plants such as Cleistogenes squar- ing was done for the soil samples with a mortar and pestle. rosa (bridlegrass) and Salsola collina (Russian thistle, Leaf samples were frozen using liquid nitrogen and then tumbleweed). ground with mortar and pestle. Both the soil and plant sam- There were many unpaved earthy multi-lane vehicle ples were sifted with 40 mesh (425 µm) sieve, and then tracks at the KBU steppe. These tracks were created by sealed in glass vials. In order to remove inorganic carbonate changing lanes, passing, and driving randomly. When sur- carbon, soil samples were treated with 1 N HCl at 25°C for face conditions became unsuitable for driving, the tracks one to three days and then rinsed with distilled water was then abandoned. The abandoned tracks may be natural- (Midwood and Boutton 1998). Sub-samples (about two mg ly recovered through revegetation (secondary succession) for leaf samples, and 2 to 15 mg for soil samples depending (Whisenant 1999). At the KBU steppe, we selected two on depths) from these samples were placed in tin capsules abandoned tracks (track B and track C), which were in (Universal tin container, Thermoquest Italia SPA, Rodano, parallel and adjacent to the current track (track A) (figure 1), Milan, Italy) for determination of stable carbon isotopic to investigate vegetation recovery. Each investigated track composition (δ13C), carbon (C) content, and nitrogen (N) extended over 500 m and was 2–3 m in width. According to content using an isotope ratio mass spectrometer (Finnigan the drivers who often drove through these tracks over the MAT delta S, Bremen, Germany) coupled with an elemen- past 20 years and the herdsmen who live in KBU, track B tal analyser (Carlo Erba EA1108 elemental analyzer, Fisons was abandoned three to five years ago, and track C was Instruments, Danvers, MA, USA) at the Center for abandoned around ten to fifteen years ago. Both track B and Ecological Research, Kyoto University, Japan. Precision of track C were not used by vehicles recently. A section of the individual measurement on the spectrometer was ± 0.15‰ steppe close to track C (D in figure 1) was selected as a ref- for δ13C. Stable isotopic compositions of the samples are erence treatment (called native steppe here after). expressed as part per thousand (per mil, ‰) using the delta In July 2003, vegetation investigation, including species (δ ) notation: composition and frequency, was conducted on ten random quadrats of 50 × 50 cm at each site with the exception of R δ =−sample 1× 1000, sample (2) track A, where there was no surface vegetation. Total vege- Rstandard tation cover and cover for each species at each quadrat was visually estimated. Species diversity is a descriptive meas- where Rsample and Rstandard represent the heavy-to-light iso- ure of plant community structure.
Recommended publications
  • Approaches and Limitations of Species Level Diagnostics in Flowering Plants
    Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change.
    [Show full text]
  • EDGG Event Report on the International Symposium On
    14 Palaearctic Grasslands 43 October 2019) EDGG event DOI: 10.21570/EDGG.PG.43.14-18 Report on the International Symposium on Grassland Ecology and Conservation in Hohhot, Inner Mongolia, China An International Symposium on Grassland Ecology and Con- activities promoted by the EDGG. Many of the participants servation took place in Hohhot, at the Inner Mongolia Uni- expressed an interest in the GrassPlot database and in the versity (IMU), on August 21–23, 2019. It was jointly organ- EDGG activities. It was agreed that invitations to join the ised by the School of Ecology and Environment of the IMU EDGG will be sent out in order to support data sharing and and by regional branches of the China Association for Sci- to encourage new researchers from the West and Central ence and Technology, under the auspices of the Chinese Asian steppe regions to join the network. Grassland Society, the Ecological Society of China and the In the afternoon of the second day symposium participants Inner Mongolia Grassland Association. had the opportunity to visit two leading companies in their The main topic of the Symposium was modelling, monitor- respective sectors: the Mengniu Dairy Company Ltd. and the ing, sustainable use, conservation and management of Mengcao Eco-environment Company Ltd. grasslands (with special regard to natural steppes) through The first is one of the leading dairy product manufacturers transdisciplinary and transnational cooperation. The Sympo- in China, with an annual production capacity of 10.27 mil- sium included two keynote lectures and 40 talks and it was lion tons (as of June 2019, http://www.mengniuir.com/ attended by 228 participants from seven countries, plus a html/about_profile.php); the second specializes in "grass, number of students from the IMU (Figs.
    [Show full text]
  • PHCOG RES.: Research Article Essential Oil Composition of the Dracocephalum Moldavica L from Xinjiang in China
    [Downloaded free from http://www.phcogres.com on Friday, June 25, 2021, IP: 249.80.203.154] Pharmacognosy Research [Phcog Res.] Vol 1, Issue 4, Jul-Aug, 2009 Page 172-174 (An Official Publication of Pharmacognosy Network Worldwide) Received: 18 May, 2009 Modified: 02 April, 2009 Accepted: 03 June, 2009 PHCOG RES.: Research Article Essential Oil Composition of the Dracocephalum moldavica L from Xinjiang in China Tian Shugea*, Zhou Xiaoyingb, Zhang Fana, An Dongqinga, Yang Taoc a* College of TCM, XinJiang Medical University, Urumqi-830011, XinJiang, China b College of Pharmacy, XinJiang Medical University, Urumqi-830011, XinJiang, China c Institute of Quality Testing of Xinjiang; Urumqi-830002, XinJiang, China E.mail: [email protected] ABSTRACT The essential oil of Dracocephalum moldavica L from Xinjiang in China was isolated by hydrodistillation in yield of 0.15 %(w/w). The chemical composition of the essential oil was analyzed by GC and GCMS. Fifty-one compounds accounting for 99.45% of the total oil were identified. The major components wereα-Citral (32.55%),β-Citral (23.53%), Acetic acid, geranial ester(21.32%), Trans-Geraniol(3.38%), Nerolacetate(3.38%), Octane(2.14%), and 2,4,6-Trimethyl -3-cyclohexene-1-carboxaldehyde (1.3%). Monotenepers were the main group of compounds. Keywords: Dracocephalum moldavica L, essential oil composition, GC-MS. INTRODUCTION during flowering. Voucher specimens were deposited in Traditional Chinese Medicine College Museum of Chinese Dracocephalum moldavica L. is a perennial herb belonging herbal samples of Xinjiang Medical University. to the Lamiaceae (Labiatae) family. is an annual herbaceous aromatic plant belonging to the family Lamiaceae (Labiatae).
    [Show full text]
  • Plant to Sowing Date and Planting Density
    Biological Forum – An International Journal 7(2): 36-42(2015) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 The Response of Dragon head (Dracocephalum moldavica L.) plant to Sowing Date and Planting Density Vahid Abdossi, Hossein Mohammadi, Seyyed Hossein Hashemian Ahmadi* and Amin Hadipanah Department of Horticultural, Science and Research Branch, Islamic Azad University, Tehran, IRAN (Corresponding author: Seyyed Hossein Hashemian Ahmadi) (Received 12 May, 2015, Accepted 15 June, 2015) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Dragonhead (Dracocephalum moldavica L.) is an annual, herbaceous plant belongs the family Lamiaceae. In order to study the effects of sowing date and density on essential oil content and some morphological characteristics of dragonhead, a field experiment was conducted in Sari Agricultural Sciences and Natural Resources university by using of split-plot design in the base of randomized complete blocks with three replications in 2011. Which has been in three sowing dates (12 of June, 5 of July and 17 of July) as main factors and three planting density levels (30 × 10, 30 × 20 and 30 × 30cm). The results of the analysis of variance indicated that sowing date had significant effect on plant height, oil percentage and oil yield but planting density had significant effect only on the fresh herbage and dry herbage. Results of mean comparisons revealed that the highest fresh herbage weight (7374.7 kg) and the highest oil yield (1.197 kg) were obtained at the second sowing date (July 5). The highest dry herbage weight (2007 kg) was obtained at the third sowing date (July 17) and the highest oil content (0.065 %) was obtained at the first sowing date (June 12).
    [Show full text]
  • Influence of Chemical and Organic Fertilizer on Growth, Yield and Essential Oil of Dragonhead (Dracocephalum Moldavica L.) Plant
    COBISS Code 1.01 DOI: 10.14720/aas.2014.103.1.08 Agrovoc descriptors: organic fertilizers, inorganic fertilizers, growth rate, essential oils, yields, yield increases, fertilizer application, climatic factors, edaphic factors, growth factors Agris category code: f04 Influence of chemical and organic fertilizer on growth, yield and essential oil of dragonhead (Dracocephalum moldavica L.) plant Mohsen JANMOHAMMADI1*, Zahed SUFI-MAHMOUDI1, Amin AHADNEZHAD1, Saeed YOUSEFZADEH2, Naser SABAGHNIA1 Received June 07, 2013; accepted Janury 17, 2014. Delo je prispelo 07. junija 2013, sprejeto 17. januarja 2014. ABSTRACT IZVLEČEK Two field experiments were carried out to study the response VPLIV MINERALNIH IN ORGANSKIH GNOJIL NA of Dracocephalum moldavica L. to NPK fertilizer and RAST, PRIDELEK IN VSEBNOST ETERIČNIH OLJ different application techniques of MOG organic fertilizer in KAČJEGLAVKE (Dracocephalum moldavica L.) two regions of Iran (Piranshahr with cold Mediterranean climate and clay loam soil, Maragheh with cool sub-humid V dveh poljskih poskusih je bil preučevan odziv kačjeglavke temperate climate and sandy loam soil ). MOG is bio-organic (Dracocephalum moldavica L.) na gnojenje z NPK in različne fertilizer with plant origin and contains different natural tehnike uporabe MOG organskih gnojil na dveh območjih enzymes and amino acids. In current study following Irana (Piranshahr, s hladnim mediteranskim podnebjem in treatments have been applied: NPK (a complete NPK 20-20- glineno-ilovnatimi tlemi, Maragheh s hladnim, semi -1 20, 90 kg fertilizer ha ); MOG1 (soil application of MOG humidnim zmernim podnebjem in peščeno-ilovnatimi tlemi). organic fertilizer at sowing stage); MOG2 (foliar application of MOG je biološko gnojilo rastlinskega izvora, ki vsebuje MOG organic fertilizer at early stage of flowering); MOG3 številne naravne encime in amino kisline.
    [Show full text]
  • Molecular Identification and Phylogenetic Relationship of Some Origanum and Thymus Species Based on ITS Regions
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 6, Issue 6 (Nov. – Dec. 2020), PP 12-23 www.iosrjournals.org Molecular Identification and Phylogenetic Relationship of some Origanum and Thymus Species Based on ITS Regions Mohamed Zoelfakar Sayed Ahmed1, El-Shaimaa Saad El-Demerdash1 and Shafik Darwish Ibrahim2 1(Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El-Matariya B.O.P 11753 El-Matariya, Cairo, Egypt.) 2(Molecular Genetics and Genome Mapping Lab., AGERI, ARC, 9 Gamma St., Giza – Cairo 12619, Egypt.) Abstract: Background: Lamiaceae or Labiatae family is one of the major important plant families of multiple usesin aromatic purposes, medicine and food. Oregano (Origanum) and thyme (Thymus) the scope of our study are belonging to familyLamiaceae. Butin spite of their importance, they are poorly identified on the basis of molecular levels three Thymus species (T. vulgaris, T. capitatus and T. decussatus)and two Origanum species (O. vulgareand O. syriacum L., subsp. sinaicum) were chosen for the preset study. Molecular identification and characterization studies based on DNA molecular marker (ITS region) are more precise, reliable and powerful tool to assess the phylogenetic relationships between studied plant species with 17 genera in Lamiaceae family. Materials and Methods:Specific one fragment ofPCR product about 710±15 bp from was produced using the universal primer (ITS1 and ITS4) with highly conserved of ITS regions of rDNA through the 5 samples under study and sequencing of the obtained fragment was conducted. Results:The sequence lengths of the ITS region of three Thymus species were 685bp, 681bp and 680bp with T.
    [Show full text]
  • Essential Oils Extracted from Different Species of the Lamiaceae Plant Family As Prospective Bioagents Against Several Detriment
    molecules Review Essential Oils Extracted from Different Species of the Lamiaceae Plant Family as Prospective Bioagents against Several Detrimental Pests Asgar Ebadollahi 1,* , Masumeh Ziaee 2 and Franco Palla 3,* 1 Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-36514, Iran 2 Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran; [email protected] 3 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 38-90123, Italy * Correspondence: [email protected] (A.E.); [email protected] (F.P.) Academic Editors: Carmen Formisano, Vincenzo De Feo and Filomena Nazzaro Received: 5 March 2020; Accepted: 27 March 2020; Published: 28 March 2020 Abstract: On the basis of the side effects of detrimental synthetic chemicals, introducing healthy, available, and effective bioagents for pest management is critical. Due to this circumstance, several studies have been conducted that evaluate the pesticidal potency of plant-derived essential oils. This review presents the pesticidal efficiency of essential oils isolated from different genera of the Lamiaceae family including Agastache Gronovius, Hyptis Jacquin, Lavandula L., Lepechinia Willdenow, Mentha L., Melissa L., Ocimum L., Origanum L., Perilla L., Perovskia Kar., Phlomis L., Rosmarinus L., Salvia L., Satureja L., Teucrium L., Thymus L., Zataria Boissier, and Zhumeria Rech. Along with acute toxicity, the sublethal effects were illustrated such as repellency, antifeedant activity, and adverse effects on the protein, lipid, and carbohydrate contents, and on the esterase and glutathione S-transferase enzymes. Chemical profiles of the introduced essential oils and the pesticidal effects of their main components have also been documented including terpenes (hydrocarbon monoterpene, monoterpenoid, hydrocarbon sesquiterpene, and sesquiterpenoid) and aliphatic phenylpropanoid.
    [Show full text]
  • Aohan Dryland Farming System. Proposal for the Globally Important Agricultural Heritage Systems
    Proposal for Globally Important Agricultural Heritage Systems (GIAHS) Programme Aohan Dryland Farming System Location: Aohan County, Chifeng City, Inner Mongolia Autonomous Region, P.R. China People’s Government of Aohan County, Inner Mongolia Autonomous Region Center for Natural and Cultural Heritage of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences December 12, 2011 1 Summary Information a. Country and Location: Aohan County, Chifeng City, Inner Mongolia Autonomous Region, P.R. China b. Program Title/System Title: Aohan Dryland Farming System c. Total Area: 8294 km2 d. Ethnic Groups: Mongolian (5.34%), Manchu (1.11%), Hui (0.29%), Han (93.21%) e. Application Organization: Aohan County People’s Government, Chifeng City, Inner Mongolia Autonomous Region, P.R. China f. From the National Key Organization (NFPI): Centre for Natural and Cultural Heritage (CNACH) of Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS) g. Governmental and Other Partners • Ministry of Agriculture, P.R. China • China Agricultural University • Department of Agriculture of Inner Mongolia Autonomous Region, P.R. China • Aohan County People’s Government, Inner Mongolia Autonomous Region, P.R. China • Department of Agriculture of Aohan County, Inner Mongolia Autonomous Region, P.R. China • Department of Culture of Aohan County, Inner Mongolia Autonomous Region, P.R. China • Key Laboratory of Dry Farming Agriculture, Inner Mongolia Autonomous Region, P.R. China h. Abstract Aohan County is located in the southeast of Chifeng City, Inner Mongolia Autonomous Region, China. It is the interface between China’s ancient farming culture and grassland culture. From 2001 to 2003, carbonized particles of foxtail and broomcorn millet were discovered by archaeologists in the “First Village of China”, Xinglongwa in Aohan County.
    [Show full text]
  • Labiatae Family in Folk Medicine in Iran: from Ethnobotany to Pharmacology
    Iranian Journal of Pharmaceutical Research (2005) 2: 63-79 Copyright © 2005 by School of Pharmacy Received: February 2005 Shaheed Beheshti University of Medical Sciences and Health Services Accepted: October 2005 Original Article Labiatae Family in folk Medicine in Iran: from Ethnobotany to Pharmacology Farzaneh Naghibi*, Mahmoud Mosaddegh, Saeed Mohammadi Motamed and Abdolbaset Ghorbani Traditional Medicine & Materia Medica Research Center, Shaheed Beheshti University of Medical Scineces, Tehran, Iran. Abstract Labiatae family is well represented in Iran by 46 genera and 410 species and subspecies. Many members of this family are used in traditional and folk medicine. Also they are used as culinary and ornamental plants. There are no distinct references on the ethnobotany and ethnopharmacology of the family in Iran and most of the publications and documents related to the uses of these species are both in Persian and not comprehensive. In this article we reviewed all the available publication on this family. Also documentation from unpublished resources and ethnobotanical surveys has been included. Based on our literature search, out of the total number of the Labiatae family in Iran, 18% of the species are used for medicinal purposes. Leaves are the most used plant parts. Medicinal applications are classified into 13 main categories. A number of pharmacological and experimental studies have been reviewed, which confirm some of the traditional applications and also show the headline for future works on this family. Keywords: Labiatae; Ethnobotany; Ethnopharmacology; Folk medicine. Introduction diterpenoids in its members. These plants have been surely used by humans since prehistoric The Labiatae family (Lamiaceae) is one times. Evidence from archeological excavations of the largest and most distinctive families of shows that some species of this family, which flowering plants, with about 220 genera and are now known only as wild plants, had been almost 4000 species worldwide.
    [Show full text]
  • Medicinal Plants and Natural Product Research
    Medicinal Plants and Natural Product Research • Milan S. • Milan Stankovic Medicinal Plants and Natural Product Research Edited by Milan S. Stankovic Printed Edition of the Special Issue Published in Plants www.mdpi.com/journal/plants Medicinal Plants and Natural Product Research Medicinal Plants and Natural Product Research Special Issue Editor Milan S. Stankovic MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Milan S. Stankovic University of Kragujevac Serbia Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Plants (ISSN 2223-7747) from 2017 to 2018 (available at: https://www.mdpi.com/journal/plants/special issues/medicinal plants). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-118-3 (Pbk) ISBN 978-3-03928-119-0 (PDF) Cover image courtesy of Trinidad Ruiz Tellez.´ c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Medicinal Plants and Natural Product Research” ...................
    [Show full text]
  • Relationship Among Agroclimatic Variables, Soil and Leaves Nutrient Status with the Yield and Main Composition of Kaffir Lime
    H OH metabolites OH Article Relationship among Agroclimatic Variables, Soil and Leaves Nutrient Status with the Yield and Main Composition of Kaffir Lime (Citrus hystrix DC) Leaves Essential Oil Darda Efendi 1,2,* , Rahmat Budiarto 3,4,* , Roedhy Poerwanto 1,2, Edi Santosa 1 and Andria Agusta 5 1 Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Dramaga Bogor 16680, West Java, Indonesia; [email protected] (R.P.); [email protected] (E.S.) 2 Center for Tropical Horticulture Studies, IPB University, Dramaga Bogor 16680, West Java, Indonesia 3 Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jatinangor Sumedang 45363, West Java, Indonesia 4 Study Program of Agronomy and Horticulture, Graduate School of IPB University, Dramaga Bogor 16680, West Java, Indonesia 5 Research Center for Chemistry, Indonesian Institute of Science, Puspitek Serpong, Tangerang Selatan 15314, Banten, Indonesia; [email protected] or [email protected] * Correspondence: [email protected] (D.E.); [email protected] (R.B.) Abstract: Previous studies revealed the impact growing location has on the quantity and quality of essential oils derived from numerous Citrus spp., except on the kaffir lime. This study aims to analyze the relationship shared by agroclimatic variables and soil-plant nutrient status to kaffir lime leaves essential oil yield and main composition. The experiment was conducted between Citation: Efendi, D.; Budiarto, R.; February and April 2019 in four growing locations, namely Bogor (6◦3603600 S, 106◦4604700 E), Poerwanto, R.; Santosa, E.; Agusta, A. West Bandung (6◦4801200 S, 107◦3901600 E), Pasuruan (7◦450500 S, 112◦400600 E) and Tulungagung Relationship among Agroclimatic (8◦602700 S, 112◦003500 E).
    [Show full text]
  • The Mechanism Study of Dracocephalum Moldavica L. Total Flavonoids on Apoptosis Induced by Myocardial Ischemia/Reperfusion Injury in Vivo and in Vitro
    Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.20.003444 The Mechanism Study of Dracocephalum Moldavica L. Total Flavonoids on Apoptosis induced by Myocardial Ischemia/Reperfusion injury in vivo and in vitro Wenjiang Cao1#, Yong Yuan1#, Yangyang Wang2, Li Tian2, Xinchun Wang1,2,*, Jianguo Xin3*, Yanfang Wang2, Xinhong Guo1 and Dongmei Qin2 1First Affiliated Hospital of the Medical College, China 2Pharmacy of College, China 3Xinjiang Institute of Materia Medica, China #These authors contributed equally to this work *Corresponding author’s: Xinchun Wang, First Affiliated Hospital of the Medical College, Pharmacy of College, China Jianguo Xing, Xinjiang Institute of Materia Medica, China ARTICLE INFO Abstract Received: Dracocephalum moldavica L August 07, 2019 Published: July 19, 2019 . is a commonly medicinal plant of Uygur and Mongolian nationalities and has a medicinal history for hundreds of years. It has been confirmed to have protective effects against myocardial ischemia-reperfusion injury, but its mechanism Citation: Dracocephalum moldavica L is still unknown. To investigate the protective effectin of vivo total flavonoids vitro extracted from Wenjiang Cao, Yong Yuan, . (TFDM) on apoptosis in myocardial ischemia/reperfusion Yangyang Wang, Li Tian, Xinchun Wang, injury (MIRI) and reveal its potential mechanism and . The MIRI model Jianguo Xin,Dracocephalum Yanfang Wang, Moldavica Xinhong L. was established in vitro by 30 min ischemia and 180 min reperfusion in SD rats. The hypoxia/ Guo, Dongmei Qin. The Mechanism reoxygenation (H/R) model was established by 3h hypoxia and 2h reoxygenation using Study of H9c2 cell . The TFDM was extracted and analyzed by HPLC. The infract size, CK-MB, Total Flavonoidsin vivo on inApoptosis vitro induced LDH, AST, histopathological, apoptosis, apoptosis-related proteins, RISK and P38 MAPK by Myocardial Ischemia/Reperfusion pathway related proteins were measured.
    [Show full text]