Hericium Ramosum - Comb’S Tooth Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Hericium Ramosum - Comb’S Tooth Fungi 2005 No. 4 Hericium ramosum - comb’s tooth fungi This year we have been featuring the finalists of the “Pick a Wild Mushroom, Alberta!” project. Although the winner was the Leccinum boreale all the finalists are excellent edibles which show the variety of mushroom shapes common in Alberta. If all you learned were these three finalists and the ever popular morel you would have a useable harvest every year. The taste and medicinal qualities of each is very different so you not only have variety in shape and location but in taste and value as well. If you learn about various edible species and hunt for harvest you will become a mycophagist. Although you won’t need four years of university to get this designation, you will find that over the lifetime of learning about and harvesting mushroom you will put in more time than the average Hericium ramosum is a delicately flavoured fungi that is easily recognized and has medicinal university student and probably properties as well. Photo courtesy: Loretta Puckrin. enjoy it much more. edible as well. With their white moments of rapt viewing before the Although often shy and hard fruiting bodies against the dark picking begins. People to find, this delicious fungus family trunks of trees, this fungus is knowledgeable in the medicinal is a favourite of new mushroom easily spotted and often produces pickers as all the ‘look alikes’ are (The Hericium ...continued on page 3) FEATURE PRESIDENT’S PAST EVENTS NAMA FORAY & UPCOMING MUSHROOM MESSAGE Lambert Creek ... pg 5 CONFERENCE EVENTS The Hericium It has been a ... pg 9 ... pg 10 ramosum busy and Alberta Foray ... pg 6 & 7 ... pg 1 MEMBERSHIP successful year MEDICINAL Sorrentino’s Mushroom .. pg 4 MUSHROOMS RECIPE ... pg 2 Walk & Dinner ... pg 9 WHAT A ... pg 11 & 12 ... pg 10 DIFFERENCE A YEAR MAKES ... pg 8 www.wildmushrooms.ws Winter - 2005 No. 4 1 direction. So far, our new web site 2005 Executive President’s Message has been visited well over 1,350 times since its mid-July launch Edmonton Mycological Society date. Our annual “City of Champignons” Mushroom Expo- President: Markus Thormann sition in early August once again (780) 432-1392 was a huge success. Recently, I [email protected] received a phone call from a Devonian Botanic Garden staff Past President: Peter Arabchuk member, thanking us for organizing (780) 479-6630 this event and holding it on their [email protected] grounds. It is tremendously popular with the visitors to the Botanic 1st Vice President: Mike Schulz Garden, I was informed. In early (780) 939-2106 September, our first ever Alberta [email protected] Foray near Rocky Mountain House yielded an astounding richness of Membership: Alan Fleming fungi. The data have not all been (780) 463-8540 tallied yet, but in two short days, we [email protected] collected about 500 different species of fungi (!!!). Many of them have Treasurer: Loretta Puckrin not been identified to either genus (780) 458-9889 or species yet and await further [email protected] processing in the near future. This has been an event that was very Secretary: Melanie Fjoser well received by all in attendance. I Markus Thormann, president of the (780) 987-4412 look forward to the next Alberta [email protected] Edmonton Mycological Society Foray! I am sure that 2006 will be an Another mushroom season is Foray Coordinator: Bill Richards equally, if not more successful year. closing slowly, and it is time to (780) 998-3507 We can look forward to finishing formulate some final thoughts [email protected] about our past year’s activities. The (hopefully) our “Pick a Wild Mushroom, Alberta” campaign, the EMS elected a new executive in Program Director: Martin Osis April and began to develop a North American Mycological Association foray will take place (780) 987-4412 program for 2005 shortly thereafter. [email protected] It has been an excellent near Hinton in August, we’ll mushrooming year, which is very continue to expand our digital evident in the species lists published fungus image collection, and Newsletter Editor: Geri Kolacz in this year’s newsletters. We went perhaps take the first small steps (780) 475-7927 on 11 forays in the foothills, towards a database of fungi in [email protected] southern boreal forest, urban Alberta. I am very excited about centres, and the aspen parkland and these projects. Mailing: Diane Murray found a myriad of different I want to thank each member basidiomycetes, ascomycetes, jelly of the EMS executive and various fungi, and slime molds. Many of internal committees for their help, these fungi were edible and have advice, and countless hours of ended up in various dishes volunteer time throughout the first Directors-at-large: throughout the year or were dried, year of my tenure as president. Pieter Van Der Schoot frozen, or pickled for later Last but not least, without our (780) 696-2436 enjoyment. members from across Alberta, the Robert Rogers Our regular monthly meetings EMS would not be what it is today. (780) 433-7882 were highlighted by a number of I thank all of you for making the excellent presentations on digital Edmonton Mycological Society one ○○○○○○○○○○○○○○○○○○○ photography, common and obscure of the best natural history clubs in MAILING ADDRESS: edible mushrooms, and how to go Alberta. My hat goes off to all of about identifying all those fungi Edmonton Mycological Society you! 1921, 10405 Jasper Avenue that grow throughout the growing I wish you all a festive Standard Life Building season. The EMS web site and the upcoming holiday season filled with Edmonton, AB T5J 3S2 Spore Print were redesigned in lots of mushroom dinners. 2005, and both look stellar! A true WEBSITE ADDRESS: testament that the EMS is maturing Cheers and all the best for 2006. www.wildmushrooms.ws and progressing in the right See you all next year. 2 Winter- 2005 No. 4 www.wildmushrooms.ws The Hericium (continued from page 1) uses of mushrooms claim that this family enhances the immune system and helps to prevent cancers of the stomach, esophagus and skin. The genus Hericium has three edible species commonly called the Conifer Coral (Hericium abietis), the Comb and the Lion’s mane (or Old Man’s Beard)(Hericium erinaceus). The major differences between these species is the number of branches and the length of the spines or ‘teeth’ on the specimen. They are all white in colour but differ as to what type of trees and the amount of decay required for them to grow and fruit. The Conifer Coral, as the name suggests, grow primarily on fir and Douglas-fir trees which The Hericium family contains a number of species. The Hericium ramosum is one that have died. The specimens are most can be found in our area. Photo courtesy: John Thompson. common in the Pacific Northwest and should not be expected to be rather than in groups. When the cooked with strongly flavoured sighted in Alberta. Large white mushroom starts to turn foods, Hericium ramosum ends up specimens can weigh over 100 kg. yellow it should be left for another contributing more fibre than taste. So you might want to consider a year as it is too old to eat. Of all Some EMS members prefer using trip out west during its growing the Hericium this is the most Hericium ramosum with scrambled season. common variety in North America eggs as a morning dish to maximize The Lion’s Mane variety is so and can be found almost anywhere the flavour and fry it with minimal dense with branches and in this continent. seasoning which otherwise might teeth that you can’t see The mask the mushroom taste. Other the branches until Regardless season for members use this mushroom with you cut into your Hericium rice as both the flavours are light. sample. This has of what it is called, ramosum The names of mushrooms are the longest spines by classification or is late always changing as scientists learn of the three summer more about the various species. varieties and common name, it is through Hericium was once classified as prefers the wounds a delicious edible. fall but it is Hydnum coralloides and placed in of living hardwood very fussy the same family as the Hedgehog trees for its growth. about climatic mushroom due to the spines found The Hericium ramosum conditions and can on both species. The word is a more delicate variety with skip several years before ‘hericium’ means hedgehog in evident branches and fine shorter appearing. Once a spot is found latin. Now Hericium is a genus ‘icicles’ or ‘teeth’ decending from keep visiting it every year as this unto itself but this may change the branches. The teeth are fairly species is likely to re-fruit in the with the DNA typing of specimens evenly distributed along the same area, if not on the same tree. which often suggests other branches and normally vary from This species of mushroom has commonalities that looks alone 3-10 mm in length. This variety a very light delicate flavour and don’t show. prefers growing on older felled logs should be cooked with other foods and stumps in solitary clumps that have mild tastes. When Loretta Puckrin www.wildmushrooms.ws Winter - 2005 No. 4 3 From the pen of our Membership Coordinator I’m still shaking my head. Just Most EMS members already O monthly meetings during the a year ago I joined the EMS know the benefits of being part of season with guest speakers on (Edmonton Mycological Society) the Club. However I will rehash mushroom related topics.
Recommended publications
  • Compounds for Dementia from Hericium Erinaceum
    Drugs of the Future 2008, 33(2): 149-155 © 2008 Prous Science, S.A.U. or its licensors. All rights reserved. CCC: 0377-8282/2008 DOI: 10.1358/dof.2008.033.02.1173290 Review Article Compounds for dementia from Hericium erinaceum Hirokazu Kawagishi1,2,*, Cun Zhuang3 1Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; 2Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan; 3Bio Research Institute, New Jersey, USA. *Correspondence: [email protected] CONTENTS protection against neuronal cell death caused by oxida- tive or endoplasmic reticulum (ER) stress (8-10); 3) anti- Abstract . tumor activity (11); 4) anti-HIV activity (12); 5) immune Introduction . enhancement (13-15); 6) hemagglutinating activity (16, NGF and AD . 17); 7) cytotoxicity against cancer cells (18-20); 8) antimi- Hericenones . crobial activity (21-23); 9) hypoglycemic effects (24); and Erinacines . Bioactivities of hericenones and erinacines . 10) hypolipidemic effects (25). Aβ and AD . Alzheimer’s disease (AD) is the most common form of DLPE . dementia, causing memory loss, language deterioration, Bioactivities of DLPE . impaired ability to manipulate visual information mentally, Preliminary clinical trials . poor judgement, confusion, restlessness and mood Conclusions . swings due to progressive neurodegeneration. It eventu- References . ally leads to the loss of cognition, personality and func- tion. It has been reported that the susceptibility to AD is closely related to a number of factors, including age, Abstract genes, lack of NGF and excessive accumulation of Aβ. Conventional treatments for AD only address the symp- Our group has been conducting a search for com- toms, but there is presently no cure.
    [Show full text]
  • COMMON Edible Mushrooms
    Plate 1. A. Coprinus micaceus (Mica, or Inky, Cap). B. Coprinus comatus (Shaggymane). C. Agaricus campestris (Field Mushroom). D. Calvatia calvatia (Carved Puffball). All edible. COMMON Edible Mushrooms by Clyde M. Christensen Professor of Plant Pathology University of Minnesota THE UNIVERSITY OF MINNESOTA PRESS Minneapolis © Copyright 1943 by the UNIVERSITY OF MINNESOTA © Copyright renewed 1970 by Clyde M. Christensen All rights reserved. No part of this book may be reproduced in any form without the writ- ten permission of the publisher. Permission is hereby granted to reviewers to quote brief passages, in a review to be printed in a maga- zine or newspaper. Printed at Lund Press, Minneapolis SIXTH PRINTING 1972 ISBN: 0-8166-0509-2 Table of Contents ABOUT MUSHROOMS 3 How and Where They Grow, 6. Mushrooms Edible and Poi- sonous, 9. How to Identify Them, 12. Gathering Them, 14. THE FOOLPROOF FOUR 18 Morels, or Sponge Mushrooms, 18. Puff balls, 19. Sulphur Shelf Mushrooms, or Sulphur Polypores, 21. Shaggyrnanes, 22. Mushrooms with Gills WHITE SPORE PRINT 27 GENUS Amanita: Amanita phalloides (Death Cap), 28. A. verna, 31. A. muscaria (Fly Agaric), 31. A. russuloides, 33. GENUS Amanitopsis: Amanitopsis vaginata, 35. GENUS Armillaria: Armillaria mellea (Honey, or Shoestring, Fun- gus), 35. GENUS Cantharellus: Cantharellus aurantiacus, 39. C. cibarius, 39. GENUS Clitocybe: Clitocybe illudens (Jack-o'-Lantern), 41. C. laccata, 43. GENUS Collybia: Collybia confluens, 44. C. platyphylla (Broad- gilled Collybia), 44. C. radicata (Rooted Collybia), 46. C. velu- tipes (Velvet-stemmed Collybia), 46. GENUS Lactarius: Lactarius cilicioides, 49. L. deliciosus, 49. L. sub- dulcis, 51. GENUS Hypomyces: Hypomyces lactifluorum, 52.
    [Show full text]
  • Coco Lumber Sawdust
    MushroomPart II. Oyster Growers Mushrooms’ Handbook 1 Chapter 5. Substrate 91 Oyster Mushroom Cultivation Part II. Oyster Mushrooms Chapter 5 Substrate COCO LUMBER SAWDUST J. Christopher D. Custodio Bataan State College, the Philippines Oyster Mushrooms (Pleurotus spp.) are saprophytic as they obtain there nutrients by decomposing various agricultural by-products. This mushroom has been cultivated worldwide because of its taste and low maintenance technology. There are different substrates that have already been identified that can be utilized for the cultivation of oyster mushroom. The possible substrates include rice straw, coffee pulps, sawdust, and even paper. Most of these are types of low-value lignocellulosic wastes that are primarily derived from agricultural practices or the agro-industry. (J.A. Buswell et. al., 1996) The bioconversion of these wastes is one reason why the cultivation of edible mushrooms is an appropriate practice for a society that depends on its agriculture. In the early 1990s, ‘coco lumber’ was given a great attention in the province as a substitute for hardwood. Sawmills producing lumber from coconut trees bloomed in reaction to the increasing demand for this low cost constructional material. Though beginners in mushroom cultivation are usually persuaded not to use sawdust from softwoods, sawdust from coco lumber (Fig. 1) is another possible substrate for P. ostreatus and has shown great results. Growers living near a coco lumber sawmill can make use of this waste product in order to start their own cultivation of oyster mushroom species. Figure 1. Coco lumber sawdust Coco Lumber Sawdust as a Substrate of Oyster Mushroom Oyster mushroom is one example of edible mushrooms that can utilize lignocellulosic materials as a substrate.
    [Show full text]
  • Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 13–870/2014/16–3–489–497 http://www.fspublishers.org Full Length Article Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan Samina Sarwar * and Abdul Nasir Khalid Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54950, Pakistan *For correspondence: [email protected] Abstract Suillus (Boletales; Basidiomycota) is an ectomycorrhizal genus, generally associated with Pinaceae. Coniferous forests of Pakistan are rich in mycodiversity and Suillus species are found as early appearing fungi in the vicinity of conifers. This study reports the diversity of Suillus collected during a period of three (3) years (2008-2011). From 32 basidiomata of Suillus collected, 12 species of this genus were identified. These basidiomata were characterized morphologically, and phylogenetically by amplifying and sequencing the ITS region of rDNA. © 2014 Friends Science Publishers Keywords: Moist temperate forests; PCR; rDNA; Ectomycorrhizae Introduction adequate temperature make the environment suitable for the growth of mushrooms in these forests. Suillus (Suillaceae, Basidiomycota, Boletales ) forms This paper described the diversity of Suillus (Boletes, ectomycorrhizal associations mostly with members of the Fungi) with the help of the anatomical, morphological and Pinaceae and is characterized by having slimy caps, genetic analyses as little knowledge is available from forests glandular dots on the stipe, large pore openings that are in Pakistan. often arranged radially and a partial veil that leaves a ring or tissue hanging from the cap margin (Kuo, 2004). This genus Materials and Methods is mostly distributed in northern temperate locations, although some species have been reported in the southern Sporocarp Collection hemisphere as well (Kirk et al ., 2008).
    [Show full text]
  • Hericium Erinaceus: Erinacine A
    Hericium Erinaceus: Erinacine A A Senior Project Presented to Faculty of the Agricultural Education and Communications Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Bachelor of Science By Ventura Villanueva June 2020 © Ventura Villanueva 1 Table of Contents Introduction .................................................................................................................................... 1 Mushroom Basics .................................................................................................................................... 1 Hericium erinaceus (Lion’s Mane) ............................................................................................... 1 Erinacines- component found in Lion’s Mane ..................................................................................... 1 What Lion’s Mane products are found in the market? ...................................................................... 1 Antioxidant Components ....................................................................................................................... 2 Nerve Growth Factors (NGF) ................................................................................................................ 2 Prolonging Life ....................................................................................................................................... 3 Possible Complications ..........................................................................................................................
    [Show full text]
  • Wild Mushroom Harvester Registration Form
    625 Robert Street North, Saint Paul, MN 55155-2538 www.mda.state.mn.us Food and Feed Safety Division Wild Mushroom Harvester Registration The data on this form will be used to process your application for the Minnesota Department of Agriculture’s Wild Mushroom Harvester registration. It is illegal for unregistered wild mushroom harvesters to sell foraged mushrooms to food establishments in Minnesota. During the period your application is being processed, all information provided except your name and address will be private data accessible only to you, MDA staff with a valid work assignment, law enforcement, the state and legislative auditors, and to anyone who has your consent or is named in a valid court order. If your application is approved, the information provided on this application will be available to anyone who asks for it and will be displayed on our online wild mushroom forager database. Items which have a * are required, your application cannot be processed without them. First Name* Last Name* Food License/Registration Number (if any) Phone* Address* City* State* Zip* Which species are you registering for? Please select all that apply. Black Trumpet (Carterellus cornucopiodes and fallax) Lion’s Mane (Hericium erinaceus) Porcini (Boletus edulis complex) Hedgehog (Hydnum repandum complex) Chanterelles (Cantharellus species) Lobster (Hypomyces lactifluorum) Yellow Foot (Craterellus tubaeformis) True Morel (Morchella species) Cloud (Entoloma arbortivum) Oyster (Pleurotus ostreatus, populinus, and pulmonarius) Giant Puffball (Calvatia gigantea) Sulpher Shelf (Laetiporus sulphereus and cincinnatus) Maitake (Grifola frondosa) Other Species (please specify): Bear’s Tooth (Hericium americanum) Coral Tooth (Hericium coralloides) Include a copy of the document(s) issued by an accredited college or university or a mycological society certifying that the mushroom harvester has successfully completed a wild mushroom identification course.
    [Show full text]
  • Topic 3. Diet Digestibilities
    TOPIC 3. DIET DIGESTIBILITIES General trends in diet diges tibili ties follow the general trends in the cell structures of the plants. The stages and parts of plant growth that have thinner and less lignified cell walls are, for the most part, more digestible than those stages and parts with more lignified cell walls. Cell chemistry also affects digestibility, however. Tannins, for example, act as inhibitors of digestion. Changes in cell structure occur as plant phenology changes over the growing season. Emerging, growing tissue cannot have rigid cell walls, for new tissue is being added as cells increase in both number and size. When the numbers and sizes of cells in plant tissue have both reached maximum, cell maturation occurs and cell walls increase in thickness and rigidity. The cells in stems become very rigid and serve as supporting tissue. Cells in leaf tissue mature, become decadent, and the leaf falls to the ground. Flower petals mature, wither, and fall. Functional changes in different plant parts are accompanied by structural changes in the cells, and these changes affect nutritive relationships between animal and range. The concepts underlying relationships between cell structure and digestibility permit one to generalize on seasonal variations in diet digestibility. Consumption of decadent lignified dormant forage results in stable diet digestibilities. As the growing season progresses, diet digestibilities increase as new growth makes up an increasing proportion of the diet. As the growing season progresses and plants mature, diet digestibilities begin to drop until they reach the annual low when only de­ cadent lignified forage is available again.
    [Show full text]
  • G. Gulden & E.W. Hanssen Distribution and Ecology of Stipitate Hydnaceous Fungi in Norway, with Special Reference to The
    DOI: 10.2478/som-1992-0001 sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 sommerfeltia~ J is owned and edited by the Botanical Garden and Museum, University of Oslo. SOMMERFELTIA is named in honour of the eminent Norwegian botanist and clergyman S0ren Christian Sommerfelt (1794-1838). The generic name Sommerfeltia has been used in (1) the lichens by Florke 1827, now Solorina, (2) Fabaceae by Schumacher 1827, now Drepanocarpus, and (3) Asteraceae by Lessing 1832, nom. cons. SOMMERFELTIA is a series of monographs in plant taxonomy, phytogeo­ graphy, phytosociology, plant ecology, plant morphology, and evolutionary botany. Most papers are by Norwegian authors. Authors not on the staff of the Botanical Garden and Museum in Oslo pay a page charge of NOK 30.00. SOMMERFEL TIA appears at irregular intervals, normally one article per volume. Editor: Rune Halvorsen 0kland. Editorial Board: Scientific staff of the Botanical Garden and Museum. Address: SOMMERFELTIA, Botanical Garden and Museum, University of Oslo, Trondheimsveien 23B, N-0562 Oslo 5, Norway. Order: On a standing order (payment on receipt of each volume) SOMMER­ FELTIA is supplied at 30 % discount. Separate volumes are supplied at the prices indicated on back cover. sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 ISBN 82-7420-014-4 ISSN 0800-6865 Gulden, G. and Hanssen, E.W. 1992. Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Isolation, Propagation and Rapid Molecular Detection
    University of Alberta Enhanced Revegetation and Reclamation of Oil Sand Disturbed Land Using Mycorrhizae. By Nnenna Esther Onwuchekwa A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science In Land Reclamation and Remediation Department of Renewable Resources © Nnenna Esther Onwuchekwa Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-90260-8 Our file Notre référence ISBN: 978-0-494-90260-8 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque
    [Show full text]
  • Research Article Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 346508, 12 pages http://dx.doi.org/10.1155/2015/346508 Research Article Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species S. K. Sharma1 and N. Gautam2 1 Department of Plant Pathology, CSK, Himachal Pradesh Agriculture University, Palampur 176 062, India 2Centre for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda 151 001, India Correspondence should be addressed to N. Gautam; [email protected] Received 8 May 2015; Accepted 11 June 2015 Academic Editor: Miroslav Pohanka Copyright © 2015 S. K. Sharma and N. Gautam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the peopleof northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]