Career Directions

Total Page:16

File Type:pdf, Size:1020Kb

Career Directions career directions MACHINIST Machinists use machine tools, such as lathes, milling machines, and grinders, to produce precision metal parts. Although they may produce Personal large quantities of one part, precision machinists often produce small batch- Characteristics/ es or one-of-a-kind items. They use their knowledge of the working proper- Skills ties of metals and skill with machine tools to plan and carry out the opera- Mechanically inclined tions needed to make machined products that meet precise specifications. Skilled at working with tools The parts that machinists make range from bolts to automobile pistons. Excellent hand-to-eye coordination Because the technology of machining is changing rapidly, machinists must learn to operate a wide range of machines. Newer machines use lasers, Good troubleshooter water jets, or electrified wires to cut the workpiece. As engineers create new Must be a safety freak (ask any types of machine tools and materials to machine, machinists must constant- machinist how easy it is to lose a ly learn new machining properties and techniques. finger!) Education High School Math Computer courses Earnings $$$$ English Technology education Wages vary depending on the type of shop and Metalworking Blueprint reading geographic area. According the 2010 U.S. Bureau of Four years of math is highly recommended, espe- Labor Statistics, workers in machine shops earned, cially trigonometry and geometry. Positions in the air- on average, $18.39 per hour; workers in the auto- craft manufacturing industry require the use of applied mobile industry earned $19.28 per hour; and aero- calculus and physics. space industry workers earned $21.07 per hour. Postsecondary There are many different ways to become a skilled machinist. Many entrants previously worked as ma- chine setters, operators, or tenders. Others learn en- Key Skills and Competencies tirely on the job, but most acquire their skills in a mix of 1. Minimum of one-year experience operating classroom and on-the-job training. CNC machines such as lathes and milling ma- To become a CNC machinist, you must complete a chines in a heavy manufacturing environment. postsecondary program available from a community 2. Knowledge and application of precision college or a vocational/technical school. Look for a measuring instruments including calipers, ID school that offers curriculum developed by the National and OD micrometers, depth gages, indicators, Institute of Metalworking Skills (NIMS)—the only ANSI and scales. accredited developer of precision manufacturing skill 3. Knowledge of reading drawings and speci- standards and competency assessments. fications with an intermediate understanding of The modern machinist must have knowledge of the geometric tolerancing and dimensions. various stages of metalworking and be proficient in 4. Knowledge of tool holders, cutting tools, computer programming. The CNC-type lathes, milling boring bars, fixtures, inserts, and other accesso- machines, and grinders are all variations of the basic ries used on various machines. tool; however, adjustments and initial programming are 5. Able to follow written and oral instructions. done on a computer. The majority of machinist training 6. Able to communicate in English (both writ- is concentrated on reading measuring devices. Aside ten and oral). from basic machine operation and safety, training in the 7. Able to work flexible shifts and changing different types of steel and methods used to identify work schedules. them are core machinist training ideals. 8. Must possess basic math skills. 22 techdirections NOVEMBER 2011 Typical Work Day Work Environment Machinists first review electronic or writ- Today, many machine shops are relatively clean, well lit, ten blueprints or specifications for a job. Next, and ventilated. Computer-controlled machines often are they calculate where to cut or bore into the partially or totally enclosed, minimizing the exposure of workpiece—the piece of steel, aluminum, ti- workers to noise, debris, and the lubricants used to cool tanium, plastic, silicon, or any other material workpieces during machining. However, working around being shaped. They determine how fast to feed machine tools presents dangers, and workers must follow the workpiece into the machine and how much safety precautions. Machinists wear safety glasses to shield material to remove. They then select tools against bits of flying metal and earplugs to dampen machin- and materials for the job, plan the sequence ery noise. They also must exercise caution when handling of cutting and finishing operations, and mark hazardous coolants and lubricants. The job requires stami- the workpiece to show where cuts should be na, because machinists stand most of the day and, at times, made. may need to lift moderately heavy workpieces. Modern After layout work is completed, machinists factories use autoloaders and overhead cranes to reduce perform the machining operations. During the heavy lifting. process, they monitor the feed rate and speed Many machinists work a 40-hour week. Evening and of the machine. Machinists also ensure the weekend shifts are becoming more common, as companies workpiece is properly lubricated and cooled. extend hours of operation to make better use of expensive After the work is completed, machinists use machines. Overtime work is common during peak produc- measuring tools to check the accuracy of their tion periods. work against the blueprints. Production machinists produce large quan- tities of one part, especially parts requiring the Secrets for Success use of complex operations and great precision. The difference between success and failure Modern machine tools are computer numeri- in this line of work is your regard to quality. Do cally controlled (CNC). Following a computer not settle for “passable.” program, CNC machines control the cutting Become the most computer-literate person tool speed, change dull tools, and perform all in the shop. Highly skilled workers will be first necessary cuts to create a part. Frequently, in line to run ever-more-expensive machinery. machinists work with computer control pro- grammers to determine how the automated equipment will cut a part. Many machinists must be able to use both manual and comput- er-controlled machinery in their job. Outlook Maintenance machinists repair or make Employment is projected to in- new parts for existing machinery. To replace crease by 7% through 2018, accord- broken parts, maintenance machinists refer to ing to the U.S. Department of Labor blueprints and perform the same machining Bureau of Labor Statistics. Many operations required to create the original part. young people with the necessary While production machinists are concentrated educational and personal qualifications needed to obtain in a few industries, maintenance machinists machining skills often prefer to attend college or may work in many manufacturing industries. not wish to enter production occupations. Therefore, the number of workers obtaining the skills and knowledge necessary to fill machinist jobs is expected to be less than the number of job openings arising each year. How to Find a Job Take part time work while still in high school be- cause many of your skills will be developed while completing real projects. A vocational/technical school Professional Organizations can provide the experience and coursework needed to International Association of Machinists break into the field, and employers who need machin- and Aerospace Workers ists often contact these schools. www.goiam.org When you get an interview, show up on time and National Tooling and Metalworking Association be respectful. Have ready a list of projects that you’ve www.ntma.org completed and a resumé of related classes and job experience. National Institute for Metalworking Skills (NIMS) www.nims-skills.org www.techdirections.com CAREER DIRECTIONS 23.
Recommended publications
  • V-TECS Guide for Machine Shop (Machinist). INSTITUTION South Carolina State Dept
    DOCUMENT RESUME ED 264 397 CE 043 059 AUTHOR Gregory, Margaret R.; Benson, Robert T. TITLE V-TECS Guide for Machine Shop (Machinist). INSTITUTION South Carolina State Dept. of Education, Columbia. Office of Vocational Education. PUB DATE 85 NOTE 443p. PUB TYPE Guides Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF01/PC18 Plus Postage. DESCRIPTORS Behavioral Objectives; Competency Based Education; Definitions; *Equipment Maintenance; *Equipment Utilization; Job Skills; Learning Activities; Lesson Plans; *Machine Tools; *Machinists; Mathematics Skills; Measurement Equipment; Measurement Techniques; Numerical Control; Safety; Secondary Education; Shop Curriculum; Teacher Developed Materials; *Trade and Industrial Education; Welding ABSTRACT This curriculum guide is intended to train trade and industrial education students in the hands-on aspects of the occupation of machinist. Included in the guide arecourse outlines that deal with the following topics: following safety procedures; performing mathematical calculations; designing and planning machine work; performing precision measurement and bench work; operating drill presses, grinders, power saws, lathes, milling machines, and shapers; welding; performing heat treatment tasks; and operating numerical controlled machines. Each course outline containssome or all of the following: a duty; a task statement; a performance objective and performance guide; suggested learning activities;a list of recommended resources; student evaluation criteria, including answers to any evaluation questions or exercises provided; a lesson test, test answers; and attachments (including handouts, forms, and transparency masters). Appendixes to the guide include definitions of terms, duty and task and tool and equipment lists, evaluation questions and answers, and a bibliography. (MN) *********************************************************************** * Reproductions supplied by EDRS are the best thatcan be made * * from the original document.
    [Show full text]
  • Aviation Machinist's Mate 3 & 2
    NONRESIDENT TRAINING COURSE Aviation Machinist’s Mate 3 & 2 NAVEDTRA 14008 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE About this course: This is a self-study course. By studying this course, you can improve your professional/military knowledge, as well as prepare for the Navywide advancement-in-rate examination. It contains subject matter about day- to-day occupational knowledge and skill requirements and includes text, tables, and illustrations to help you understand the information. An additional important feature of this course is its reference to useful information in other publications. The well-prepared Sailor will take the time to look up the additional information. History of the course: • Sep 1991: Original edition released. Prepared by ADCS(AW) Terence A. Post. • Jan 2004: Administrative update released. Technical content was not reviewed or revised. Published by NAVAL EDUCATION AND TRAINING PROFESSIONAL DEVELOPMENT AND TECHNOLOGY CENTER TABLE OF CONTENTS CHAPTER PAGE 1. Jet Engine Theory and Design ............................................................................... 1-1 2. Tools and Hardware ............................................................................................... 2-1 3. Aviation Support Equipment.................................................................................. 3-1 4. Jet Aircraft Fuel and Fuel Systems ........................................................................ 4-1 5. Jet Aircraft Engine Lubrication Systems ..............................................................
    [Show full text]
  • Design and Development of Keyway Milling Attachmentfor Lathe Machine
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Design and Development of Keyway Milling Attachmentfor Lathe Machine Indrajeet Baburao Shedbale Master Student, School of Mechanical and Building Sciences, VIT University, Vellore, Katpadi Road, Tamil Nadu, India. Amar S. Bhandare Assistant Professor, Department of Mechanical Engineering, ATS’s Sanjay Bhokare Group Of Institute, Miraj, India. Abstract axis of shaft and the vertical axis of end mill cutter are In manufacturing industry there are different types of perpendicular to each other; also the vertical axis of shaft and machining processes are required to convert raw material in to vertical axis of tool are coinciding with each other. final product. Some of machining process required separate machine to carry out machining of product. It means not only consumption of space and overall time increases but also expenses will increases. By developing the special attachment for machine will reduces consumption of time and space. Various operations like Turning, Drilling, Facing, slotting will be done on single machine. Instead of milling machine we are using the special attachment for lathe machine to machining of key way slot. In thispaperdiscussed aboutthemilling attachment for lathe machine through whichwe eliminated cost of slotting and milling. Machine operates through lathe machine. It consist of lathe machine slide, electric motor, power chuck, end mill cutter, dowel pin etc. Keywords:lathe machine, milling operations, end mill cutter, lathe machine slide, key way. Figure 1: Axis of Shaft and Axis of End mill cutter both are Introduction coincide with each other.
    [Show full text]
  • IMTS 2018 Booth Previews
    feature IMTS 2018 Booth Previews Affolter Technologies production North Hall, Booth 237223 machine with Affolter Technologies, in partnership with its U.S. representative, high precision Rotec Tools, will showcase their innovative gear hobbing center and efficiency,” AF110 plus at IMTS 2018. Ivo Straessle, The AF110 plus is the most advanced machine offered by president of Affolter Technologies. It convinces with its versatility, precision, Rotec Tools, power, rigidity and ease of use. The AF110 plus has eight axes, a said. “The simplicity cutter-spindle speed of up to 12,000 rpm capable to make gears of these machines is with a maximum DP17 and minimum of DP1270. Different remarkable. The user- automation systems for part loading and unloading are avail- friendly controls with able, such as universal grippers, drum loader or robot loading step-by-step and easy- as well as options such as deburring, dry cutting, centering to-follow functions will microscope and oil mist aspiration. simplify the gear-making “The loader system AF71 with two grippers ensures 24 hours process. With a relatively automatic production,” Vincent Affolter, managing director small investment, customers can keep know-how and technol- of Affolter Technologies, said. “While a gear is in the hobbing ogy in-house.” process, the other gripper already reaches out for the next part For more information: to load.” Affolter Technologies The AF110 plus can cut spur, helical, frontal, bevel, and Phone: +41 32 491-70-62 www.affelec.ch crown gears. Rotec Tools Worm Screw Power Skiving, a cutting-edge technology Phone: (845) 621-9100 developed by the Affolter engineers, is available as an option.
    [Show full text]
  • 1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
    1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10.
    [Show full text]
  • Grinding Machine Construction Types of Grinders
    Grinding machine A grinding machine is a machine tool used for producing very fine finishes or making very light cuts, using an abrasive wheel as the cutting device. This wheel can be made up of various sizes and types of stones, diamonds or of inorganic materials. For machines used to reduce particle size in materials processing see grinding. Construction The grinding machine consists of a power driven grinding wheel spinning at the required speed (which is determined by the wheel’s diameter and manufacturer’s rating, usually by a formula) and a bed with a fixture to guide and hold the work-piece. The grinding head can be controlled to travel across a fixed work piece or the workpiece can be moved whilst the grind head stays in a fixed position. Very fine control of the grinding head or tables position is possible using a vernier calibrated hand wheel, or using the features of NC or CNC controls. Grinding machines remove material from the workpiece by abrasion, which can generate substantial amounts of heat; they therefore incorporate a coolant to cool the workpiece so that it does not overheat and go outside its tolerance. The coolant also benefits the machinist as the heat generated may cause burns in some cases. In very high-precision grinding machines (most cylindrical and surface grinders) the final grinding stages are usually set up so that they remove about 2/10000mm (less than 1/100000 in) per pass - this generates so little heat that even with no coolant, the temperature rise is negligible. Types of grinders These machines include the Belt grinder, which is usually used as a machining method to process metals and other materials, with the aid of coated abrasives.
    [Show full text]
  • Gunsmithing Technology Tool List
    GUNSMITHING TECHNOLOGY TOOL LIST RIFLESMITHING AND BARRELING AND CHAMBERING COURSES REQUIRE THE STUDENT TO PROVIDE A BOLT ACTION RIFLE THAT WILL BE REBARRELED AND CUSTOMIZED, 1 FIREARM CAN BE USED FOR BOTH CLASSES AS WELL AS ACCESSORIES INSTALLATION, 1 PIECE STOCKMAKING, AND REFINISHING FOR A MASTER FIREARM PROJECT. ADDITIONAL PARTS AND ACCESSORIES WILL ALSO NEED TO BE PURCHASED AT TIME OF THESE CLASSES. SEE COURSE INSTRUCTOR OR SYLLABUS FOR CURRENT LISTS AND DETAILS. SHOTGUNSMITHING REQUIRES THE STUDENT TO PROVIDE A SHOTGUN THAT WILL BE MODIFIED AND CUSTOMIZED, THE FIREARM CAN BE USED FOR ACCESSORIES INSTALLATION, 2 PIECE STOCKMAKING, AND REFINISHING FOR A MASTER FIREARM PROJECT. ADDITIONAL PARTS AND ACCESSORIES WILL ALSO NEED TO BE PURCHASED AT TIME OF THESE CLASSES. SEE COURSE INSTRUCTOR OR SYLLABUS FOR CURRENT LISTS AND DETAILS. SUPPLIERS This is not an exclusive list of suppliers, manufacturers, or part numbers, these are parts and vendors that we have relationships with. Also check online; Amazon, eBay, Google, and local second hand stores or pawn shops. Check for student discounts and compare products, part numbers subject to change at any time. Brownell’s 1-800-741-0085 www.brownells.com Jack First 1-605-343-9544 www.jack-first-gun-parts.myshopify.com MidwayUSA 1-800-243-3220 www.midwayusa.com MSC Industrial Direct 1-800-645-7270 www.mscdirect.com Oxygen Service Co 1-800-774-1336 www.oxygenservicecompany.com Wood Workers Supply 1-800-645-9292 www.woodworker.com Track of the Wolf 1-763-633-2500 www.trackofthewolf.com Fastenal 1-877-507-7555
    [Show full text]
  • Key Machines & Parts
    ORDER ONLINE www.SouthernLock.com KEY MACHINES & PARTS SECTION 8 Section Table of Contents C KEY MACHINES & PARTS Code Cards .................................. 407 For Key Programming Systems D see Section 1 - Automotive Deburring Brush ............................. 419 F Futura Pro ................................... 412 I ITL Key Machines ........................... 420 K Key Cutters ................ 411, 413, 419, 426 Key Machines ........................... 420–426 Key Punch .................. 402, 408, 423, 425 M Marking Devices.... 401–402, 404-412, 421-426 P Punch Machines ........... 402, 408, 423, 425 T Tubular Key Machines .......... 402, 403, 410 Vendors Bianchi ................................ 421–422 Framon ............................... 402–404 HPC .................................... 404–413 Ilco .................................... 401–402 Intralock ................................... 420 Keyline ..................................... 421 Laser Key Products ...................... 422 Medeco ............................... 420–421 Mul-T-Lock ................................ 423 Pro-Lok ............................... 423–424 Rytan .................................. 424–425 KEY MACHINES & PARTS Call, Toll Free Prices may not reflect recent price increases or manufacturer’s surcharges 1.800.282.2837 Section 8 - 400 Call, Toll Free 1.800.282.2837 KEY MACHINES & PARTS KEY MARKING DEVICES ™ ™ Engrave•It Engrave•It PRO Engrave-It is the perfect complement to This unit is capable of marking keys, typical lock cylinders (in- key
    [Show full text]
  • Selecting the 'Perfect'
    MWF | Special Section BEST PRACTICES Jerry P. Byers, CMFS Selecting the ‘perfect’ metalworking fluid In addition to fully understanding the operating conditions, be sure to question all assumptions about MWFs. Many of them are the tribological equivalent of old fairy tales. etalworking fluids (MWFs) are a key production Maid in the manufacture of metal parts, from seem- ingly simple items such as coins and wire, to complex objects such as medical devices and engines for aero- space applications. These fluids are used because it is more cost effective to run most operations with a fluid than without. The benefits include more high quality finished parts by the end of the shift with lower tool wear, reduced grinding wheel usage and less machine downtime. MWFs help maintain a constant temperature for the metal part, the tool and the machine—improving di- mensional stability of the parts produced. Temperature control is achieved through (1.) lubricants that reduce heat generation and (2.) the cooling action of the fluid that removes heat. The fluid is also used to carry metal particles (chips) away from the cutting zone to an area where they are separated and collected. The benefit for tool life is shown in Figure 1, a graph of tool wear vs. machining time for a turning operation where 390 aluminum is being machined with polycrys- talline diamond tooling under two conditions: either dry or with a semisynthetic MWF being applied. Notice that tool wear is greatly reduced and the time between Metalworking fluids are a key tool changes is dramatically extended when the fluid is applied.
    [Show full text]
  • STANDARD OPERATING PROCEDURES for COMMON
    Faculty of Engineering Workshop Services STANDARD OPERATING PROCEDURES for COMMON TOOL & MACHINING EQUIPMENT [Type here] [Type here] [Type here] The information in this booklet is provided as a guide for the minimum safety training that shall be provided to personnel prior to being authorized to use of any of the following machining tools or pieces of equipment: Mill, Lathe, Planer, Drill Press, Pedestal Grinder, & Band Saw. GENERAL SAFETY TIPS • Safety glasses with side shields must be worn at all times. • Do not wear loose clothing, loose neckwear or exposed jewelry while operating machinery. • Do not work alone in a machine shop. (Implement the "buddy" system.) • Long sleeves on shirts should be rolled up above the elbows. • Pull back and secure long hair. • Do not wear thin fabric shoes, sandals, open-toed shoes, and high-heeled shoes. • A machinist's apron tied in a quick release manner should be worn. • Always keep hands and other body parts a safe distance away from moving machine parts, work pieces, and cutters. • Use hand tools for their designed purposes only. • Report defective machinery, equipment or hand tools to the Technician. McGill Workshop Safety policy: www.mcgill.ca/ehs/programs-and-services/workshop Workshop Rules: www.mcgill.ca/ehs/programs-and-services/workshop/rules [Type here] [Type here] [Type here] FACULTY WORKSHOP SERVICES Safe Use of Machine Shop Equipment MACHINE SHOP SAFETY Machine Shop Safety August 2014 1 FACULTY WORKSHOP SERVICES Safe Use of Machine Shop Equipment WORKSHOP MACHINES - LATHE • All stock must be properly secured in the lathe chuck or mounted prior to the machining process taking place.
    [Show full text]
  • Surface Plates
    CALL US TODAY +1-262-422-1197 BUSCH PRECISION EQUIPMENTcan help you… Improve manufacturing efficiency and quality • Reduce costs and increase profits Worldwide consumer preference for L better products and the accompanying development of international quality standards demands meticulous QUALITY attention to accuracy in all phases of ASSURANCE & manufacturing. PRODUCT This catalog describes over 300 standard SATISFACTION types and sizes of basic precision Since 1907, BUSCH has been equipment designed to: serving industry’s basic precision equipment needs. L Facilitate layout of tooling As a diversified full-service L Speed production and assembly machine center, as well as a L Simplify and speed inspection manufacturer of precision equipment, we know and use the L Provide quality assurance products. Every effort is made to provide the highest quality products consistent with cost and material availability. Each In addition to the standard items item is carefully inspected and calibrated to insure conformance illustrated in this catalog, we also to specified tolerances and for compliance with all recognized design and manufacture custom standards. Inspection and calibration are performed by equipment to meet special applications. qualified technicians using appropriate state-of-the-art instrumentation. We also recondition worn or repair Certification of Accuracy is available for any item on request damaged equipment. This can be a and such certification is traceable to the National Institute of wise financial move in that regrinding Standards and Technology (NIST). Detailed information on our out-of-tolerance items can be calibration and inspection procedures and instrumentation can accomplished at considerable savings be found on page 19. over replacement cost.
    [Show full text]
  • Machinist Drilled Hole Tolerance Capabilites Chart Per. AND10387
    1/29/2018 Machinist Drilling Mechanical Tolerance Capabilites Chart - ANSI Size Drilled Hole Tolerance, ISO Metric Drill Sizes - Engineers Edge Machinist Drilled Hole Tolerance Capabilites Chart per. AND10387 Manufacturing Knowledge Menu | Tolerance Charts Menu Machinist Drilling Mechanical Tolerance Capabilites Chart - ANSI Size Drills, ISO Metric Drill Sizes Drilled hole locations and size variations are cumulative of several manufacturing variables. Tool Engineering Design for sharpness, accuracy, tool and machine rigidity, machine spindle bearings wear, general quality of Manufacturability machine, use of drill fixtures, material thermal expansion, and material density variations are some to the reasons hole features will never be manufactured perfect. Comprehensive guide for proper design of geometry, process Most commercial twist drills have a diameter slightly smaller than the stated nominal size, however capabilities & proper mechanical the actual hole feature will likely be manufactured larger than the nominal size of the drill tool. tolerance specifications. Compensating for manufacturing tool and process variability is a significant challenge for tight toleranced holes. For Drill size chart for both Metric and ANSI sizes see: Machinist Drill Sizes - ANSI Size Drills, ISO Metric Drill Sizes HOLE DIAMETER TOLERANCE-STANDARD DRILLED HOLE TOLERANCES Per. AND10387 Airforce Navy Aeronautical Design Stanard These size and tolerance are for Drilled Hole Size Tolerance holes drilled with a drilling machine using suitable jigs and .0135 THRU .125 +.004/ -.001 fixtures. The hole tolerances depend upon the diameter of the .1260 THRU .250 +.005/ -.001 hole and increase as the hole size increases. The following are .2510 THRU .500 +.006/-.001 standard tolerances for general machine work and apply in all .5010 THRU .750 +.008/ -.001 cases except where greater or .7510 THRU 1.000 +.010/ -.001 lesser accuracy is required by the 1 .001 THRU 2.000 +.012/ -.001 design.
    [Show full text]