TERT Promoter Mutations Occur Frequently in Gliomas and a Subset of Tumors Derived from Cells with Low Rates of Self-Renewal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soft Tissue Cytopathology: a Practical Approach Liron Pantanowitz, MD
4/1/2020 Soft Tissue Cytopathology: A Practical Approach Liron Pantanowitz, MD Department of Pathology University of Pittsburgh Medical Center [email protected] What does the clinician want to know? • Is the lesion of mesenchymal origin or not? • Is it begin or malignant? • If it is malignant: – Is it a small round cell tumor & if so what type? – Is this soft tissue neoplasm of low or high‐grade? Practical diagnostic categories used in soft tissue cytopathology 1 4/1/2020 Practical approach to interpret FNA of soft tissue lesions involves: 1. Predominant cell type present 2. Background pattern recognition Cell Type Stroma • Lipomatous • Myxoid • Spindle cells • Other • Giant cells • Round cells • Epithelioid • Pleomorphic Lipomatous Spindle cell Small round cell Fibrolipoma Leiomyosarcoma Ewing sarcoma Myxoid Epithelioid Pleomorphic Myxoid sarcoma Clear cell sarcoma Pleomorphic sarcoma 2 4/1/2020 CASE #1 • 45yr Man • Thigh mass (fatty) • CNB with TP (DQ stain) DQ Mag 20x ALT –Floret cells 3 4/1/2020 Adipocytic Lesions • Lipoma ‐ most common soft tissue neoplasm • Liposarcoma ‐ most common adult soft tissue sarcoma • Benign features: – Large, univacuolated adipocytes of uniform size – Small, bland nuclei without atypia • Malignant features: – Lipoblasts, pleomorphic giant cells or round cells – Vascular myxoid stroma • Pitfalls: Lipophages & pseudo‐lipoblasts • Fat easily destroyed (oil globules) & lost with preparation Lipoma & Variants . Angiolipoma (prominent vessels) . Myolipoma (smooth muscle) . Angiomyolipoma (vessels + smooth muscle) . Myelolipoma (hematopoietic elements) . Chondroid lipoma (chondromyxoid matrix) . Spindle cell lipoma (CD34+ spindle cells) . Pleomorphic lipoma . Intramuscular lipoma Lipoma 4 4/1/2020 Angiolipoma Myelolipoma Lipoblasts • Typically multivacuolated • Can be monovacuolated • Hyperchromatic nuclei • Irregular (scalloped) nuclei • Nucleoli not typically seen 5 4/1/2020 WD liposarcoma Layfield et al. -
Well-Differentiated Spindle Cell Liposarcoma
Modern Pathology (2010) 23, 729–736 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 729 Well-differentiated spindle cell liposarcoma (‘atypical spindle cell lipomatous tumor’) does not belong to the spectrum of atypical lipomatous tumor but has a close relationship to spindle cell lipoma: clinicopathologic, immunohistochemical, and molecular analysis of six cases Thomas Mentzel1, Gabriele Palmedo1 and Cornelius Kuhnen2 1Dermatopathologie, Friedrichshafen, Germany and 2Institute of Pathology, Medical Center, Mu¨nster, Germany Well-differentiated spindle cell liposarcoma represents a rare atypical/low-grade malignant lipogenic neoplasm that has been regarded as a variant of atypical lipomatous tumor. However, well-differentiated spindle cell liposarcoma tends to occur in subcutaneous tissue of the extremities, the trunk, and the head and neck region, contains slightly atypical spindled tumor cells often staining positively for CD34, and lacks an amplification of MDM2 and/or CDK4 in most of the cases analyzed. We studied a series of well-differentiated spindle cell liposarcomas arising in two female and four male patients (age of the patients ranged from 59 to 85 years). The neoplasms arose on the shoulder, the chest wall, the thigh, the lower leg, the back of the hand, and in paratesticular location. The size of the neoplasms ranged from 1.5 to 10 cm (mean: 6.0 cm). All neoplasms were completely excised. The neoplasms were confined to the subcutis in three cases, and in three cases, an infiltration of skeletal muscle was seen. Histologically, the variably cellular neoplasms were composed of atypical lipogenic cells showing variations in size and shape, and spindled tumor cells with slightly enlarged, often hyperchromatic nuclei. -
Spindle Cell Liposarcoma with a TRIO-TERT Fusion Transcript
Virchows Archiv (2019) 475:391–394 https://doi.org/10.1007/s00428-019-02545-5 BRIEF REPORTS Spindle cell liposarcoma with a TRIO-TERT fusion transcript David I. Suster1 & Vikram Deshpande1 & Ivan Chebib1 & Martin S. Taylor1 & John Mullen2 & Miriam A. Bredella3 & G. Petur Nielsen1 Received: 7 January 2019 /Revised: 8 February 2019 /Accepted: 11 February 2019 /Published online: 22 February 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Conventional well-differentiated, dedifferentiated, and myxoid liposarcomas have long been known to harbor numerous typical genetic alterations that allow for diagnosis of these tumors. These include MDM2 and CDK4 amplification in well-differentiated and dedifferentiated liposarcomas as well as FUS-DDIT3 rearrangements in myxoid liposarcoma. More recently, in-frame TRIO- TERT fusion genes have been described in a subset of non-translocation-related sarcomas including myxofibrosarcoma, dedifferentiated liposarcoma, undifferentiated pleomorphic sarcoma, pleomorphic rhabdomyosarcoma, and leiomyosarcoma. These genetic rearrangements lead to TERT mRNA expression levels hundreds of times higher than normal, causing increased telomerase activation in these tumors. Herein, we describe an unusual case of a liposarcoma with spindle cell features and a TRIO-TERT fusion transcript identified through next-generation sequencing. Keywords Liposarcoma . TRIO-TERT . Fusion transcript The current classification of spindle cell lipomatous neoplasms Recently, a novel in-frame TRIO-TERT fusion has been is still evolving. In the literature, the term Bspindle cell identified in some non-translocation-related sarcomas [6]. liposarcoma^ has been used to describe many tumors including TRIO plays an important role in cell adhesion and nuclear spindled variants of well-differentiated liposarcoma and signaling pathways and is part of a family of Rho GTPases myxoid liposarcoma, as well as spindle cell lipomas with that act as guanine nucleotide exchange factors [7]. -
SUPPLEMENTARY NOTE Co-Activation of GR and NFKB
SUPPLEMENTARY NOTE Co-activation of GR and NFKB alters the repertoire of their binding sites and target genes. Nagesha A.S. Rao1*, Melysia T. McCalman1,*, Panagiotis Moulos2,4, Kees-Jan Francoijs1, 2 2 3 3,5 Aristotelis Chatziioannou , Fragiskos N. Kolisis , Michael N. Alexis , Dimitra J. Mitsiou and 1,5 Hendrik G. Stunnenberg 1Department of Molecular Biology, Radboud University Nijmegen, the Netherlands 2Metabolic Engineering and Bioinformatics Group, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece 3Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Greece 4These authors contributed equally to this work 5 Corresponding authors E-MAIL: [email protected] ; TEL: +31-24-3610524; FAX: +31-24-3610520 E-MAIL: [email protected] ; TEL: +30-210-7273741; FAX: +30-210-7273677 Running title: Global GR and NFKB crosstalk Keywords: GR, p65, genome-wide, binding sites, crosstalk SUPPLEMENTARY FIGURES/FIGURE LEGENDS AND SUPPLEMENTARY TABLES 1 Rao118042_Supplementary Fig. 1 A Primary transcript Mature mRNA TNF/DMSO TNF/DMSO 8 12 r=0.74, p< 0.001 r=0.61, p< 0.001 ) 2 ) 10 2 6 8 4 6 4 2 2 0 Fold change (mRNA) (log Fold change (primRNA) (log 0 −2 −2 −2 0 2 4 −2 0 2 4 Fold change (RNAPII) (log2) Fold change (RNAPII) (log2) B chr5: chrX: 56 _ 104 _ DMSO DMSO 1 _ 1 _ 56 _ 104 _ TA TA 1 _ 1 _ 56 _ 104 _ TNF TNF Cluster 1 1 _ Cluster 2 1 _ 56 _ 104 _ TA+TNF TA+TNF 1 _ 1 _ CCNB1 TSC22D3 chr20: chr17: 25 _ 33 _ DMSO DMSO 1 _ 1 _ 25 _ 33 _ TA TA 1 _ 1 _ 25 _ 33 _ TNF TNF Cluster 3 1 _ Cluster 4 1 _ 25 _ 33 _ TA+TNF TA+TNF 1 _ 1 _ GPCPD1 CCL2 chr6: chr22: 77 _ 35 _ DMSO DMSO 1 _ 77 _ 1 _ 35 _ TA TA 1 _ 1 _ 77 _ 35 _ TNF Cluster 5 Cluster 6 TNF 1 _ 1 _ 77 _ 35 _ TA+TNF TA+TNF 1 _ 1 _ TNFAIP3 DGCR6 2 Supplementary Figure 1. -
Pathology and Genetics of Tumours of Soft Tissue and Bone
bb5_1.qxd 13.9.2006 14:05 Page 3 World Health Organization Classification of Tumours WHO OMS International Agency for Research on Cancer (IARC) Pathology and Genetics of Tumours of Soft Tissue and Bone Edited by Christopher D.M. Fletcher K. Krishnan Unni Fredrik Mertens IARCPress Lyon, 2002 bb5_1.qxd 13.9.2006 14:05 Page 4 World Health Organization Classification of Tumours Series Editors Paul Kleihues, M.D. Leslie H. Sobin, M.D. Pathology and Genetics of Tumours of Soft Tissue and Bone Editors Christopher D.M. Fletcher, M.D. K. Krishnan Unni, M.D. Fredrik Mertens, M.D. Coordinating Editor Wojciech Biernat, M.D. Layout Lauren A. Hunter Illustrations Lauren A. Hunter Georges Mollon Printed by LIPS 69009 Lyon, France Publisher IARCPress International Agency for Research on Cancer (IARC) 69008 Lyon, France bb5_1.qxd 13.9.2006 14:05 Page 5 This volume was produced in collaboration with the International Academy of Pathology (IAP) The WHO Classification of Tumours of Soft Tissue and Bone presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus Conference in Lyon, France, April 24-28, 2002. Members of the Working Group are indicated in the List of Contributors on page 369. bb5_1.qxd 22.9.2006 9:03 Page 6 Published by IARC Press, International Agency for Research on Cancer, 150 cours Albert Thomas, F-69008 Lyon, France © International Agency for Research on Cancer, 2002, reprinted 2006 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. -
Multiple Endocrine Neoplasia Type 1 (MEN1)
Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas. -
Cytogenetics Cytogenetics Journal of Biomedicine and Biotechnology
Journal of Biomedicine and Biotechnology Cytogenetics Cytogenetics Journal of Biomedicine and Biotechnology Cytogenetics Copyright © 2011 Hindawi Publishing Corporation. All rights reserved. This is a focus issue published in volume 2011 of “Journal of Biomedicine and Biotechnology.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board The editorial board of the journal is organized into sections that correspond to the subject areas covered by the journal. Agricultural Biotechnology Guihua H. Bai, USA Hari B. Krishnan, USA B. C. Saha, USA Christopher P. Chanway, Canada Carol A. Mallory-Smith, USA Mariam B. Sticklen, USA Ravindra N. Chibbar, Canada Dennis P. Murr, Canada Chiu-Chung Young, Taiwan Ian Godwin, Australia Rodomiro Ortiz, Mexico Animal Biotechnology E. S. Chang, USA Thomas A. Hoagland, USA Lawrence Reynolds, USA Hans H. Cheng, USA Tosso Leeb, Switzerland Lawrence B. Schook, USA Bhanu P. Chowdhary, USA James D. Murray, USA Mari A. Smits, The Netherlands Noelle E. Cockett, USA Anita M. Oberbauer, USA Leon Spicer, USA Peter Dovc, Slovenia Jorge A. Piedrahita, USA J. Verstegen, USA Scott C. Fahrenkrug, USA Daniel Pomp, USA Matthew B. Wheeler, USA Dorian J. Garrick, USA Kent M. Reed, USA Kenneth L. White, USA Biochemistry Robert Blumenthal, USA Hicham Fenniri, Canada Richard D. Ludescher, USA David Ronald Brown, UK Nick V. Grishin, USA George Makhatadze, USA Saulius Butenas, USA J. Guy Guillemette, Canada Leonid Medved, USA Vittorio Calabrese, Italy Paul W. Huber, USA Susan A. Rotenberg, USA F. Castellino, USA Chen-Hsiung Hung, Taiwan Jason Shearer, USA Roberta Chiaraluce, Italy Michael Kalafatis, USA Andrei Surguchov, USA D. -
Reversal of Preexisting Hyperglycemia in Diabetic Mice by Acute Deletion of the Men1 Gene
Reversal of preexisting hyperglycemia in diabetic mice by acute deletion of the Men1 gene Yuqing Yanga, Buddha Gurunga, Ting Wub, Haoren Wanga, Doris A. Stoffersc,d, and Xianxin Huaa,d,1 aAbramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, cDepartment of Medicine, and dInstitute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104; and bDepartment of Basic Medical Sciences, Medical College, Xiamen University, Xiamen 361005, China Edited by Arnold J. Levine, Institute for Advanced Study, Princeton, NJ, and approved September 28, 2010 (received for review August 18, 2010) A hallmark of diabetes is an absolute or relative reduction in the Men1 excision differently from normal β cells. Thus, it is im- number of functional β cells. Therapies that could increase the num- portant to determine whether Men1 excision actually ameliorates ber of endogenous β cells under diabetic conditions would be desir- or reverses hyperglycemia in diabetic mice. able. Prevalent gene targeting mouse models for assessing β-cell How menin regulates β-cell proliferation is not well understood. proliferation and diabetes pathogenesis only address whether de- Although menin has been shown to be crucial for expression of letion of a gene prevents the development of diabetes. Models cyclin-dependent kinase inhibitor p18ink4c (p18 hereafter) and p27 testing whether acute excision of a single gene can ameliorate or in islets (10, 11) and liver cells (12), Men1 excision does not affect reverse preexisting hyperglycemia in established diabetes remain to liver cell proliferation (7). These findings raise the possibility that be explored, which could directly validate the effect of gene exci- menin may also regulate β cell proliferation through effectors sion on treating diabetes. -
Twenty Years of Menin: Emerging Opportunities for Restoration of Transcriptional Regulation in MEN1
2410 K M A Dreijerink et al. Molecular mechanism of MEN1 24:10 T135–T145 Thematic Review Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1 Koen M A Dreijerink1, H T Marc Timmers2 and Myles Brown3 1 Department of Endocrinology, VU University Medical Center, Amsterdam, The Netherlands Correspondence 2 German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department should be addressed of Urology, Medical Center-University of Freiburg, Freiburg, Germany to M Brown 3 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA Email [email protected] Abstract Since the discovery of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997, Key Words elucidation of the molecular function of its protein product, menin, has been a challenge. f multiple endocrine Biochemical, proteomics, genetics and genomics approaches have identified various neoplasia type 1 (MEN1) potential roles, which converge on gene expression regulation. The most consistent f menin findings show that menin connects transcription factors and chromatin-modifying f transcriptional regulation enzymes, in particular, the histone H3K4 methyltransferase complexes MLL1 and MLL2. f histone H3K4 trimethylation Chromatin immunoprecipitation combined with next-generation sequencing has enabled studying genome-wide dynamics of chromatin binding by menin. We propose that menin regulates cell type-specific transcriptional programs by linking chromatin regulatory Endocrine-Related Cancer Endocrine-Related complexes to specific transcription factors. In this fashion, the MEN1 gene is a tumor suppressor gene in the endocrine tissues that are affected in MEN1. Recent studies have hinted at possibilities to pharmacologically restore the epigenetic changes caused by loss of menin function as therapeutic strategies for MEN1, for example, by inhibition of histone demethylases. -
International Journal of Infection Prevention Issn No: 2690-4837
Freely Available Online INTERNATIONAL JOURNAL OF INFECTION PREVENTION ISSN NO: 2690-4837 Research DOI: 10.14302/issn.2690-4837.ijip-20-3176 The Genetic Multiplicity- Multiple Endocrine Neoplasia type I Anubha Bajaj1,* 1MD. (Pathology) Panjab University, Department of Histopathology, A.B. Diagnostics, A-1, Ring Road, Rajouri Garden, New Delhi, 110027, India Abstract Multiple endocrine neoplasia type 1 (MEN1) is a syndrome emerging from characteristic mutations of MEN1 gene with concurrently enunciated multiple endocrine and tumours and associated non-endocrine neoplasm. Previously designated as Werner’s syndrome, MEN1 syndrome denominates genomic mutation within chromosome 11q13 or a tumour suppressor gene with a distinctive protein product nomenclated as “menin”. MEN1 syndrome demonstrates an autosomal dominant pattern of disease inheritance where genomic mutations delineate a comprehensive (100%) disease penetrance. MEN1 gene was initially identified in 1997 upon chromosome 11q13. Although twelve genetic mutations were primarily identified, currently beyond eighteen hundred genomic mutations are scripted [1,2]. MEN1 syndrome is comprised of diverse combination of twenty or more endocrine and non-endocrine tumours exemplifying a classic triad of pituitary, parathyroid and pancreatic neoplasm. Diverse non endocrine tumours enunciated with MEN1 syndrome are denominated with meningioma, ependymoma or angiofibroma [1,2]. Endocrine tumours are discerned on account of excessive hormonal secretion engendered from various neoplasm or on account of neoplastic evolution. Approximately 10% instances can occur due to a de-novo genomic variant. Offspring of an individual with MEN1 syndrome quantifies a 50% possibility of inheriting the genomic variant. Cogent prenatal diagnosis can be determined in instances where specific genomic variant of a particular family is known. -
Cdx4 and Menin Co-Regulate Hoxa9 Expression in Hematopoietic Cells Jizhou Yan, Ya-Xiong Chen, Angela Desmond, Albert Silva, Yuqing Yang, Haoren Wang, Xianxin Hua*
Cdx4 and Menin Co-Regulate Hoxa9 Expression in Hematopoietic Cells Jizhou Yan, Ya-Xiong Chen, Angela Desmond, Albert Silva, Yuqing Yang, Haoren Wang, Xianxin Hua* Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America Background. Transcription factor Cdx4 and transcriptional coregulator menin are essential for Hoxa9 expression and normal hematopoiesis. However, the precise mechanism underlying Hoxa9 regulation is not clear. Methods and Findings. Here, we show that the expression level of Hoxa9 is correlated with the location of increased trimethylated histone 3 lysine 4 (H3K4M3). The active and repressive histone modifications co-exist along the Hoxa9 regulatory region. We further demonstrate that both Cdx4 and menin bind to the same regulatory region at the Hoxa9 locus in vivo, and co-activate the reporter gene driven by the Hoxa9 cis-elements that contain Cdx4 binding sites. Ablation of menin abrogates Cdx4 access to the chromatin target and significantly reduces both active and repressive histone H3 modifications in the Hoxa9 locus. Conclusion. These results suggest a functional link among Cdx4, menin and histone modifications in Hoxa9 regulation in hematopoietic cells. Citation: Yan J, Chen Y-X, Desmond A, Silva A, Yang Y, et al. (2006) Cdx4 and Menin Co-Regulate Hoxa9 Expression in Hematopoietic Cells. PLoS ONE 1(1): e47. doi:10.1371/journal.pone.0000047 INTRODUCTION Hoxa9 overexpression is a common feature of acute myeloid Homeo-box-containing transcription factors (Hox proteins) play leukemia [19–21]. Although both menin and Cdx4 have been a pivotal role in normal differentiation and expansion of hemato- shown to participate in regulating Hoxa9 gene transcription and poietic cells [1,2]. -
Integrative Genomic Characterization Identifies Molecular Subtypes of Lung Carcinoids
Published OnlineFirst July 12, 2019; DOI: 10.1158/0008-5472.CAN-19-0214 Cancer Genome and Epigenome Research Integrative Genomic Characterization Identifies Molecular Subtypes of Lung Carcinoids Saurabh V. Laddha1, Edaise M. da Silva2, Kenneth Robzyk2, Brian R. Untch3, Hua Ke1, Natasha Rekhtman2, John T. Poirier4, William D. Travis2, Laura H. Tang2, and Chang S. Chan1,5 Abstract Lung carcinoids (LC) are rare and slow growing primary predominately found at peripheral and endobronchial lung, lung neuroendocrine tumors. We performed targeted exome respectively. The LC3 subtype was diagnosed at a younger age sequencing, mRNA sequencing, and DNA methylation array than LC1 and LC2 subtypes. IHC staining of two biomarkers, analysis on macro-dissected LCs. Recurrent mutations were ASCL1 and S100, sufficiently stratified the three subtypes. enriched for genes involved in covalent histone modification/ This molecular classification of LCs into three subtypes may chromatin remodeling (34.5%; MEN1, ARID1A, KMT2C, and facilitate understanding of their molecular mechanisms and KMT2A) as well as DNA repair (17.2%) pathways. Unsuper- improve diagnosis and clinical management. vised clustering and principle component analysis on gene expression and DNA methylation profiles showed three robust Significance: Integrative genomic analysis of lung carcinoids molecular subtypes (LC1, LC2, LC3) with distinct clinical identifies three novel molecular subtypes with distinct clinical features. MEN1 gene mutations were found to be exclusively features and provides insight into their distinctive molecular enriched in the LC2 subtype. LC1 and LC3 subtypes were signatures of tumorigenesis, diagnosis, and prognosis. Introduction of Ki67 between ACs and TCs does not enable reliable stratification between well-differentiated LCs (6, 7).