Parasitic Plants (Holoparasites and Holoparasite Hemiparasites) “ Scrophulariaceae” S.L

Total Page:16

File Type:pdf, Size:1020Kb

Parasitic Plants (Holoparasites and Holoparasite Hemiparasites) “ Scrophulariaceae” S.L Phylogeny of Asterids Asterids Lamiids Ericales Campanulids Cornales Cornales Ericales Lamiids: Campanulids: Garryales Aquifoliales Gentianales Apiales Lamiales Dipsacales Solanales Asterales Lamiales contains about 20 family-level clades and ca. 22, 000 species. After APG, 2003; Judd and Olmstead, 2004, and Soltis et al., 2005 “ Scrophulariaceae” s.l. A. Mimulus lewisii C. Mimulus cardinalis B. M. lewisii x cardinalis (F1) D-L F2 offsprings Schemske and Bradshaw, 1999. Proc Natl Acad Sci USA 96(21): 11910-11915. “ Scrophulariaceae” s.l. A. Mimulus lewisii C. Mimulus cardinalis A single gene could produce a pollinator shift, and subsequently cause speciation. Note: the story on the evolutionary genetics of monkey flowers is purely for fun, won’t be on the exam Bradshaw and Schemske, 2003. Nature 426: 176-178 “ Scrophulariaceae” s.l. Photo: Yaowu Yuan Photo: Yaowu Yuan Castilleja sp. Mimulus alsinoides Photo: Yaowu Yuan Photo: Yaowu Yuan Collinsia sp. Penstemon sp. “ Scrophulariaceae” s.l. Textbook DVD KRR Penstemon digitalis Note the bilabiate corolla (usually 2 upper lobes and 3 lower lobes); and the didynamous Textbook DVD DLN Stamens –– with two pairs of stamens of Digitalis purpurea unqual length. “ Scrophulariaceae” s.l. Textbook DVD KRR Textbook DVD KRR & DLN Antirrhinum najus; snapdragon Again, note the bilabiate corolla and didynamous stamens Textbook DVD KRR Penstemon pallidus “ Scrophulariaceae” s.l. Photo: Yaowu Yuan Textbook DVD KRR Verbascum sp.; corolla Veronica arvensis; 4 corolla nearly anctinomorphic; 5 lobes, 2 stamens. stamens. A few genera do not follow the “bilabiate (zygomorphic) corolla, didynamous stamens” rule “ Scrophulariaceae” s.l. Photo: Yaowu Yuan Castilleja sp.; hemiparasite Textbook DVD JDS “Scrophulariaceae” s.l. includse a group Orobanche uniflora; of parasitic plants (holoparasites and holoparasite hemiparasites) “ Scrophulariaceae” s.l. Textbook DVD KRR Textbook DVD MHS Antirrhinum majus “Scrophulariaceae” s.l. fruit a many-seeded capsule Linaria macroccana “Scrophulariaceae” s.l. is polyphyletic This family always has been difficult to characterize by any explicit characters. It seems to have the generalized reproductive morphology of the large order Lamiales, which has ca. 20 families. Recently, Olmstead et al. has determined the family is polyphyletic and it is now being proposed that several families should be recognized. Scrophulariaceae s.s. Orobanchaceae Veronicaceae (or Plantaginaceae) Calceolariaceae Stilbaceae Phrymaceae Olmstead e et al., 2001. Am. J. Bot. 88(2): 348-361. “Scrophulariaceae” s.l. “Scrophulariaceae” s.l. - 269 genera/5100 species, but---- Herbs, shrubs, or small trees. Stem usually round, but sometimes square (e.g., Scrophularia). Leaves alternate or opposite. Flowers zygomorphic (or more rarely actinomorphic). Corolla often bilabiate. 4 stamens, didynamous (occasionally reduced to 2). Carpels 2, connate, ovary superior. Fruit a many-seeded capsule. “ Lamiaceae” (or Labiatae) Textbook DVD KRR Many members of this family have aromatic oils. These include many culinary herbs and ingredients in perfumes, including sage, oregano, marjoram, rosemary, thyme, basil, lavender. Lavendula stoechas “ Lamiaceae” (or Labiatae) Textbook DVD KRR & DLN Photo: Yaowu Yuan Dracocephalum moldavica Note the bilabiate corolla and Lamium purpureum didynamous stamens “ Lamiaceae” (or Labiatae) Textbook DVD KRR Textbook DVD KRR Teucrium canadense Phlomis russeliana Note the opposite (decussate –– square stems) leaf arrangement “ Lamiaceae” (or Labiatae) Photo: Yaowu Yuan Stachys cooleyae Note the 4 nutlets, similar to Boraginaceae Textbook DVD JRA Rosmarinus offcinalis “ Lamiaceae” (or Labiatae) Textbook DVD KRR & DLN Physostegia virginiana Note gynobasic style, similar to Boraginaceae Textbook DVD KRR “ Lamiaceae” (or Labiatae) “Lamiaceae” - 258 genera/6970 species Herbs, shrubs, or small trees. Often aromatic. Stem usually square. Leaves opposite and decussate. Flowers zygomorphic. Corolla bilabiate. 4 stamens, didynamous (occasionally reduced to 2). Carpels 2, connate, each with 2 ovules and a false septum between ovules of each carpel; with a gynobasic style arising from between 4 mericarps Fruit a schizocarp forming 4 nutlets. Summary of stamen arrangement Monadelphous Filaments fused into a tube - Malvaceae Diadelphous 9 fused at the filaments, 1 free - Fabaceae Tetradynamous 6 stamens, 4 long, 2 short - Brassicaceae Didynamous 4 stamens, 2 long, 2 short - Lamiaceae & Scrophulariaceae Connivent anthers anthers held together but not actually fused, surrounding the gynoecium - Violaceae & Solanaceae (Solanum) Parasitic Plants Textbook DVD WSJ Monotropa uniflora Autotrophic: capable of feeding oneself; For plants, ones that are photosynthetic. Heterotrophic: Referring to oraganisms that do not produce their own food (nonphotosynthetic) and which must then obtain organic compounds from exogenous sources (such as another plant). Many forms Textbook DVD KRR of heterotrophism exist such as saprophytism, Monotropa hypopithys myco-heterotropism, and parasitism. Parasitic Plants Note: All materials on parasitic plants are from the website www.parasiticplants.siu.edu (presented by Dan Nickrent), unless otherwise indicated. Parasitic Plants Haustorium: The morphologically modified root which physically connects the parasite to the host. Parasitic Plants http://www.cas.vanderbilt.edu/bioimages/p/wphle14fr30464.jpg http://www.cas.vanderbilt.edu/bioimages/image /p/phle14wpin-fruit-and-flower56193.htm Phoradendron flavescens; Christmas mistletoe Hemiparasite: A parasite that is photosynthetic (during at least one stage of its life cycle) that obtains water and nutrient from the host xylem. Holoparasite: A nonphotosynthetic parasite that obtains water and nutrients as well as photosynthates from the host. Parasitic Plants Obligate parasite: A plant that must attach to a host to complete its life cycle. All holoparasites are obigate whereas only some hemiparasites are obligate. Facultative parasite: one that does not require a host to complete its life cycle. Note, however, that in nature, parasitism is nearly always observed. Parasitic Plants Parasitic Reduction Syndrome (becoming holoparasites): Textbook DVD WSJ Loss of leaves - leaves reduced to scales; Small overall size of the plant - no need for large plants to hold leaves; Loss of chlorophyll; Loss of roots - reduced to short, stumpy projections with haustoria; Loss of genes needed for photosynthesis; Rapid DNA divergence in genes that are not lost; Parasitic Plants Wolfe et al., 1992. Proc Natl Acad Sci USA 89(22): 10648-10652 Wakasugi e et al., 1998. Pl. Mol. Biol. Reporter. 16: 231-241 Note the size of the parasitic plant chloroplast genome is much smaller than tobacco’s –– most genes needed for photosynthesis are lost from the parasite. Parasitic Plants Note the rapid divergence of chloroplast genes of parasites compared with their non- parasitic relatives Stefanovic e et al., 2002. Am. J. Bot. 89(9): 1510-1522. Parasitic Plants Parasitism have evolved perhaps 20 times among flowering plants. In each case the plants have become parasitic on either other plants or fungi. These include 4 families we know: Broginaceae, Scrophulariaceae, Ericaceae, and Orchidaceae..
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Approaches and Limitations of Species Level Diagnostics in Flowering Plants
    Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change.
    [Show full text]
  • ED45E Rare and Scarce Species Hierarchy.Pdf
    104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Alplains 2013 Seed Catalog P.O
    ALPLAINS 2013 SEED CATALOG P.O. BOX 489, KIOWA, CO 80117-0489, U.S.A. Three ways to contact us: FAX: (303) 621-2864 (24 HRS.) email: [email protected] website: www.alplains.com Dear Growing Friends: Welcome to our 23rd annual seed catalog! The summer of 2012 was long, hot and brutal, with drought afflicting most of the U.S. Most of my botanical explorations were restricted to Idaho, Wash- ington, Oregon and northern California but even there moisture was below average. In a year like this, seeps, swales, springs, vestigial snowbanks and localized rainstorms became much more important in my search for seeding plants. On the Snake River Plains of southern Idaho and the scab- lands of eastern Washington, early bloomers such as Viola beckwithii, V. trinervata, Ranunculus glaberrimus, Ranunculus andersonii, Fritillaria pudica and Primula cusickiana put on quite a show in mid-April but many populations could not set seed. In northern Idaho, Erythronium idahoense flowered extensively, whole meadows were covered with thousands of the creamy, pendant blossoms. One of my most satisfying finds in the Hells Canyon area had to be Sedum valens. The tiny glaucous rosettes, surround- ed by a ring of red leaves, are a succulent connoisseur’s dream. Higher up, the brilliant blue spikes of Synthyris missurica punctuated the canyon walls. In southern Oregon, the brilliant red spikes of Pedicularis densiflora lit up the Siskiyou forest floor. Further north in Oregon, large populations of Erythronium elegans, Erythronium oregonum ssp. leucandrum, Erythro- nium revolutum, trilliums and sedums provided wonderful picture-taking opportunities. Eriogonum species did well despite the drought, many of them true xerics.
    [Show full text]
  • EDGG Event Report on the International Symposium On
    14 Palaearctic Grasslands 43 October 2019) EDGG event DOI: 10.21570/EDGG.PG.43.14-18 Report on the International Symposium on Grassland Ecology and Conservation in Hohhot, Inner Mongolia, China An International Symposium on Grassland Ecology and Con- activities promoted by the EDGG. Many of the participants servation took place in Hohhot, at the Inner Mongolia Uni- expressed an interest in the GrassPlot database and in the versity (IMU), on August 21–23, 2019. It was jointly organ- EDGG activities. It was agreed that invitations to join the ised by the School of Ecology and Environment of the IMU EDGG will be sent out in order to support data sharing and and by regional branches of the China Association for Sci- to encourage new researchers from the West and Central ence and Technology, under the auspices of the Chinese Asian steppe regions to join the network. Grassland Society, the Ecological Society of China and the In the afternoon of the second day symposium participants Inner Mongolia Grassland Association. had the opportunity to visit two leading companies in their The main topic of the Symposium was modelling, monitor- respective sectors: the Mengniu Dairy Company Ltd. and the ing, sustainable use, conservation and management of Mengcao Eco-environment Company Ltd. grasslands (with special regard to natural steppes) through The first is one of the leading dairy product manufacturers transdisciplinary and transnational cooperation. The Sympo- in China, with an annual production capacity of 10.27 mil- sium included two keynote lectures and 40 talks and it was lion tons (as of June 2019, http://www.mengniuir.com/ attended by 228 participants from seven countries, plus a html/about_profile.php); the second specializes in "grass, number of students from the IMU (Figs.
    [Show full text]
  • Research Regarding the Melliferous Charactheristics of Labiates from Xerophile Meadows from Danube Valley
    Lucr ări ştiin Ńifice Zootehnie şi Biotehnologii , vol. 41(1) (2008 ), Timi şoara RESEARCH REGARDING THE MELLIFEROUS CHARACTHERISTICS OF LABIATES FROM XEROPHILE MEADOWS FROM DANUBE VALLEY CERCET ĂRI ASUPRA VALORII MELIFERE A LAMIACEELOR DIN PAJI ŞTILE XEROFITE DIN LUNCA DUN ĂRII ION NICOLETA Apiculture Research and Development Institute of Bucharest, Romania The xerophile meadows in the Danube Valley are dry meadows, located at a great distance from the Danube and with underground waters at greater depth. Their floral composition is characterized by a small number of species pertaining to both mezoxerophiles and to xerophiles, yet the highest percentage is covered by xerophile species, which are characterized by their small foliage surface, the very narrow and tough limb, and acute porosity etc.In the floral composition of these species, the graminaceae species are best represented, followed by leguminous and lamiaceae, known in beekeeping as good honey plants. Thus, the researches carried out have shown that Lamiaceae species have a good participation, with variation limits raging from 15% to 50-60%. Leguminous species are represented less on xerophile meadows than in hidrophile meadows. Among these we mention: Lotus corniculatus L., Trifolium repens L. şi Medicago lupulina L., all these species being known in beekeeping as good honey plants. Among gramineae species the most representatives are: Lolium perene L. and Poa pratensis L., yet with no melliferous value. Likewise, the group of „various” plants varied a lot as participation in the structure of the vegetal cover of xerophile meadows, depending on the place of research, all these species having no melliferous value. The current paper describes the results o biometric and melliferous researches carried out over the period 2003- 2005 on 5 plant species pertaining to the Lamiaceae family, namely: Salvia nemerosa L.
    [Show full text]
  • Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology
    molecules Review Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology Bahare Salehi 1 , Mangalpady Shivaprasad Shetty 2, Nanjangud V. Anil Kumar 3 , Jelena Živkovi´c 4, Daniela Calina 5 , Anca Oana Docea 6, Simin Emamzadeh-Yazdi 7, Ceyda Sibel Kılıç 8, Tamar Goloshvili 9, Silvana Nicola 10 , Giuseppe Pignata 10, Farukh Sharopov 11,* , María del Mar Contreras 12,* , William C. Cho 13,* , Natália Martins 14,15,* and Javad Sharifi-Rad 16,* 1 Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran 2 Department of Chemistry, NMAM Institute of Technology, Karkala 574110, India 3 Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India 4 Institute for Medicinal Plants Research “Dr. Josif Panˇci´c”,Tadeuša Koš´cuška1, Belgrade 11000, Serbia 5 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania 6 Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania 7 Department of Plant and Soil Sciences, University of Pretoria, Gauteng 0002, South Africa 8 Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey 9 Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi 0162, Georgia 10 Department of Agricultural, Forest and Food Sciences, University of Turin, I-10095 Grugliasco, Italy 11 Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan 12 Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain 13 Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China 14 Faculty of Medicine, University of Porto, Alameda Prof.
    [Show full text]
  • Download Download
    A Floristic Survey of a Limestone Glade in Versailles Slate Park, Ripley County, Indiana Michael A. Homoya Division of Nature Preserves Department of Natural Resources Indianapolis, Indiana 46204 Introduction A glade is currently defined as a natural opening in the forest caused (in part) by bedrock at or near the surface (14). Glades are normally dry to xeric environments, typically on steep south to west-facing hillsides, and are characterized by a dominance of her- baceous vegetation that often has a scattering of scrubby woody species. In Indiana, they occur on a variety of bedrock types, including limestone (2, 3, 9), sandstone (3), and siltstone (4). Previously, Indiana glades were thought to be restricted to the south- central part of the state, predominantly in the unglaciated portions of the Shawnee Hills and Highland Rim Natural Regions (7). This report apparently provides the first published report of limestone glades in southeastern Indiana, as well as the first for the Switzerland Hills Section of the Bluegrass Natural Region. Methods An inspection of aerial photos of Versailles State Park and the immediate surround- ings revealed the presence of four glade sites, but only the one on Falling Timber Creek, the largest and most diverse of the four, is discussed here. The glade was visited briefly for an initial ground survey on 10 June 1986, followed by more thorough floristic surveys on 7 August and 7 October. Those taxa in the open pari of the glade, as well as in the scattered patches of scrubby woody growth, were recorded. For the most part, the pre- sent list represents a visual documentation of taxa in the field; the few vouchers taken are to be deposited in the Deam Herbarium of Indiana University (IND).
    [Show full text]
  • PHCOG RES.: Research Article Essential Oil Composition of the Dracocephalum Moldavica L from Xinjiang in China
    [Downloaded free from http://www.phcogres.com on Friday, June 25, 2021, IP: 249.80.203.154] Pharmacognosy Research [Phcog Res.] Vol 1, Issue 4, Jul-Aug, 2009 Page 172-174 (An Official Publication of Pharmacognosy Network Worldwide) Received: 18 May, 2009 Modified: 02 April, 2009 Accepted: 03 June, 2009 PHCOG RES.: Research Article Essential Oil Composition of the Dracocephalum moldavica L from Xinjiang in China Tian Shugea*, Zhou Xiaoyingb, Zhang Fana, An Dongqinga, Yang Taoc a* College of TCM, XinJiang Medical University, Urumqi-830011, XinJiang, China b College of Pharmacy, XinJiang Medical University, Urumqi-830011, XinJiang, China c Institute of Quality Testing of Xinjiang; Urumqi-830002, XinJiang, China E.mail: [email protected] ABSTRACT The essential oil of Dracocephalum moldavica L from Xinjiang in China was isolated by hydrodistillation in yield of 0.15 %(w/w). The chemical composition of the essential oil was analyzed by GC and GCMS. Fifty-one compounds accounting for 99.45% of the total oil were identified. The major components wereα-Citral (32.55%),β-Citral (23.53%), Acetic acid, geranial ester(21.32%), Trans-Geraniol(3.38%), Nerolacetate(3.38%), Octane(2.14%), and 2,4,6-Trimethyl -3-cyclohexene-1-carboxaldehyde (1.3%). Monotenepers were the main group of compounds. Keywords: Dracocephalum moldavica L, essential oil composition, GC-MS. INTRODUCTION during flowering. Voucher specimens were deposited in Traditional Chinese Medicine College Museum of Chinese Dracocephalum moldavica L. is a perennial herb belonging herbal samples of Xinjiang Medical University. to the Lamiaceae (Labiatae) family. is an annual herbaceous aromatic plant belonging to the family Lamiaceae (Labiatae).
    [Show full text]