Understanding Ancient Indian Mathematics - the Hindu 2/9/14 3:18 PM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sripati: an Eleventh-Century Indian Mathematician
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HlSTORlA MATHEMATICA 12 (1985). 2.544 Sripati: An Eleventh-Century Indian Mathematician KRIPA NATH SINHA University of Kalyani, P.O. Kalyani, District Nadia, West Bengal, India Srlpati (fl. A.D. 1039-1056) is best known for his writings on astronomy, arithmetic, mensuration, and algebra. This article discusses Sripati’s arithmetic, the Ganitatilaka, as well as the arithmetical and algebraic chapters of the SiddhdntaSekhara. In addition to discussing the kinds of problems considered by Srlpati and the techniques he used to solve them, the article considers the sources upon which Sripati drew. A glossary of Indian treatises and technical terms is provided. o 1985 Academic PKSS. IOC. Srlpati (actif vers 1039-1056 ap. J.C.) est surtout connu pour ses Ccrits sur I’astronomie, I’arithmetique, le toise, et I’algebre. Dans cet article, nous abordons I’arithmetique de Sripati, le Ganitatilaka, de m&me que les chapitres arithmetiques et algebriques de son SiddhrintaSekh’ara. En plus d’aborder les types de problemes Ctudies par Sripati et les techniques qu’il a employees pour les resoudre, nous exminons aussi les sources auxquelles Srlpati fait appel. Un glossaire des trait& et des termes techniques indiens complete cet article. 0 1985 Academic Press, Inc. Sripati, der zwischen 1039 und 1056 wirkte, ist vor allem durch seine Schriften tiber Astronomie, Arithmetik, Mensuration und Algebra bekannt. In diesem Beitrag werden seine Arithmetik, die Gavitatilaka, und die arithmetischen und algebraischen Kapitel aus SiddhhtaSekhara behandelt. Neben der Art der Probleme, die Srlpati studierte, und den von ihm verwendeten Losungsmethoden werden such die von ihm benutzten Quellen be- trachtet. -
Notices of the American Mathematical Society June/July 2006
of the American Mathematical Society ... (I) , Ate._~ f.!.o~~Gffi·u. .4-e.e..~ ~~~- •i :/?I:(; $~/9/3, Honoring J ~ rt)d ~cLra-4/,:e~ o-n. /'~7 ~ ~<A at a Gift from fL ~ /i: $~ "'7/<J/3. .} -<.<>-a.-<> ~e.Lz?-1~ CL n.y.L;; ro'T>< 0 -<>-<~:4z_ I Kumbakonam li .d. ~ ~~d a. v#a.d--??">ovt<.·c.-6 ~~/f. t:JU- Lo,.,do-,......) ~a page 640 ~!! ?7?.-L ..(; ~7 Ca.-uM /3~~-d~ .Y~~:Li: ~·e.-l a:.--nd '?1.-d- p ~ .di.,r--·c/~ C(c£~r~~u . J~~~aq_ f< -e-.-.ol ~ ~ ~/IX~ ~ /~~ 4)r!'a.. /:~~c~ •.7~ The Millennium Grand Challenge .(/.) a..Lu.O<"'? ...0..0~ e--ne_.o.AA/T..C<.r~- /;;; '7?'E.G .£.rA-CLL~ ~ ·d ~ in Mathematics C>n.A..U-a.A-d ~~. J /"-L .h. ?n.~ ~?(!.,£ ~ ~ &..ct~ /U~ page 652 -~~r a-u..~~r/a.......<>l/.k> 0?-t- ~at o ~~ &~ -~·e.JL d ~~ o(!'/UJD/ J;I'J~~Lcr~~ 0 ??u£~ ifJ>JC.Qol J ~ ~ ~ -0-H·d~-<.() d Ld.orn.J,k, -F-'1-. ~- a-o a.rd· J-c~.<-r:~ rn-u-{-r·~ ~'rrx ~~/ ~-?naae ~~ a...-'XS.otA----o-n.<l C</.J.d:i. ~~~ ~cL.va- 7 ??.L<A) ~ - Ja/d ~~ ./1---J- d-.. ~if~ ~0:- ~oj'~ t1fd~u: - l + ~ _,. :~ _,. .~., -~- .. =- ~ ~ d.u. 7 ~'d . H J&."dIJ';;;::. cL. r ~·.d a..L- 0.-n(U. jz-o-cn-...l- o~- 4; ~ .«:... ~....£.~.:: a/.l~!T cLc.·£o.-4- ~ d.v. /-)-c~ a;- ~'>'T/JH'..,...~ ~ d~~ ~u ~ ~ a..t-4. l& foLk~ '{j ~~- e4 -7'~ -£T JZ~~c~ d.,_ .&~ o-n ~ -d YjtA:o ·C.LU~ ~or /)-<..,.,r &-. -
Mathematicians
MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus -
A Quartically Convergent Square Root Algorithm: an Exercise in Forensic Paleo-Mathematics
A Quartically Convergent Square Root Algorithm: An Exercise in Forensic Paleo-Mathematics David H Bailey, Lawrence Berkeley National Lab, USA DHB’s website: http://crd.lbl.gov/~dhbailey! Collaborator: Jonathan M. Borwein, University of Newcastle, Australia 1 A quartically convergent algorithm for Pi: Jon and Peter Borwein’s first “big” result In 1985, Jonathan and Peter Borwein published a “quartically convergent” algorithm for π. “Quartically convergent” means that each iteration approximately quadruples the number of correct digits (provided all iterations are performed with full precision): Set a0 = 6 - sqrt[2], and y0 = sqrt[2] - 1. Then iterate: 1 (1 y4)1/4 y = − − k k+1 1+(1 y4)1/4 − k a = a (1 + y )4 22k+3y (1 + y + y2 ) k+1 k k+1 − k+1 k+1 k+1 Then ak, converge quartically to 1/π. This algorithm, together with the Salamin-Brent scheme, has been employed in numerous computations of π. Both this and the Salamin-Brent scheme are based on the arithmetic-geometric mean and some ideas due to Gauss, but evidently he (nor anyone else until 1976) ever saw the connection to computation. Perhaps no one in the pre-computer age was accustomed to an “iterative” algorithm? Ref: J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity}, John Wiley, New York, 1987. 2 A quartically convergent algorithm for square roots I have found a quartically convergent algorithm for square roots in a little-known manuscript: · To compute the square root of q, let x0 be the initial approximation. -
Brahmagupta, Mathematician Par Excellence
GENERAL ARTICLE Brahmagupta, Mathematician Par Excellence C R Pranesachar Brahmagupta holds a unique position in the his- tory of Ancient Indian Mathematics. He con- tributed such elegant results to Geometry and Number Theory that today's mathematicians still marvel at their originality. His theorems leading to the calculation of the circumradius of a trian- gle and the lengths of the diagonals of a cyclic quadrilateral, construction of a rational cyclic C R Pranesachar is involved in training Indian quadrilateral and integer solutions to a single sec- teams for the International ond degree equation are certainly the hallmarks Mathematical Olympiads. of a genius. He also takes interest in solving problems for the After the Greeks' ascendancy to supremacy in mathe- American Mathematical matics (especially geometry) during the period 7th cen- Monthly and Crux tury BC to 2nd century AD, there was a sudden lull in Mathematicorum. mathematical and scienti¯c activity for the next millen- nium until the Renaissance in Europe. But mathematics and astronomy °ourished in the Asian continent partic- ularly in India and the Arab world. There was a contin- uous exchange of information between the two regions and later between Europe and the Arab world. The dec- imal representation of positive integers along with zero, a unique contribution of the Indian mind, travelled even- tually to the West, although there was some resistance and reluctance to accept it at the beginning. Brahmagupta, a most accomplished mathematician, liv- ed during this medieval period and was responsible for creating good mathematics in the form of geometrical theorems and number-theoretic results. -
General Index
General Index Italic page numbers refer to illustrations. Authors are listed in ical Index. Manuscripts, maps, and charts are usually listed by this index only when their ideas or works are discussed; full title and author; occasionally they are listed under the city and listings of works as cited in this volume are in the Bibliograph- institution in which they are held. CAbbas I, Shah, 47, 63, 65, 67, 409 on South Asian world maps, 393 and Kacba, 191 "Jahangir Embracing Shah (Abbas" Abywn (Abiyun) al-Batriq (Apion the in Kitab-i balJriye, 232-33, 278-79 (painting), 408, 410, 515 Patriarch), 26 in Kitab ~urat ai-arc!, 169 cAbd ai-Karim al-Mi~ri, 54, 65 Accuracy in Nuzhat al-mushtaq, 169 cAbd al-Rabman Efendi, 68 of Arabic measurements of length of on Piri Re)is's world map, 270, 271 cAbd al-Rabman ibn Burhan al-Maw~ili, 54 degree, 181 in Ptolemy's Geography, 169 cAbdolazlz ibn CAbdolgani el-Erzincani, 225 of Bharat Kala Bhavan globe, 397 al-Qazwlni's world maps, 144 Abdur Rahim, map by, 411, 412, 413 of al-BlrunI's calculation of Ghazna's on South Asian world maps, 393, 394, 400 Abraham ben Meir ibn Ezra, 60 longitude, 188 in view of world landmass as bird, 90-91 Abu, Mount, Rajasthan of al-BlrunI's celestial mapping, 37 in Walters Deniz atlast, pl.23 on Jain triptych, 460 of globes in paintings, 409 n.36 Agapius (Mabbub) religious map of, 482-83 of al-Idrisi's sectional maps, 163 Kitab al- ~nwan, 17 Abo al-cAbbas Abmad ibn Abi cAbdallah of Islamic celestial globes, 46-47 Agnese, Battista, 279, 280, 282, 282-83 Mu\:lammad of Kitab-i ba/Jriye, 231, 233 Agnicayana, 308-9, 309 Kitab al-durar wa-al-yawaqft fi 11m of map of north-central India, 421, 422 Agra, 378 n.145, 403, 436, 448, 476-77 al-ra~d wa-al-mawaqft (Book of of maps in Gentil's atlas of Mughal Agrawala, V. -
AN ACCOUNT of INDIAN ASTRONOMICAL HERITAGE from the 5Th CE to 12Th CE Astronomical Observation Is the Beginning of Scientific At
Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 705 ∼ 707, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.705 AN ACCOUNT OF INDIAN ASTRONOMICAL HERITAGE FROM THE 5th CE to 12th CE Somenath Chatterjee Sabitri Debi Institute of Technology (School of Astronomy) BANAPRASTHA, P.O. Khamargachi DT Hooghly PIN 712515 India E-mail: [email protected] (Received November 30, 2014; Reviced May 31, 2015; Aaccepted June 30, 2015) ABSTRACT Astronomical observation is the beginning of scientific attitudes in the history of mankind. According to Indian tradition, there existed 18 early astronomical texts (siddhantas) composed by Surya, Pitamaha and many others. Varahamihira compiled five astronomical texts in a book named panchasiddhantika, which is now the link between early and later siddhantas. Indian scholars had no practice of writing their own names in their works, so, it is very difficult to identify them. Aryabhata is the first name noticed, in the book Aryabhatiya. After this point most astronomers and astro-writers wrote their names in their works. In this paper I have tried to analyze the works of astronomers like Aryabhata, Varahamihira, Brah- magupta, Bhaskara I, Vateswara, Sripati and Bhaskaracharya in a modern context and to obtain an account of Indian astronomical knowledge. Aryabhata is the first Indian astronomer who stated that the rising and setting of the Sun, the Moon and other heavenly bodies was due to the relative motion of the Earth caused by the rotation of the Earth about its own axis. -
Indian Mathematics
Indian Mathemtics V. S. Varadarajan University of California, Los Angeles, CA, USA UCLA, March 3-5, 2008 Abstract In these two lectures I shall talk about some Indian mathe- maticians and their work. I have chosen two examples: one from the 7th century, Brahmagupta, and the other, Ra- manujan, from the 20th century. Both of these are very fascinating figures, and their histories illustrate various as- pects of mathematics in ancient and modern times. In a very real sense their works are still relevant to the mathe- matics of today. Some great ancient Indian figures of Science Varahamihira (505–587) Brahmagupta (598-670) Bhaskara II (1114–1185) The modern era Ramanujan, S (1887–1920) Raman, C. V (1888–1970) Mahalanobis, P. C (1893–1972) Harish-Chandra (1923–1983) Bhaskara represents the peak of mathematical and astro- nomical knowledge in the 12th century. He reached an un- derstanding of calculus, astronomy, the number systems, and solving equations, which were not to be achieved any- where else in the world for several centuries...(Wikipedia). Indian science languished after that, the British colonial occupation did not help, but in the 19th century there was a renaissance of arts and sciences, and Indian Science even- tually reached a level comparable to western science. BRAHMAGUPTA (598–670c) Some quotations of Brahmagupta As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the people if he proposes algebraic problems, and still more, if he solves them. Quoted in F Cajori, A History of Mathematics A person who can, within a year, solve x2 92y2 =1, is a mathematician. -
Bakhshali Manuscript
THE BAKHSHALI P 1' AN ANCIENT TREATISE OF INDIAN Alt I'I'I I N 4F,' EDITED BY Svami Satya Prakash Sarasvat I and 00 Usha,jyotishmati, M. Sc., D. Phil. Dr. Rataa Kumari Svadhyaya Sansthani ALLAHABAD. PUBLISHE S BY Dr. Ratn Kumari Svadhyaya Sansthana Vijnaua Parishad Buildings Maharshi Dayanand Marg Allahabad-211002 Phone : 54413 FIRST EDITION 1979 Price Rs. 50/-( £ 3.5 or $ 7 ) Printed at :- ARVIND PRINTERS 20-1), Bell Road, Allahabad, Phone Not 3711 CDr `-Patna umari Born 20-3- 19 12 Died 2-12-1964 PREFACE Dr. Ratna Kumari, M. A., D. Phil. was deeply interested in education, higher research and scholarship, and when she died in 1964, the Director of the Research Institute of Ancient Scientific Studies, Now Delhi, graciously agreed to publish in her commemo- ration a Series to be known as the "Dr. Raffia Kumari PubllcaNnu Series", and tinder this arrangement, the five volumes published were: Satapatha Brahmanain.Vol. I, 11 and III (1967, 1969, 19711): ltaudhayana Sulba Sutram (1968) and the Apastanrba Sulba Sutruun (1968).Itis to be regretted that in1971, Pundit Rain Swarnp Sharnta, the Director of the Institute died and shortly afterwards, the activities of the Institute came to a close.In 1971, from an endowment created by the relations of late Dr. Ratna Kurnari, Dr. Ratna Kumari Svadhyaya Sansthana, a research orgunicution for promotion of higher studiesamongstladies,wasostahll. shed at Allahabad, with Sri Anand Prakash, the younger son of 1)r. Ratna Kumari as the firstPresident.Svumi Satya Prukunlt (formerly, Prof. Dr. Satya Prakash)has authorisedDr.Ratna Kumari Svadhyaya Sansthana to publish several of his works, plirti. -
In How Many Days Will He Meet His Wife?
Journal of Humanistic Mathematics Volume 11 | Issue 1 January 2021 In How Many Days Will He Meet His Wife? Dipak Jadhav Govt. Boys Higher Secondary School, Anjad Distt. Barwani (M. P.) India Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Jadhav, D. "In How Many Days Will He Meet His Wife?," Journal of Humanistic Mathematics, Volume 11 Issue 1 (January 2021), pages 95-112. DOI: 10.5642/jhummath.202101.07 . Available at: https://scholarship.claremont.edu/jhm/vol11/iss1/7 ©2021 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. In How Many Days Will He Meet His Wife? Cover Page Footnote Except for a few changes this paper was presented as an invited talk in International Web-Conference on History of Mathematics, during December 20-22, 2020 organized by Indian Society for History of Mathematics, Delhi, India. This work is available in Journal of Humanistic Mathematics: https://scholarship.claremont.edu/jhm/vol11/iss1/7 In How Many Days Will He Meet His Wife? Dipak Jadhav Govt. -
Minutes of the Meeting of the Expert Committee Held on 14Th, 15Th,17Th and 18Th October, 2013 Under the Performing Arts Grants Scheme (PAGS)
No.F.10-01/2012-P.Arts (Pt.) Ministry of Culture P. Arts Section Minutes of the Meeting of the Expert Committee held on 14th, 15th,17th and 18th October, 2013 under the Performing Arts Grants Scheme (PAGS). The Expert Committee for the Performing Arts Grants Scheme (PAGS) met on 14th, 15th ,17thand 18th October, 2013 to consider renewal of salary grants to existing grantees and decide on the fresh applications received for salary and production grants under the Scheme, including review of certain past cases, as recommended in the earlier meeting. The meeting was chaired by Smt. Arvind Manjit Singh, Joint Secretary (Culture). A list of Expert members present in the meeting is annexed. 2. On the opening day of the meeting ie. 14th October, inaugurating the meeting, Sh. Sanjeev Mittal, Joint Secretary, introduced himself to the members of Expert Committee and while welcoming the members of the committee informed that the Ministry was putting its best efforts to promote, develop and protect culture of the country. As regards the Performing Arts Grants Scheme(earlier known as the Scheme of Financial Assistance to Professional Groups and Individuals Engaged for Specified Performing Arts Projects; Salary & Production Grants), it was apprised that despite severe financial constraints invoked by the Deptt. Of Expenditure the Ministry had ensured a provision of Rs.48 crores for the Repertory/Production Grants during the current financial year which was in fact higher than the last year’s budgetary provision. 3. Smt. Meena Balimane Sharma, Director, in her capacity as the Member-Secretary of the Expert Committee, thereafter, briefed the members about the salient features of various provisions of the relevant Scheme under which the proposals in question were required to be examined by them before giving their recommendations. -
Aryabhatiya with English Commentary
ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11.