bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Geochemical and metagenomic characterization of Jinata Onsen, a Proterozoic-analog hot spring, 2 reveals novel microbial diversity including iron-tolerant phototrophs and thermophilic lithotrophs 3 4 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 5 Fischer3, Shawn E. McGlynn2* 6 7 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 8 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 9 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 10 91125 USA 11 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 12 Japan 13 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 14 152-8551, Japan 15 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 16 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 17 Correspondence:
[email protected] or
[email protected] 18 19 Abstract 20 Hydrothermal systems, including terrestrial hot springs, contain diverse geochemical 21 conditions that vary over short spatial scales due to progressive interaction between the reducing 22 hydrothermal fluids, the oxygenated atmosphere, and in some cases seawater. At Jinata Onsen, 23 on Shikinejima Island, Japan, an intertidal, anoxic, iron-rich hot spring mixes with the 24 oxygenated atmosphere and seawater over short spatial scales, creating a diversity of chemical 25 potentials and redox pairs over a distance ~10 m.