V-TECS Guide for Machine Shop (Machinist). INSTITUTION South Carolina State Dept
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aviation Machinist's Mate 3 & 2
NONRESIDENT TRAINING COURSE Aviation Machinist’s Mate 3 & 2 NAVEDTRA 14008 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE About this course: This is a self-study course. By studying this course, you can improve your professional/military knowledge, as well as prepare for the Navywide advancement-in-rate examination. It contains subject matter about day- to-day occupational knowledge and skill requirements and includes text, tables, and illustrations to help you understand the information. An additional important feature of this course is its reference to useful information in other publications. The well-prepared Sailor will take the time to look up the additional information. History of the course: • Sep 1991: Original edition released. Prepared by ADCS(AW) Terence A. Post. • Jan 2004: Administrative update released. Technical content was not reviewed or revised. Published by NAVAL EDUCATION AND TRAINING PROFESSIONAL DEVELOPMENT AND TECHNOLOGY CENTER TABLE OF CONTENTS CHAPTER PAGE 1. Jet Engine Theory and Design ............................................................................... 1-1 2. Tools and Hardware ............................................................................................... 2-1 3. Aviation Support Equipment.................................................................................. 3-1 4. Jet Aircraft Fuel and Fuel Systems ........................................................................ 4-1 5. Jet Aircraft Engine Lubrication Systems .............................................................. -
Grinding Machine Construction Types of Grinders
Grinding machine A grinding machine is a machine tool used for producing very fine finishes or making very light cuts, using an abrasive wheel as the cutting device. This wheel can be made up of various sizes and types of stones, diamonds or of inorganic materials. For machines used to reduce particle size in materials processing see grinding. Construction The grinding machine consists of a power driven grinding wheel spinning at the required speed (which is determined by the wheel’s diameter and manufacturer’s rating, usually by a formula) and a bed with a fixture to guide and hold the work-piece. The grinding head can be controlled to travel across a fixed work piece or the workpiece can be moved whilst the grind head stays in a fixed position. Very fine control of the grinding head or tables position is possible using a vernier calibrated hand wheel, or using the features of NC or CNC controls. Grinding machines remove material from the workpiece by abrasion, which can generate substantial amounts of heat; they therefore incorporate a coolant to cool the workpiece so that it does not overheat and go outside its tolerance. The coolant also benefits the machinist as the heat generated may cause burns in some cases. In very high-precision grinding machines (most cylindrical and surface grinders) the final grinding stages are usually set up so that they remove about 2/10000mm (less than 1/100000 in) per pass - this generates so little heat that even with no coolant, the temperature rise is negligible. Types of grinders These machines include the Belt grinder, which is usually used as a machining method to process metals and other materials, with the aid of coated abrasives. -
Gunsmithing Technology Tool List
GUNSMITHING TECHNOLOGY TOOL LIST RIFLESMITHING AND BARRELING AND CHAMBERING COURSES REQUIRE THE STUDENT TO PROVIDE A BOLT ACTION RIFLE THAT WILL BE REBARRELED AND CUSTOMIZED, 1 FIREARM CAN BE USED FOR BOTH CLASSES AS WELL AS ACCESSORIES INSTALLATION, 1 PIECE STOCKMAKING, AND REFINISHING FOR A MASTER FIREARM PROJECT. ADDITIONAL PARTS AND ACCESSORIES WILL ALSO NEED TO BE PURCHASED AT TIME OF THESE CLASSES. SEE COURSE INSTRUCTOR OR SYLLABUS FOR CURRENT LISTS AND DETAILS. SHOTGUNSMITHING REQUIRES THE STUDENT TO PROVIDE A SHOTGUN THAT WILL BE MODIFIED AND CUSTOMIZED, THE FIREARM CAN BE USED FOR ACCESSORIES INSTALLATION, 2 PIECE STOCKMAKING, AND REFINISHING FOR A MASTER FIREARM PROJECT. ADDITIONAL PARTS AND ACCESSORIES WILL ALSO NEED TO BE PURCHASED AT TIME OF THESE CLASSES. SEE COURSE INSTRUCTOR OR SYLLABUS FOR CURRENT LISTS AND DETAILS. SUPPLIERS This is not an exclusive list of suppliers, manufacturers, or part numbers, these are parts and vendors that we have relationships with. Also check online; Amazon, eBay, Google, and local second hand stores or pawn shops. Check for student discounts and compare products, part numbers subject to change at any time. Brownell’s 1-800-741-0085 www.brownells.com Jack First 1-605-343-9544 www.jack-first-gun-parts.myshopify.com MidwayUSA 1-800-243-3220 www.midwayusa.com MSC Industrial Direct 1-800-645-7270 www.mscdirect.com Oxygen Service Co 1-800-774-1336 www.oxygenservicecompany.com Wood Workers Supply 1-800-645-9292 www.woodworker.com Track of the Wolf 1-763-633-2500 www.trackofthewolf.com Fastenal 1-877-507-7555 -
3Abff7a23fc6813312aa9f80b81b
Main Catalogue EN We reserve the right to modify any specifi cation and/or item shown in the present catalogue without notice. Information, photos, drawings and technical data specifi ed in the publication have been carefully examined and thoroughly checked. They cannot, however, bind our responsibility on their exactness. GRANLUND TOOLS AB, SWEDEN 4OOLSTools When precision counts... Granlund Tools AB in Eskilstuna are one of the Granlund companies also perform: world’s leading manufacturers of precision • Subcontract work, where we offer solutions tools within the machining industry. regarding production and or assembly in large or Granlund offers a wide range of high-quality, carbide small series. and HSS cutting tools, such as counterbores, counter- • Heat treatment in a modern vacuum hardening/ sinks, tools with indexable inserts and reamers. quenching plant. With more than 60 years’ experience and representa- • Engineering. Manufacture of special measure tion in some 30 countries around the world, Granlund machines including the software. can offer the market proven technical solutions and • Machinery. Manufacture of special machinery for good local support. tube elements and special grinding machines for The Granlund interchangeable tool system was one the tube industry. of the fi rst Granlund products to receive world recog- nition. The company is certifi ed according to ISO 9001 With only 1300 parts, consisting of holders, cutters, and ISO 14001. pilots and drills, it is possible to assemble combina- GRANLUND – Tools, supplies where high quality tion tools in more than 1 500 000 different variations. and precision are required. Our fl exible easy-to-use system provides productive and cost-effi cient tool solutions for industries world- wide. -
Technical Guide
TECHNICAL GUIDE ã GRANLUND TOOLS 2002, REV 2.4 Page 1 The purpose of this manual is to explain not only how to use the complete range of tools, but also the particular features of each item in the system, indicating their advantages, disadvantages or any limitations on use. The different groups will be covered in: INTERCHANGEABLE TOOL SYSTEM page 1-3 TOOLHOLDERS page 4-5 COUNTERBORES page 5 COUNTERSINKS page 6 INDEXABLE CARBIDE INSERTS page 7 PILOTS / INSERT DRILLS page 8 CARBIDE REAMERS (BRAZED) page 8-9 SINGLE BLADE REAMERS page 9-11 BACKSPOTFACING SYSTEM page 12-13 CNC-TOOLS page 13-14 For information concerning dimension ranges, cutting conditions, regrinding information and drawings, please see our main catalogue. INTERCHANGEABLE TOOL SYSTEM OBJECTIVE The main objective with the Granlund modular tool system, is to provide the enduser with the possibility to easily build practically any special counterboring/ countersinking combination, using a wide range of standard components. In fact, with some 1300 components , the possible combinations are more than 1.500.000. Each tool is made by combining three parts: A. TOOLHOLDER B. COUNTERBORE or COUNTERSINK C. PILOT or DRILL Picture 1 GRANLUND TECHNICAL GUIDE ã GRANLUND TOOLS 2002, REV 2.4 Page 2 A. The same toolholder can be used in many different combinations. With 16 types of holders available, most applications can be covered. B. The counterbore or countersink is selected to suit the demands of each specific operation and material. In the catalogue you will find our recommendations for most cases. C. If the workpiece is predrilled, a pilot should be used, otherwise operation can be made with an insert drill.* * IMPORTANT! When step drilling, the drill must break through the workpiece before secondary cutting commences. -
Machinists-Handbook-Gcodetutor.Pdf
GCodeTutor.com Machinists Handbook GCodeTutor.com Content Conversion • G74 Peck Drilling • Calculations • G75 Peck Grooving • 1/64” to 1” • G76 Screw Cutting Single Line • 1 1/64” to 2” • G76 Screw Cutting Double Line • 2 1/64” to 3” • G83 Z-axis Peck Drilling Screw Thread Charts • G84 Z-axis Tapping • Metric Coarse Thread • G87 X-axis Peck Drilling • Metric Fine Thread • G88 X-axis Tapping • BSW British Standard Whitworth Thread G Code Canned Cycles - Milling • BSF British Standard Fine Thread • G81 Drilling • BA British Association Screw Thread • G82 Counter bore • BSPP British Standard Pipe parallel • G83 Peck Drilling • BSPT British Standard pipe Taper • G84 Tapping • UNC Unified Coarse Thread • G85 Bore in / Bore out • UNF Unified Fine Thread • G86 Bore in / Rapid out • UNEF Unified Extra Fine Thread Calculations • Reamer Drill Size • Speeds and Feeds Abbreviations • Tapping Drill CNC Programming Reference • Trigonometry • G Code Trigonometry Charts • M Code Tool Geometry • Auxiliary Commands • RH Knife Tool G Code Canned Cycles - Turning • Drill • G70 Finishing • Centre Drill • G71 Roughing • End Mill • G72 Facing • Morse Taper • G73 Pattern Repeating Afterword Machinists Handbook GCodeTutor.com Conversion Charts Machinists Handbook GCodeTutor.com Conversion Calculations Length Kilometers (km) x 0.62 = Miles (mi) Miles (mi) x 1.61 = Kilometers (km) Kilometers (km) x 3280.8 = Feet (ft) Feet (ft) x 0.0003048 = Kilometers (km) Meters (m) x 3.28 = Feet (ft) Feet (ft) x 0.3 = Meters (m) Centimeters (cm) x 0.39 = Inches (in) Inches (in) -
Surface Plates
CALL US TODAY +1-262-422-1197 BUSCH PRECISION EQUIPMENTcan help you… Improve manufacturing efficiency and quality • Reduce costs and increase profits Worldwide consumer preference for L better products and the accompanying development of international quality standards demands meticulous QUALITY attention to accuracy in all phases of ASSURANCE & manufacturing. PRODUCT This catalog describes over 300 standard SATISFACTION types and sizes of basic precision Since 1907, BUSCH has been equipment designed to: serving industry’s basic precision equipment needs. L Facilitate layout of tooling As a diversified full-service L Speed production and assembly machine center, as well as a L Simplify and speed inspection manufacturer of precision equipment, we know and use the L Provide quality assurance products. Every effort is made to provide the highest quality products consistent with cost and material availability. Each In addition to the standard items item is carefully inspected and calibrated to insure conformance illustrated in this catalog, we also to specified tolerances and for compliance with all recognized design and manufacture custom standards. Inspection and calibration are performed by equipment to meet special applications. qualified technicians using appropriate state-of-the-art instrumentation. We also recondition worn or repair Certification of Accuracy is available for any item on request damaged equipment. This can be a and such certification is traceable to the National Institute of wise financial move in that regrinding Standards and Technology (NIST). Detailed information on our out-of-tolerance items can be calibration and inspection procedures and instrumentation can accomplished at considerable savings be found on page 19. over replacement cost. -
Machinist Drilled Hole Tolerance Capabilites Chart Per. AND10387
1/29/2018 Machinist Drilling Mechanical Tolerance Capabilites Chart - ANSI Size Drilled Hole Tolerance, ISO Metric Drill Sizes - Engineers Edge Machinist Drilled Hole Tolerance Capabilites Chart per. AND10387 Manufacturing Knowledge Menu | Tolerance Charts Menu Machinist Drilling Mechanical Tolerance Capabilites Chart - ANSI Size Drills, ISO Metric Drill Sizes Drilled hole locations and size variations are cumulative of several manufacturing variables. Tool Engineering Design for sharpness, accuracy, tool and machine rigidity, machine spindle bearings wear, general quality of Manufacturability machine, use of drill fixtures, material thermal expansion, and material density variations are some to the reasons hole features will never be manufactured perfect. Comprehensive guide for proper design of geometry, process Most commercial twist drills have a diameter slightly smaller than the stated nominal size, however capabilities & proper mechanical the actual hole feature will likely be manufactured larger than the nominal size of the drill tool. tolerance specifications. Compensating for manufacturing tool and process variability is a significant challenge for tight toleranced holes. For Drill size chart for both Metric and ANSI sizes see: Machinist Drill Sizes - ANSI Size Drills, ISO Metric Drill Sizes HOLE DIAMETER TOLERANCE-STANDARD DRILLED HOLE TOLERANCES Per. AND10387 Airforce Navy Aeronautical Design Stanard These size and tolerance are for Drilled Hole Size Tolerance holes drilled with a drilling machine using suitable jigs and .0135 THRU .125 +.004/ -.001 fixtures. The hole tolerances depend upon the diameter of the .1260 THRU .250 +.005/ -.001 hole and increase as the hole size increases. The following are .2510 THRU .500 +.006/-.001 standard tolerances for general machine work and apply in all .5010 THRU .750 +.008/ -.001 cases except where greater or .7510 THRU 1.000 +.010/ -.001 lesser accuracy is required by the 1 .001 THRU 2.000 +.012/ -.001 design. -
M Akingthebestofaslowdown
650 words text only full page; 580 with quote; 520 words with medium size image JANUARY 2009 / VOLUME 61 / ISSUE 1 staying sharp manager’s desk By Keith Jennings Making the best of a slowdown t’s a new year and if the pundits are correct, many of require reevaluation from time to time, which is never us are in the midst of a downturn, if not a recession. If convenient. The effort can reap rewards later, though. Ithis is your situation, the stress factor is probably high. Software training can also be important. With Even under these circumstances, however, there are ways to manufacturing technology becoming more essential, effectively use the extra time to add value to your business. exploiting it can provide a significant return on While most everyone prefers a full and busy workload, investment. Even though sitting in front of a training that’s not always the reality. Identifying some valuable computer all day sounds dull, a slowdown could be the activities and making time to complete them can have best time to get it done. This could include training a positive impact when your business rebounds. Under with a focus on better utilization of CAD packages, the present conditions, one of the best uses of time is manufacturing ERP applications or even Microsoft employee training. Office. We all need this on occasion. Can your employees “Training” has broad meaning and can include read and understand their productivity reports? Can education in plant safety, forklift operations, employees effectively use e-mail distribution lists and cardiopulmonary resuscitation skills, quality and prepare invoices, purchase orders and quality documents? inspection methods, Many probably can, and equipment functions and some probably have no clue. -
A Review of Modern Advancements in Micro Drilling Techniques
University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2017 A review of modern advancements in micro drilling techniques Mahadi Hasan University of Wollongong, [email protected] Jingwei Zhao University of Wollongong, [email protected] Zhengyi Jiang University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Hasan, Mahadi; Zhao, Jingwei; and Jiang, Zhengyi, "A review of modern advancements in micro drilling techniques" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 758. https://ro.uow.edu.au/eispapers1/758 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A review of modern advancements in micro drilling techniques Abstract The demand for micro drilling with a diameter in a range of a few microns to several hundred microns is increasing in industries such as electronics, aerospace, medicine and automobiles, due to a significant uptake in the use of miniaturised products and devices. In order to satisfy the demand, a number of different micro drilling techniques have been developed. There has been, however, no report which explains, compares and contrasts all of these micro drilling techniques. This study examines the lasts micro drilling methods and techniques, categorises them into different groups, highlights recent developments and new trends, and depicts the future requirements in the field of micro drilling. -
NIMS Machining Level I Preparation Guide Job Planning, Benchwork
NIMS Machining Level I Preparation Guide Job Planning, Benchwork, and Layout Table of Contents Overview pages 2 – 5 • Introduction page 2 • Who Wrote the Questions page 2 • How to Prepare for the Credentialing Exam page 3 • Areas of Knowledge Measured by the Exam page 3, 4 • Before the Exam page 4 • At the Testing Site page 5 Machining Exam – Job Planning, Benchwork, and Layout pages 6 – 26 • Exam Content and Sample Question Overview page 6 • Exam Specification page 7 • Task List and Sample Questions pages 8 – 23 • Answer Key pages 24 26 © 2003 National Institute for Metalworking Skills, Inc. Page 1 of 26 Overview Introduction This preparation guide or test advisor is intended to help machinists study and prepare for the National Institute for Metalworking Skills (NIMS) written credentialing exam. The sample test will help prepare machinists to take the actual credentialing exam. None of the questions are duplicates from the actual exam. However, this preparation guide is a useful tool for reviewing technical knowledge and identifying areas of strength and deficiency so that the student has what is needed to do well on the exam. Achieving a NIMS credential is a means through which machinists can prove their abilities to themselves, to their instructors or employers, and to the customer. By passing the NIMS credentialing exam you will earn a valuable and portable credential. Because the test is tough, you will have the satisfaction of proving to yourself and others that you have reached a level of competency that is accepted nationally. Who Wrote the Questions A panel of technical experts, from all areas of the metalworking industry, wrote the questions used on the credentialing exam. -
American Gunsmithing Institute
AMERICAN GUNSMITHING INSTITUTE SCHOOL CATALOG 2019 Effective January 1, 2019 through December 31, 2019 American Gunsmithing Institute 351 Second Street Napa, California 94559 800.797.0867 707.253.0462 Visit us on the web: americangunsmithinginstitute.net American Gunsmithing Institute School Catalog 2019 Table of Contents MISSION STATEMENT ..................................................................................................................................... 2 INSTITUTE PURPOSE AND OBJECTIVE STATEMENT .................................................................................. 2 OPPORTUNITIES IN GUNSMITHING ............................................................................................................... 2 The Gunsmithing Market .................................................................................................................................... 2 Work for Yourself or For Someone Else… Full or Part Time ............................................................................... 2 Your Own Business ........................................................................................................................................... 3 IS DISTANCE LEARNING RIGHT FOR YOU? ................................................................................................. 4 AUTHORIZATION AND DISCLOSURES .......................................................................................................... 9 Professional Gunsmithing Level I Course ...................................................................................................