Śrīpati's Arithmetic in the Siddhāntaśekhara And

Total Page:16

File Type:pdf, Size:1020Kb

Śrīpati's Arithmetic in the Siddhāntaśekhara And ŚRĪPATI’S ARITHMETIC IN THE SIDDHĀNTAŚEKHARA AND GAṆITATILAKA: EDITION, TRANSLATION, AND MATHEMATICAL AND HISTORICAL ANALYSIS Rev. Jambugahapitiye Dhammaloka Thero A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics Department of Mathematics and Statistics University of Canterbury New Zealand 2019 Abstract The literature on the exact sciences in Sanskrit in the second millennium is significant from a his- torical point of view because of the emergence of innovative ideas, systematization of the traditional knowledge, advanced technicality, creativity of the scientific writing style, and so on. Śrīpati, a mathematician-astronomer, is the first known writer of exact sciences in this era. He lived inthe 11th century most probably in Maharashtra and he wrote in a vast range of subjects from astrology to astronomy. In spite of his prolific writings and influence in the early stages of the second millennium, Śrīpati has been understudied. Śrīpati is the first author who wrote a separate mathematical text while still retaining all the main mathematical rules in theoretical astronomical texts. It is Śrīpati who used different elegant metrical forms in versification of mathematical rules. Most importantly, he invented several rules in arithmetic and provided inspiration for successive mathematicians and astronomers especially Bhāskara II. In this thesis we provide a critical edition of the 13th chapter of Śrīpati’s Siddhāntaśekhara, an astronomical work, consulting the published edition and three manuscripts and his Gaṇitatilaka, his arithmetic text, based on the published edition. They are followed by the critical translation and the commentary where mathematical analysis of all the rules is given. These mathematical rules, procedures, and executions are compared with that of other preceding and succeeding mathematical authors mainly in identifying Śrīpati’s contribution and innovation. We attempt to understand Śrīpati’s role in the history of Indian mathematics, how he was influenced by his predecessors, his influence on succeeding mathematicians, and to contextualize the mathematical rules given inboth texts. This research will also examine, wherever possible, the use of mathematical rules given in the texts in daily practices, similarity or differences of the same rule in different texts, the characteristics of the executions of rules, and the commentators’ approaches to the base texts. i Acknowledgement One day (this is 20 May, 2014) I received an email from Dr. Rohana Seneviratne with a link leading to a project that is known as History of Indian Mathematical Sciences Project at the University of Canterbury, New Zealand. By the time I came to know about that, it had called for applications for a scholarship. I applied for that. On receiving the scholarship I started my research in December, 2015. It has been four years by now. I spent most of my time in the office reading Sanskrit texts, com- mentaries, working through mathematical formulas and examples. I traveled to India and Europe, visited manuscripts libraries, and participated in conferences, seminars, and workshops. Further, I have been privileged to meet many leading scholars in the field and to learn from them. I have met wonderful people in New Zealand. Finally, I have been able to reach to the end of this journey. Any of these would not have been possible without the kind and generous support of many people. Therefore, this is the time I must thank everyone who was the strength behind this. Though the words cannot do the justice, I have to mention that I am indebted to Prof. Clemency Montelle, my chief supervisor, for her brilliant guidance for last four years in my research. I met her for the first time on the 11th of December, 2015 at the Christchurch international airport. She was waiting for me at the airport together with Prof. Kim Plofker. From that moment onward she has been taking a great care of me. Without her right directions, I would not be writing this acknowledgment now. Her enthusiasm and fondness for the subject always inspire me. Therefore, my first thank goes to Prof. Clemency Montelle. I am also very grateful to Prof. Kim Plofker,my co-supervisor, for her comprehensive supervision. During her yearly-stay in New Zealand, we read a few chapters on mathematics and astronomy of the Siddhāntaśekhara which was a crucial training in my research apart from all the other regular correspondences and meetings. Her suggestions, critical thoughts, comments and directions led the thesis up to this level. Further, she sent me a copy of the manuscript of the Siddhāntaśekhara in Brown University, USA. Hence, she deserves a lot of thanks. Then, I would like to thank Dr. Agathe Keller, my associate supervisor. I met her at the Université Paris 7 in July, 2019 and got one-on-one feedback in addition to regular correspondence. Her erudition on the mathematical traditions in India was an indispensable source of this research. My appreciation also goes to Prof. K. Ramasubramanian, Prof. Takao Hayashi, Prof. Glen Van Brummelen, Prof. Kenneth Zysk, Dr. John Hannah, Ass. Prof. Toke Knudsen, Dr. Anuj Misra, Dr. K. Mahesh, Dr. Aditya Kolachana, Dr. Keshav Melnad, Liz Cornwell, Sahana Cidambi, and Aditya Jha for their guidance, suggestions, and all the supports in the past four years for the research and other academic activities. All their support have been immensely helpful and I firmly believe that it gave my thesis the standard shape. I am also very grateful to Dr. Rohana Seneviratne thanks to whom I came to know about the History of Indian Mathematical Sciences Project, Dr. Sanath Wijesundara, and Ven. Prof. Nepalaye Sankicca Thero, my university Sanskrit teachers, who always encouraged and strengthened me. This PhD research was financially supported by the University of Canterbury and the Rutherford Discovery Fellows, administered by the Royal Society of New Zealand through the HAMSI project. I am very grateful for these supports. Further, all the facilities to carry out my research were given by the School of Mathematics and Statistics so I am appreciative for their supports as well. I would ii Acknowledgement iii like to thank the Head of the School Prof. Jennifer Brown, former postgraduate coordinator Dr. Miguel A. Moyers Gonzalez, and the current postgraduate coordinator Dr. Deniel Gerhard, Helen Rowley, Leigh Davidson, Matt McPherson, Paul Brouwers, Penelope Goode and in general, all the academic and administrative staff who made this easy for me. My gratefulness is also towards the library staff who assisted with supplying sources. I am also very appreciative for granting methe study leave for four years by the University of Peradeniya, Sri Lanka for undertaking this research here. In addition, my acknowledgments are due to Prof. Siniruddha Dash, Prof. M.D. Siriniwas, Dr. Venkateshvara Pai, the staff and the members of the Baroda Oriental Institute (Baroda), British library (London) for their support in providing some manuscripts and texts. I thank with all my heart to my great teacher under whose patronage I became a monk. He accepted me as his student at my thirteen. He raised me, took care of me, taught me and gave me love of both father and mother. I would also like to thank all my fellow monks in the monastery who took care of all the duties on behalf of me in my absence. The source of my perseverance is my family who also raised me and nourished me with love. Even though I left home long time ago, their affection never left me, and will never leave me. Therefore, my wholehearted thanks go to them. I met many friends in New Zealand in and outside the university. I thank them all especially, Montelle family for making my life easy in New Zealand. In addition, my gratefulness is to all my other friends who listened to me in my hard times, who encouraged me when I was bored, who made me laugh when I was sad, in short, who were always there for me especially to Charitha Bandara Weerasinhe, and Dr. Sarath Samaraweera. In my last few words I would like to thank Sri Lankan community in Christchurch mainly Most Venerable Makuludeniye Somaratane Thero, the chief incumbent of the Samadhi Buddhist Vihara, Christchurch for the great support. I am also thankful to Dr. Duy Ho, Duttatreya Srivastava, Phillipa Graham, Brad and Raquel, Patricia Trujillo, Nataly Lopez, Ilayaraja, and Maurine who filled me with kindness, friendliness, and affection. You allmademy leaving for home difficult. Jambugahapitiye Dhammaloka 2019.11.30 Contents Abstract i Acknowledgement ii List of Figures vii List of Tables viii Abbreviations x 1 Introduction 1 1.1 Arithmetic and algebra in Sanskrit texts . 2 1.2 Literature review on Śrīpati’s mathematics . 5 1.3 Objectives . 7 1.4 Methodology . 9 1.4.1 Conventions . 10 1.5 Śrīpati and his works . 11 1.5.1 Biographical data . 11 1.5.2 Literary contribution . 13 1.5.2.1 Astronomical works . 13 1.5.2.2 Astrological works . 14 1.5.2.3 Mathematical work . 15 2 Vyaktagaṇitādhyāya of the Siddhāntaśekhara 16 2.1 Introduction to arithmetic . 16 2.2 Operations (parikarmans)................................. 17 2.2.1 Operations of integers . 17 2.2.1.1 Multiplication . 17 2.2.1.2 Division . 22 2.2.1.3 Square and cube . 23 2.2.1.4 Square root . 24 2.2.1.5 Cube root . 28 2.2.2 Operations of fractions . 31 2.2.2.1 Addition and subtraction . 31 2.2.2.2 Multiplication and square . 32 2.2.2.3 Division . 34 2.2.3 Classes of fractions . 34 2.2.3.1 Fraction-sub-class of the sum of integer and fraction and fraction- sub-class of the difference of integer and fraction . 35 2.2.3.2 Class of sub-fractions, fraction-sub-class of the sum of fraction and sub-fraction, and fraction-sub-class of the difference of fraction and sub-fraction .
Recommended publications
  • Sripati: an Eleventh-Century Indian Mathematician
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HlSTORlA MATHEMATICA 12 (1985). 2.544 Sripati: An Eleventh-Century Indian Mathematician KRIPA NATH SINHA University of Kalyani, P.O. Kalyani, District Nadia, West Bengal, India Srlpati (fl. A.D. 1039-1056) is best known for his writings on astronomy, arithmetic, mensuration, and algebra. This article discusses Sripati’s arithmetic, the Ganitatilaka, as well as the arithmetical and algebraic chapters of the SiddhdntaSekhara. In addition to discussing the kinds of problems considered by Srlpati and the techniques he used to solve them, the article considers the sources upon which Sripati drew. A glossary of Indian treatises and technical terms is provided. o 1985 Academic PKSS. IOC. Srlpati (actif vers 1039-1056 ap. J.C.) est surtout connu pour ses Ccrits sur I’astronomie, I’arithmetique, le toise, et I’algebre. Dans cet article, nous abordons I’arithmetique de Sripati, le Ganitatilaka, de m&me que les chapitres arithmetiques et algebriques de son SiddhrintaSekh’ara. En plus d’aborder les types de problemes Ctudies par Sripati et les techniques qu’il a employees pour les resoudre, nous exminons aussi les sources auxquelles Srlpati fait appel. Un glossaire des trait& et des termes techniques indiens complete cet article. 0 1985 Academic Press, Inc. Sripati, der zwischen 1039 und 1056 wirkte, ist vor allem durch seine Schriften tiber Astronomie, Arithmetik, Mensuration und Algebra bekannt. In diesem Beitrag werden seine Arithmetik, die Gavitatilaka, und die arithmetischen und algebraischen Kapitel aus SiddhhtaSekhara behandelt. Neben der Art der Probleme, die Srlpati studierte, und den von ihm verwendeten Losungsmethoden werden such die von ihm benutzten Quellen be- trachtet.
    [Show full text]
  • AN ACCOUNT of INDIAN ASTRONOMICAL HERITAGE from the 5Th CE to 12Th CE Astronomical Observation Is the Beginning of Scientific At
    Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 705 ∼ 707, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.705 AN ACCOUNT OF INDIAN ASTRONOMICAL HERITAGE FROM THE 5th CE to 12th CE Somenath Chatterjee Sabitri Debi Institute of Technology (School of Astronomy) BANAPRASTHA, P.O. Khamargachi DT Hooghly PIN 712515 India E-mail: [email protected] (Received November 30, 2014; Reviced May 31, 2015; Aaccepted June 30, 2015) ABSTRACT Astronomical observation is the beginning of scientific attitudes in the history of mankind. According to Indian tradition, there existed 18 early astronomical texts (siddhantas) composed by Surya, Pitamaha and many others. Varahamihira compiled five astronomical texts in a book named panchasiddhantika, which is now the link between early and later siddhantas. Indian scholars had no practice of writing their own names in their works, so, it is very difficult to identify them. Aryabhata is the first name noticed, in the book Aryabhatiya. After this point most astronomers and astro-writers wrote their names in their works. In this paper I have tried to analyze the works of astronomers like Aryabhata, Varahamihira, Brah- magupta, Bhaskara I, Vateswara, Sripati and Bhaskaracharya in a modern context and to obtain an account of Indian astronomical knowledge. Aryabhata is the first Indian astronomer who stated that the rising and setting of the Sun, the Moon and other heavenly bodies was due to the relative motion of the Earth caused by the rotation of the Earth about its own axis.
    [Show full text]
  • ASTRONOMERS INDEX Aryabhata (B.476),17,78, 197-201 . Abd Al
    ASTRONOMERS INDEX Aryabhata (b.476),17,78, Bhadrabahu (contemporary 86,89 ,94,97,101-102,104,106, of Varahamihira),110. 197-201 . Bhattotpala (10th Century),11 0. Abd al-Munim-al-AmilI,215,2l6. Brahmagupta ^628),82,86. C Abi-1-Bijal's,175. Abd al-Jabbar al-KharaqI,204. Abu Abd Allah Muhammad ibn Caliph Mansur (754-775) of Abl Bakr Al-Farisl,203. Baghdad, 139• Abu Muhammad Ata b. Ahmad, 1 79. Callippus,67- Abu Nasr ibn Iraq (10th Copernicus,69,209,273• cent.),212. De Bois,235. Abu'1-Wafa' (940-998 ) ,209 ,210. De La Hi re, 23 6. Abu'l-Husayn al-Sufi (d.986),156. Edmond Halley (1686),111,256. Abu-Mac Shar,154. Eratosthenes,69 . al-Battani al-Sabi Euclid (fl.ca. 295 B.C.),65,21 0. (858-929), 175,209- Eudoxus (ca. 400-347 B.C),67. al-Blrunl (9 73-1048 ) ,133 ,1 44 . Fakhr al-Din Gurgani al-BitrujI (twelfth (around 1050), 155. century),178. Father Christoph,26l . al-Fahhad,204. Flamsteed,236. al-Hajjag,157. Galileo Galelei,26l. al-Kashi (fl.1420),144. Galileo,261 . Al-Khwarizmi (d.860),176. Ganesa Daivajna (b. 1507),193• al-Marzuqi (d 1030),154. Geminus,72. al-Qayini (10th century),21 6. Hipparchus,70,72,209• al-Qazwinld (d 1283),154. Hyp sides,70. al-ShirazI,204. Ibn Asim (d.1013),154. al-Shirwani,204. -al-Ajdabi ( d. prior Cal-CUrdi (1260),21 6,222. to 1203),154. al-Zarqalluh,1 75,1 79• -ash-Shatir,273• Aluel ben Yesha ,203• -Qutayba (d.884 or 889),154.
    [Show full text]
  • Ancient Indian Leaps Into Mathematics Editors B.S
    B.S. Yadav Man Mohan Editors Ancient Indian Leaps into Mathematics Editors B.S. Yadav (Deceased) Man Mohan Ramjas College University of Delhi 110 007 New Delhi India [email protected] ISBN 978-0-8176-4694-3 e-ISBN 978-0-8176-4695-0 DOI 10.1007/978-0-8176-4695-0 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937771 Mathematics Subject Classification (2010): 01A32, 01A16, 01A17, 01A25, 01A27, 01A29 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper www.birkhauser-science.com Dedicated to the memory of U. N. SINGH The Founder of the Indian Society for History of Mathematics U. N. Singh (November 19, 1920 – April 9, 1989) Professor B. S. Yadav (31 July 1931 – 24 February 2010) B. S. Yadav was born in Mathura, India. He dedicated his whole life to the cause of mathematics and the history of mathematical sciences.
    [Show full text]
  • Aryabhatiya with English Commentary
    ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11.
    [Show full text]
  • Aryabhatta Date an Analytical Study
    ARYABHATTA’S DATE AN ANALYTICAL STUDY Dr. M.L. Raja, M.B., B.S., D.O., AVINASH English ARYABHATTA’S DATE AN ANALYTICAL STUDY By- Dr. M.L. Raja Published by AVINASH Printed at Sankav Offset Printerss, Erode Cover Design & Type setting A.P. Nallashivam Published in January 2016 Yugabdom 5117 IPrice `160. ISBN: 978-93-84582-54-8BN: 978i AVINASH Academy on Vibrant National Arts & Scientific Heritage Erode, Tamilnadu Ph : 94433 70129 E-mail : [email protected] PREFACE In the history our Nation, we can find thousands and thousands of great scholars and their works, in almost all fields of science. We can cite examples, at least a few hundred in each century, scattering over a very long period of time, exceeding a minimum of ten thousand years. Their works in the various fields of science are remarkably outstanding, highly astonishing and fully scientific with thorough and clear knowledge, exceeding the modern scientific achievements, at least in a few aspects. But, the most unfortunate thing is, we are very much ignorant of our ancestor’s glorious antiquity, Himalayan achievements, high technological skill and the vast knowledge and wisdom and their highly admirable scientific works are not at all included in our Nation’s educational curriculum. So, it is right time or even if late, it is better late than never, to bring forth these ancient scientific works of our glorious Nation, in the day-light, amongst the present and the future generations of our Nation. With that motive in mind, this book on Âryabhaa is a very small, but a firm step in that direction, where the actual date and name of Âryabhaa and his texts are detailed.
    [Show full text]
  • Determination of Ascensional Difference in the Lagnaprakaraṇa
    Indian Journal of History of Science, 53.3 (2018) 302-316 DOI:10.16943/ijhs/2018/v53i3/49462 Determination of Ascensional Difference in the Lagnaprakaraṇa Aditya Kolachana∗ , K Mahesh∗ , Clemency Montelle∗∗ and K Ramasubramanian∗ (Received 31 January 2018) Abstract The ascensional difference or the cara is a fundamental astronomical concept that is crucial in de- termining the durations of day and night, which are a function of the observer’s latitude and the time of the year. Due to its importance, almost all astronomical texts prescribe a certain procedure for the determination of this element. The text Lagnaprakaraṇa—a hitherto unpublished manuscript attributed to Mādhava, the founder of the Kerala school of astronomy and mathematics—however discusses not one, but a number of techniques for the determination of the cara that are both inter- esting and innovative. The present paper aims to discuss these techniques. Key words: Arkāgraguṇa, Ascensional difference, Cara, Carajyā, Carāsu, Dyuguṇa, Dyujyā, Earth-sine, Kujyā, Lagnaprakaraṇa, Mādhava, Mahīguṇa 1. INTRODUCTION of the rising times of the different zodiacal signs (rāśis) at a given latitude. The ascensional difference (cara henceforth) is an The Lagnaprakaraṇa1 (Treatise for the Compu- important astronomical element that is involved in tation of the Ascendant) is a work comprised of a variety of computations related to diurnal prob- eight chapters, dedicated to the determination of lems. It is essentially the difference between the the ascendant (udayalagna or orient ecliptic point), right ascension and the oblique ascension of a and discusses numerous techniques for the same. body measured in time units. At the time of rising, However, as a necessary precursor to determin- the cara gives the time interval taken by a body to ing the ascendant, the text first discusses various traverse between the horizon and the six o’ clock methods to obtain the prāṇakalāntara,2 as well as circle or vice-versa depending upon whether the the cara.
    [Show full text]
  • Editors Seek the Blessings of Mahasaraswathi
    OM GAM GANAPATHAYE NAMAH I MAHASARASWATHYAI NAMAH Editors seek the blessings of MahaSaraswathi Kamala Shankar (Editor-in-Chief) Laxmikant Joshi Chitra Padmanabhan Madhu Ramesh Padma Chari Arjun I Shankar Srikali Varanasi Haranath Gnana Varsha Narasimhan II Thanks to the Authors Adarsh Ravikumar Omsri Bharat Akshay Ravikumar Prerana Gundu Ashwin Mohan Priyanka Saha Anand Kanakam Pranav Raja Arvind Chari Pratap Prasad Aravind Rajagopalan Pavan Kumar Jonnalagadda Ashneel K Reddy Rohit Ramachandran Chandrashekhar Suresh Rohan Jonnalagadda Divya Lambah Samika S Kikkeri Divya Santhanam Shreesha Suresha Dr. Dharwar Achar Srinivasan Venkatachari Girish Kowligi Srinivas Pyda Gokul Kowligi Sahana Kribakaran Gopi Krishna Sruti Bharat Guruganesh Kotta Sumedh Goutam Vedanthi Harsha Koneru Srinath Nandakumar Hamsa Ramesha Sanjana Srinivas HCCC Y&E Balajyothi class S Srinivasan Kapil Gururangan Saurabh Karmarkar Karthik Gururangan Sneha Koneru Komal Sharma Sadhika Malladi Katyayini Satya Srivishnu Goutam Vedanthi Kaushik Amancherla Saransh Gupta Medha Raman Varsha Narasimhan Mahadeva Iyer Vaishnavi Jonnalagadda M L Swamy Vyleen Maheshwari Reddy Mahith Amancherla Varun Mahadevan Nikky Cherukuthota Vaishnavi Kashyap Narasimham Garudadri III Contents Forword VI Preface VIII Chairman’s Message X President’s Message XI Significance of Maha Kumbhabhishekam XII Acharya Bharadwaja 1 Acharya Kapil 3 Adi Shankara 6 Aryabhatta 9 Bhadrachala Ramadas 11 Bhaskaracharya 13 Bheeshma 15 Brahmagupta Bhillamalacarya 17 Chanakya 19 Charaka 21 Dhruva 25 Draupadi 27 Gargi
    [Show full text]
  • GIPE-043972-Contents.Pdf (1.117Mb)
    REPORT OF THE CALENDAR REFORM I:DMMITTEE GOVERNMENT OF INDIA Council of Scientific and Industrial Research, Old Mill Road, • New Delhi. 1955 REPORT OF THE l:llLENDAR REFORM l:OMMITTEE · GOVERNMENT OF INDIA Council of Scientific and Industrial Research, Old Mill Road, New Delhi. 1955 Pub~shed by The Council of Scientific and Industrial Reaearch, Old Mill Road, New Delhi. Printed by Sri Hari Narayan Dey, Sree Gopal Printing Works, 25/IA, Kalidas Singhee Lane,· Calctitta-9. M E S S A G E. I am glad that the Calendar Reform Committee has started its lab~urs. The Government of India has entrusted to it the work of examining the different calendars followed in this country and to submit proposals to the Government for an accurate and uniform calendar based on a scientific study for the whole of India. I am told that we have at present thirty different calendars, differing from each other in various ways, including the methods of time reckoning. These calendars are the natural result of our past political and cultural history an1 partly represent past political divisions in the country. Now that we have attained independence, it is obviously desirable that there should be a certain uniformity in the calendar for our civic, social and other purposes and that this should be based on a scientific approach to this problem. It is true the.t for governmental and many other public p~poses we follow the Gregorian calendar, which is used in the greater part of the world. The mere fact that it is largely used, makes it important.
    [Show full text]
  • Ancient Indian Mathematics – a Conspectus*
    GENERAL ARTICLE Ancient Indian Mathematics – A Conspectus* S G Dani India has had a long tradition of more than 3000 years of pursuit of Mathematical ideas, starting from the Vedic age. The Sulvasutras (which in- cluded Pythagoras theorem before Pythagoras), the Jain works, the base 10 representation (along with the use of 0), names given to powers of 10 S G Dani is a Distinguished up to 1053, the works of medieval mathematicians Professor at the Tata motivated by astronomical studies, and ¯nally Institute of Fundamental Research, Mumbai. He the contributions of the Kerala school that came obtained his bachelor’s, strikingly close to modern mathematics, repre- master’s and PhD degrees sent the various levels of intellectual attainment. from the University of Mumbai. His areas of There is now increasing awareness around the world that interest are dynamics and as one of the ancient cultures, India has contributed sub- ergodic theory of flows on stantially to the global scienti¯c development in many homogeneous spaces, spheres, and mathematics has been one of the recognized probability measures on Lie groups areas in this respect. The country has witnessed steady and history of mathematics. mathematical developments over most part of the last He has received 3,000 years, throwing up many interesting mathemati- several awards including cal ideas well ahead of their appearance elsewhere in the the Ramanujan Medal and the world, though at times they lagged behind, especially in TWAS Prize. the recent centuries. Here are some episodes from the fascinating story that forms a rich fabric of the sustained * This is a slightly modified ver- intellectual endeavour.
    [Show full text]
  • Chapter Two Astrological Works in Sanskrit
    51 CHAPTER TWO ASTROLOGICAL WORKS IN SANSKRIT Astrology can be defined as the 'philosophy of discovery' which analyzing past impulses and future actions of both individuals and communities in the light of planetary configurations. Astrology explains life's reaction to planetary movements. In Sanskrit it is called hora sastra the science of time-'^rwRH ^5R5fai«fH5iref ^ ^Tm ^ ^ % ^i^J' 11 L.R. Chawdhary documented the use of astrology as "astrology is important to male or female as is the case of psychology, this branch of knowledge deals with the human soul deriving awareness of the mind from the careful examination of the facts of consciousness. Astrology complements everything in psychology because it explains the facts of planetary influences on the conscious and subconscious providing a guideline towards all aspects of life, harmony of mind, body and spirit. This is the real use of astrology^. Dr. ^.V.Raman implies that "astrology in India is a part of the whole of Indian culture and plays an integral part in guiding life for all at all stages of life" ^. Predictive astrology is a part of astronomy that exists by the influence of ganita and astronomical doctrines. Winternitz observes that an astrologer is required to possess all possible noble quantities and a comprehensive knowledge of astronomy, ' Quoted from Sabdakalpadruma, kanta-ll, p.550 ^ L.R.Chawdhari, Secrets of astrology. Sterling Paper backs, New Delhi,1998, p.3 ^Raman.B.V, Planetary influence of Human affairs, U.B.S. Publishers, New Delhi, 1996,p.147 52 mathematics and astrology^ Astrology or predictive astrology is said to be coconnected with 'astronomy'.
    [Show full text]
  • Bibliography
    Bibliography A. Aaboe, Episodes from the Early History of Mathematics (Random House, New York, 1964) A.D. Aczel, Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem (Four Walls Eight Windows, New York, 1996) D. Adamson, Blaise Pascal: Mathematician, Physicist, and Thinker About God (St. Martin’s Press, New York, 1995) R.P. Agarwal, H. Agarwal, S.K. Sen, Birth, Growth and Computation of Pi to ten trillion digits. Adv. Differ. Equat. 2013, 100 (2013) A.A. Al-Daffa’, The Muslim Contribution to Mathematics (Humanities Press, Atlantic Highlands, 1977) A.A. Al-Daffa’, J.J. Stroyls, Studies in the Exact Sciences in Medieval Islam (Wiley, New York, 1984) E.J. Aiton, Leibniz: A Biography (A. Hilger, Bristol, Boston, 1984) R.E. Allen, Greek Philosophy: Thales to Aristotle (The Free Press, New York, 1966) G.J. Allman, Greek Geometry from Thales to Euclid (Arno Press, New York, 1976) E.N. da C. Andrade, Sir Issac Newton, His Life and Work (Doubleday & Co., New York, 1954) W.S. Anglin, Mathematics: A Concise History and Philosophy (Springer, New York, 1994) W.S. Anglin, The Queen of Mathematics (Kluwer, Dordrecht, 1995) H.D. Anthony, Sir Isaac Newton (Abelard-Schuman, New York, 1960) H.G. Apostle, Aristotle’s Philosophy of Mathematics (The University of Chicago Press, Chicago, 1952) R.C. Archibald, Outline of the history of mathematics.Am. Math. Monthly 56 (1949) B. Artmann, Euclid: The Creation of Mathematics (Springer, New York, 1999) C.N. Srinivasa Ayyangar, The History of Ancient Indian Mathematics (World Press Private Ltd., Calcutta, 1967) A.K. Bag, Mathematics in Ancient and Medieval India (Chaukhambha Orientalia, Varanasi, 1979) W.W.R.
    [Show full text]