Chapter 2 Literature Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum -
Acceleration of Hericium Erinaceum Mycelial Growth in Submerged Culture Using Yogurt Whey As an Alternative Nitrogen Source
Advances in Bioscience and Biotechnology, 2012, 3, 828-832 ABB http://dx.doi.org/10.4236/abb.2012.37103 Published Online November 2012 (http://www.SciRP.org/journal/abb/) Acceleration of Hericium erinaceum mycelial growth in submerged culture using yogurt whey as an alternative nitrogen source Chikako Asada, Ryosuke Okumura, Chizuru Sasaki, Yoshitoshi Nakamura* Department of Life System, Institute of Technology and Science, The University of Tokushima, Tokushima, Japan Email: *[email protected] Received 3 August 2012; revised 11 September 2012; accepted 19 October 2012 ABSTRACT tivities, including cytotoxic effects against HeLa cells, promotion of the synthesis of nerve growth factor (NGF), The effects of various carbon sources and their initial and inhibition of pollen germination [3]. Cultivation of concentrations on mycelia production by Hericium basidiomycetes is complicated because the fruiting bod- erinaceum were investigated by determining the dry ies require finely-tuned conditions of light intensity, cell weight (DCW) and β-glucan content of mycelia in temperature, and humidity, and are more complex than submerged culture. Glucose and xylose were superior the fungal mycelia. Therefore, a rapid and efficient carbon sources for promoting mycelial growth re- sulting in mycelial concentrations of 3.99 g/L and 4.01 method for producing compounds from fungal mycelia g/L, respectively; glucose was the best carbon source is desired. On the other hand, whey is a by-product of in terms of productivity (0.44 g/L/day). Experiments the yogurt or cheese-making process and contains pro- were also performed using yogurt whey as an alter- teins, vitamins, minerals, and some sources of carbon. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Patterns of Hericium Coralloides Growth with Competitive Fungi
CZECH MYCOLOGY 71(1): 49–63, MAY 22, 2019 (ONLINE VERSION, ISSN 1805-1421) Patterns of Hericium coralloides growth with competitive fungi 1 2 3 MARIIA V. PASAILIUK *, MARYNA M. SUKHOMLYN ,ANDRII P. G RYGANSKYI 1 Hutsulshchyna National Nature Park, 84 Druzhba St., UA-78600, Kosiv, Ukraine; [email protected] 2 Department of Plant Biology, Institute of Biology and Medicine, Educational and Scientific Center of Taras Shevchenko National University of Kyiv, 2 Hlushkov Ave, UA-03127 Kyiv, Ukraine 3 LF Lambert Spawn Co., 1507 Valley Rd, PA 19320, Coatesville, USA *corresponding author Pasailiuk M.V., Sukhomlyn M.M., Gryganskyi A.P. (2019): Patterns of Hericium coralloides growth with competitive fungi. – Czech Mycol. 71(1): 49–63. Growth and morphological patterns of cultures were examined for two strains of Hericium coralloides during competitive colonisation of different nutrient media. The nutrient chemical com- position of the medium was found to play an important role in the manifestation of antagonistic po- tencies of cultures. On the nutrient-poor Czapek medium with cellulose, radial growth of the mono- culture was very slow. However, in triple confrontation cultures, the rate of substrate colonisation in- creased, and a positive effect on H. coralloides growth was observed. On all the examined media, Fomes fomentarius was consistently antagonistic to H. coralloides. The less suitable the medium for H. coralloides growth, the greater inhibitory effect was observed, but only in the combination of H. coralloides and F. fomentarius. This effect was observed for both strains of Hericium. Schizo- phyllum commune displayed both an antagonistic and a stimulating influence on H. -
Pseudomerulius Montanus
Excerpts from Crusts & Jells Descriptions and reports of resupinate http://www.aphyllo.net Aphyllophorales and Heterobasidiomycetes 27th April, 2016 № 8 Pseudomerulius montanus Figures 1–7 Merulius montanus Burt 1917 [1 : 354] ≡ Leucogyrophana montana (Burt) Domanski 1975 [2 : 57] ≡ Serpula montana (Burt) Zmitr. 2001 [4 : 83] ≡ Pseudomerulius montanus (Burt) Kotir., K.H. Larss. & Kulju 2011 [3 : 45] Basidiome effused, adherent to separable, watery ceraceous to membra- naceous, about 1–1.5 mm thick. Hymenophore when fresh more or less membranaceous, folded, me- rulioid, continuous, separable from (context and) subiculum, up to 0.2 mm thick, variable in colour: parts pale beige to rosy, brownish or lilac brown; parts yellow to light orange; when dry becoming smooth, brittle and cracked, ochraceous to brown or dark lilac brown. Context soft, watery ceraceous, on drying becoming fragile and cottony and visible in cracks of the hymenium, 0.4–1 mm thick, whitish to pale chamois. Subiculum as a rather distinct layer of more or less compactly arranged hyphae running side by side, membranaceous, fibrous, sometimes de- tached from substrate when dry, up to 0.2 mm thick, olive yellow to ochraceous or brown. Margin determinate, sterile, finely fibrillose, olive yellow to ochraceous, soon thickening, normally with a narrow whitish band between edge and developed hymenium. Hyphal system monomitic; all hyphae with fibulate primary septa. Subhymenial ones strongly branched, compactly arranged, 2–3 µm, thin- walled, hyaline. Context hyphae infrequently branched, 2–5 µm, often ampullate at the septa and with large and ansiform clamps, thin-walled, mostly hyaline. Subicular hyphae infrequently branched, 2–6 (12) µm broad, often ampullate at the septa and with large and ansiform clamps, with thin or thickening wall, hyaline to yellowish; sometimes thin (1–2 µm) hyphae, branched and mostly unseptated hyphae are present. -
Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity
Biodiversity and Coarse woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA - October 18-20,1993 Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workhop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA October 18-20,1993 Editors: James W. McMinn, USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, and D.A. Crossley, Jr., University of Georgia, Athens, GA Sponsored by: U.S. Department of Energy, Savannah River Site, and the USDA Forest Service, Savannah River Forest Station, Biodiversity Program, Aiken, SC Conducted by: USDA Forest Service, Southem Research Station, Asheville, NC, and University of Georgia, Institute of Ecology, Athens, GA Preface James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in The effects of CWD on biodiversity depend upon the management of forest ecosystems. The implied harvesting variables, distribution, and dynamics. This objective is the conservation of a full complement of native proceedings addresses the current state of knowledge about species and communities within the forest ecosystem. the influences of CWD on the biodiversity of various Effective implementation of conservation measures will groups of biota. Research priorities are identified for future require a broader knowledge of the dimensions of studies that should provide a basis for the conservation of biodiversity, the contributions of various ecosystem biodiversity when interacting with appropriate management components to those dimensions, and the impact of techniques. management practices. We thank John Blake, USDA Forest Service, Savannah In a workshop held in Athens, GA, October 18-20, 1993, River Forest Station, for encouragement and support we focused on an ecosystem component, coarse woody throughout the workshop process. -
Red List of Fungi for Great Britain: Bankeraceae, Cantharellaceae
Red List of Fungi for Great Britain: Bankeraceae, Cantharellaceae, Geastraceae, Hericiaceae and selected genera of Agaricaceae (Battarrea, Bovista, Lycoperdon & Tulostoma) and Fomitopsidaceae (Piptoporus) Conservation assessments based on national database records, fruit body morphology and DNA barcoding with comments on the 2015 assessments of Bailey et al. Justin H. Smith†, Laura M. Suz* & A. Martyn Ainsworth* 18 April 2016 † Deceased 3rd March 2014. (13 Baden Road, Redfield, Bristol BS5 9QE) * Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB Contents 1. Foreword............................................................................................................................ 3 2. Background and Introduction to this Review .................................................................... 4 2.1. Taxonomic scope and nomenclature ......................................................................... 4 2.2. Data sources and preparation ..................................................................................... 5 3. Methods ............................................................................................................................. 7 3.1. Rationale .................................................................................................................... 7 3.2. Application of IUCN Criterion D (very small or restricted populations) .................. 9 4. Results: summary of conservation assessments .............................................................. 16 5. Results: -
Hericium Ramosum - Comb’S Tooth Fungi
2005 No. 4 Hericium ramosum - comb’s tooth fungi This year we have been featuring the finalists of the “Pick a Wild Mushroom, Alberta!” project. Although the winner was the Leccinum boreale all the finalists are excellent edibles which show the variety of mushroom shapes common in Alberta. If all you learned were these three finalists and the ever popular morel you would have a useable harvest every year. The taste and medicinal qualities of each is very different so you not only have variety in shape and location but in taste and value as well. If you learn about various edible species and hunt for harvest you will become a mycophagist. Although you won’t need four years of university to get this designation, you will find that over the lifetime of learning about and harvesting mushroom you will put in more time than the average Hericium ramosum is a delicately flavoured fungi that is easily recognized and has medicinal university student and probably properties as well. Photo courtesy: Loretta Puckrin. enjoy it much more. edible as well. With their white moments of rapt viewing before the Although often shy and hard fruiting bodies against the dark picking begins. People to find, this delicious fungus family trunks of trees, this fungus is knowledgeable in the medicinal is a favourite of new mushroom easily spotted and often produces pickers as all the ‘look alikes’ are (The Hericium ...continued on page 3) FEATURE PRESIDENT’S PAST EVENTS NAMA FORAY & UPCOMING MUSHROOM MESSAGE Lambert Creek ... pg 5 CONFERENCE EVENTS The Hericium It has been a .. -
Mushrooming Be Advised That This Is a Pastime Where Impatience Is Not Your Friend
by Michael Hopping IMPATIENCE IS INHERENT TO THE HUMAN CONDITION. Who doesn’t want to skip over the blah, blah, blah and get on with things? Okay, let’s do that. If you’re new to mushrooming be advised that this is a pastime where impatience is not your friend. And now, back to our regular programming. Imagine a nature scene. Is it dominated by plants and animals? Ordinarily, they are the most obvious creatures around. The fungi that also surround us tend to be invisible. Exceptions include the reproductive acts we call mushrooms. Those are staged by thready fungal networks, mycelia, living underground, in wood or on decaying matter. The “roots” sometimes seen at the base of mushrooms are links between the fruiting body and parent mycelium. Think of mushrooms as apples and the attached threads as multiple stems. Mushrooms can be picked, if done responsibly, without endangering the creatures that produce them. But fungi aren’t plants. A mycelium, like an animal, must obtain the sugar needed to power its cellular engines from outside sources. Some species partner with plants—the payoff for the plant being water and minerals courtesy of fungal extensions on its root system. Others fungi are parasites. Still others recycle dead material. The largest single organism on Earth may be a mycelium of Armillaria solidipes, a parasitic type of honey mushroom. This wispy monster occupies 3.4 square miles in the Blue Mountains of Oregon; its age is estimated at 2400 years. Mushroom cultivators are attuned to the health and behavior of the mycelia they farm. -
The Genus Gloeodontia in North America
April 1976 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN 28(1): 16-31 FOREST PRODUCTS LABORATORY (Madison. Wis. 53705) FOREST SERVICE. U. S. DEPARTMENT OF AGRICULTURE Approved Technical Article THE GENUS GLOEODONTIA IN NORTH AMERICA HAROLD H. BURDSALL, JR. AND FRANCES F. LOMBARD Center for Forest Mycology Research, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, Madison, Wisconsin 53705 The genus Gloeodontia was erected by Boidin (1966) to accommodate Irpex discolor Berk. & Curt. (=Odontia eriozona Bres.). He placed the genus in the family Auriscalpiaceae because basidiocarps ofG. discolor (Berk. & Curt.) Boidin possess a dimitic hyphal system, gloeocystidia that become blue to black in sulfuric benzaldehyde, and amyloid minutely verrucose basidiospores. The family Hericiaceae was indicated to be an inappropriate family for Gloeodontia because the hyphal system in members of the Hericiaceae are monomitic and the gloeocystidia do not become blue or black in sulfuric benzaldehyde. Members of this family do, however, possess amyloid minutely verrucose basidiospores, and the family is considered closely related to the Auriscalpiaceae. Gloeodontia has remained monotypic but Gilbertson (197 1, p. 293) indicated doubt that a similar taxon found in the intermountain region of the western United States was actually conspecific with G. discolor. One of us (HHB) has also collected this taxon in Montana. Our studies of the basidiocarps, cultures, and mat ing system indicate that the taxon is an undescribed species in the genus Gloeodontia. In this treatment, both species of the genus will be described and illustrated for basidiocarp, cultural, and genetic characters. Because of a departure from the published generic characters by the new species, the genus Gloeodontia is emended to include the characters of the new species. -
How Understand Cryptogams? the Development of Research Methods and Their Impact on the Knowledge of Cryptogams
How understand cryptogams? The development of research methods and their impact on the knowledge of cryptogams A tribute to Josef POELT Franz OBERWINKLER*1 Abstract: This article intends to shed light on increasing knowledge of cryptogam biology over 400 years of research. The progress in biological disciplines involved, is tightly bound to new research methods. Starting with recognizing algae, mosses, ferns, and fungi in the field, collecting and identifying them was a consequence. It required classifi- cations for handling the rapidly growing number of species. Soon, it became apparent that lightmicrocopy was an indispensable method of all kinds of cryptogam studies, especially for elucidating their cellular constructions, an essential basis for studying their functions. Electron microscopy broke down the limitations of magnification and resolution in light microscopy. The detection and understanding of subcellular structures revolutionized bio- logy as such, and that of cryptogams in particular. Now, physiological studies with chemi- cal and physicochemical methods of earlier days could be coupled more and more with structural characters of cell organelles. Increasing knowledge on metabolisms and appli- cable products strengthened efforts in biotechnology and led to new industrial disciplines. Surprisingly, sequencing techniques of nucleic acids were essentially developed in biolo- gy and not in chemistry. Their rapidly spreading application to all kinds of organisms, in- cluding cryptogams, is unique and marks a most revolutionary period in biology. It covers now developmental, metabolic, ecological, and evolutionary studies, and dominates biolo- gical research to a very high percentage. The mass of data produced since then, increasing continously, requires bioinformatics as an additional discipline in biology. -
H Ydnaceous Fungi of the Hericiaceae, Auriscalpiaceae and Climacodontaceae in Northwestern Europe
Karstenia 27:43- 70 . 1987(1988) H ydnaceous fungi of the Hericiaceae, Auriscalpiaceae and Climacodontaceae in northwestern Europe SARI KOSKI-KOTIRANTA and TUOMO NIEMELA KOSKI-KOTIRANTA, S. & NIEMELA, T. 1988: Hydnaceous fungi of the Hericiaceae, Auriscalpiaceae and Climacodontaceae in northwestern Europe. - Karstenia 27: 43-70. Seven species of the families Hericiaceae Donk, Auriscalpiaceae Maas Geest. and Clima codontaceae Jiilich are briefly described, and their distributions in northwestern Europe (Denmark, Finland, Norway and Sweden) are mapped. Hericium erinaceus (Bull.) Pers. is found only in Denmark and southern Sweden. Hericium coral/oides (Scop.: Fr) Pers. is rather uncommon in the four countries, but extends from the Temperate zone to the Northern Boreal coast of North Norway. It seems to be absent from the most humid western areas. Its main hosts are species of Betula (ca. 65%) and Populus (18%), prefer ably trees growing in virgin forests. Creolophus cirrhatus (Pers.: Fr.) Karst. is common in the Southern Boreal zone and farther south; scattered records exist from the Middle Boreal zone and a few from the Northern Boreal zone. No records were found from the highly oceanic western coast of Norway. By far the commonest host genus of C. cirr hatus is Betula (69.5%), followed by Populus (25%). Dentipellis fragilis (Pers.: Fr.) Donk is a rare, predominantly Temperate to Hemiboreal species, favouring Fagus sylva tica (50%) as its host. In Finland D. fragilis was found on Acer tataricum, Alnus sp., Prunus padus and Sorbus aucuparia; a new find is reported from the central part of the Middle Boreal zone, from Acer platanoides. Auriscalpium vulgare S.F.