Clinical Pathology Interpretation Barbara Horney

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Pathology Interpretation Barbara Horney CLINICAL PATHOLOGY PATHOLOGIE CLINIQUE Clinical pathology interpretation Barbara Horney History, physical examination, and Table 1. Hematologic findings from a lethargic, laboratory findings 4-year-old schipperke 4-year-old, spayed female, schipperke was pre- Blood cell count Reference range A sented because of mild lethargy. Pale mucous mem- White blood cells branes were observed on physical examination. Table 1 (WBC) gives the results of the hematological examination of Total 6.0 X 109/L 6.0-17.1 X 109/L blood at Differential samples taken this time. No significant abnor- segmented 65% 3.85 X 109/L 3.6-11.5 X 109/L malities were identified on the serum biochemical neutrophils profile. eosinophils 2% 0.12 X 109/L 0.01-1.25 X 109/L lymphocytes 27% 1.59 X 109/L 1.0-4.8 X 109/L Interpretation and discussion monocytes 6% 0.35 X 109/L 0.15-1.35 X 109/L Red blood cells The hematology results can be summarized as severe, Total 1.2 X 1012/L 5.5-8.5 X 109/L microcytic, normochromic, nonregenerative anemia nucleated 1/100 WBC <1-2 per 100 WBC associated with marked spherocytosis. spherocytes 4+ microcytosis 2+ The presence of spherocytes is often associated with immune-mediated hemolytic disease [1,2], although Platelets estimated normal hereditary membrane defects [3] and zinc toxicosis [4] in number can also result in spherocyte formation. A direct antibody Reticulocytes 0 X 109/L up to 120 X 109/L test (Coomb's test) was weakly positive. This finding can Hemoglobin 22 g/L 120-180 g/L support the tentative diagnosis of anemia of immune- Hematocrit 0.068 L/L 0.37-0.55 L/L mediated etiology, although this test is subject to both Mean corpuscular false positive and false negative results [2,5]. The clas- volume 56.3 fL 60-77 fL sification of this dog' s anemia as nonregenerative was Mean corpuscular 18.3 pg 19.5-24.5 pg based on the absence of reticulocytes in the peripheral hemoglobin blood. The absence of both polychromatophils and Mean corpuscular 326 g/L 320-360 g/L macrocytic red blood cells (RBC) supports this classi- hemoglobin fication. The microcytosis is likely a result of the promi- concentration nent spherocytosis. Although immune-mediated ane- mia is classically reported to be associated with a regenerative response, often marked in degree [5], the blood is sampled prior to the appearance of immature absence of a regenerative response should not be used to RBCs subsequent to an acute red cell loss (hemorrhage eliminate immune mechanisms as a cause for anemia or hemolysis). It takes a minimum of 3 d for reticulocytes (6-8). In fact, in 2 studies, a lack of reticulocytosis in to appear in the peripheral blood as a result of stimula- association with canine immune-mediated anemia was tion of RBC production following an acute blood loss found in 23% and 53% of the cases studied (9,10). and response does not peak until 7 d following blood A lack of evidence of RBC regeneration in peripheral loss (11). blood in the face of anemia may be due to an abnormality Explanations for a nonregenerative peripheral erythron in the ability of the marrow to produce and release in immune-mediated anemia include 1) sampling after RBCs, which may include abnormalities in stimula- an acute hemolytic event and prior to the appearance of tion of erythroid production (erythropoietin deficiency), a peripheral response, or 2) immune-mediated destruc- lack of stem cell input (aplasia or hypoplasia), or lack of tion of RBC precursors in the bone marrow stages maturation and release of reticulocytes (ineffective ery- before they appear in the circulating pool (7,8). thropoiesis). Reticulocytosis is also absent if peripheral Examination of bone marrow may help to demonstrate ineffective erythropoiesis, which is characterized by the increase in erythroid precursors with evidence of Atlantic Veterinary College, University of Prince Edward maturation arrest (cells of immature stages predomi- Island, 550 University Avenue, Charlottetown, Prince Edward nate and few cells of later stages are present) (7). Island C1A 4P3. Reports of immune-mediated anemia associated with Can Vot J Volume 39, March 1998 177 red cell aplasia (absence of RBC precursors in the bone 3. Inaba M, Yawata A, Koshino I, et al. Defective anion transport and marrow) indicate that RBC production can be affected marked spherocytosis with membrane instability caused by hered- at very itary total deficiency of red cell band 3 in cattle due to a nonsense immature cell stages in some cases [6,8]. mutation. J Clin Invest 1996; 97: 1804-1817. The relatively mild clinical signs demonstrated by this 4. Latimer KS, Jain AV, Inglesby HB, Clarkson WD, Johnson GB. dog in association with such a profound anemia indicated Zinc-induced hemolytic anemia caused by ingestion of pennies by that the anemia was the result of a more prolonged a pup. J Am Vet Med Assoc 1989; 195: 77-80. process with sufficient time to allow physiologic com- 5. Cotter SM. Autoimmune hemolytic anemia in dogs. Compend Contin Educ Pract Vet 1992; 14: 53-59. pensatory mechanisms to develop. Examination of bone 6. Weiss DJ. Antibody-mediated suppression of erythropoiesis in dogs marrow aspirate in this case showed increased marrow with red blood cell aplasia. Am J Vet Res 1986; 47: 2646-2648. cellularity characterized by increased erythroid cell 7. Jonas LD, Thrall MA, Weiser MG. Nonregenerative form of proliferation, with a large number of prorubricytes and immune-mediated hemolytic anemia in dogs. J Am Anim Hosp rubricytes but few metarubricytes and Assoc 1987; 23: 201-203. polychromatophils 8. Scott-Moncrieff JCR, Reagan WJR, Glickman LT, DeNicola (ineffective erythropoiesis). Appropriate immunosup- DB, Harrington D. Treatment of nonregenerative anemia with pressive therapy was initiated and reticulocytes (11.5 X human g-globulin in dogs. J Am Vet Med Assoc 1995; 206: 109/L) appeared in the peripheral blood of this dog 4 d 1895-1900. later. An absolute reticulocytosis (>120 reticulocytes X 9. Klag AR, Giger U, Shofer FS. Idiopathic immune-mediated hemolytic anemia in dogs: 42 cases (1986-1990). J Am Vet Med 109/L) was not observed until day 8. Resolution of the Assoc 1993; 202: 783-788. anemia in this dog occurred slowly and the immuno- 10. Feldman BF. Demographics of canine immune-mediated suppressive medication was reduced gradually over haemolytic anaemia in the southeastern United States. Comp several months. Haematol Int 1996; 6: 42-45. 11. Jain NC. Schalm's Veterinary Hematology, 4th ed. Philadelphia: References Lea & Febiger, 1986: 564, 578-581. 1. Tyler RD, Cowell RL. Classification and diagnosis of anaemia. Comp Haematol Int 1996; 6: 1-16. 2. Stewart AF, Feldman BF. Immune-mediated haemolytic anemia. Part II. Clinical entity, diagnosis, and treatment theory. Compend Contin Educ Pract Vet 1993; 15: 1479-1491. Through the generosity ofseveral book publishers, the Canadian Grace a la generosit6 d'un grand nombre d'Wditeurs, la Revue Veterinary Journal is able to inform readers ofnew publications vet&rinaire canadienne est en mesure de tenir ses lecteurs au that are now available to veterinary practitioners. Readers are courant des nouvelles publications rendues disponibles aux invited to contact their local library, the publishers listed here, or m6decins vet6rinaires. On encourage les lecteurs qui desirent the bookstores of Canadian veterinary colleges should they wish obtenir une de ces publications a entrer en contact avec leur to obtain their own copies. bibliotheque, avec les dditeurs listes ci-bas ou avec les librairies aux facultes de m6decine v6t6rinaire. * Pastoret P-P, Blancou J, Vannier P, Verschueren C, * Pratt PW, ed. Mosby's Review: Questions and eds. Veterinary Vaccinology. Elsevier Science, Answersfor Veterinary Boards: Ancillary Topics, Amsterdam, The Netherlands, 1997. 882 pp. ISBN 2nd ed. Mosby, Toronto, 1998. 302 pp. ISBN 0-444-81968-1. $200.75 US 0-8151-7466-7. $55.95 * Pratt PW, ed. Mosby's Review: Questions and * Pratt PW, ed. Mosby's Review: Questions and Answers for Veterinary Boards: Large Animal Answers for Veterinary Boards: Clinical Sciences, Medicine and Surgery, 2nd ed. Mosby, Toronto, 2nd ed. Mosby, Toronto, 1998. 273 pp. ISBN 1998. 299 pp. ISBN 0-8151-7466-7. $55.95 0-8151-7466-7. $55.95 * Pratt PW, ed. Mosby's Review: Questions and * Pratt PW, ed. Mosby's Review: Questions and Answers for Veterinary Boards: Small Animal Answers for Veterinary Boards: Basic Sciences, Medicine and Surgery, 2nd ed. Mosby, Toronto, 2nd ed. Mosby, Toronto, 1998. 274 pp. ISBN 1998. 313 pp. ISBN 0-8151-7465-9. $55.95 0-8151-7466-7. $55.95 178 Can Vet J Volume 39, March 1998.
Recommended publications
  • Hemolytic Disease of the Newborn
    Intensive Care Nursery House Staff Manual Hemolytic Disease of the Newborn INTRODUCTION and DEFINITION: Hemolytic Disease of the Newborn (HDN), also known as erythroblastosis fetalis, isoimmunization, or blood group incompatibility, occurs when fetal red blood cells (RBCs), which possess an antigen that the mother lacks, cross the placenta into the maternal circulation, where they stimulate antibody production. The antibodies return to the fetal circulation and result in RBC destruction. DIFFERENTIAL DIAGNOSIS of hemolytic anemia in a newborn infant: -Isoimmunization -RBC enzyme disorders (e.g., G6PD, pyruvate kinase deficiency) -Hemoglobin synthesis disorders (e.g., alpha-thalassemias) -RBC membrane abnormalities (e.g., hereditary spherocytosis, elliptocytosis) -Hemangiomas (Kasabach Merritt syndrome) -Acquired conditions, such as sepsis, infections with TORCH or Parvovirus B19 (anemia due to RBC aplasia) and hemolysis secondary to drugs. ISOIMMUNIZATION A. Rh disease (Rh = Rhesus factor) (1) Genetics: Rh positive (+) denotes presence of D antigen. The number of antigenic sites on RBCs varies with genotype. Prevalence of genotype varies with the population. Rh negative (d/d) individuals comprise 15% of Caucasians, 5.5% of African Americans, and <1% of Asians. A sensitized Rh negative mother produces anti-Rh IgG antibodies that cross the placenta. Risk factors for antibody production include 2nd (or later) pregnancies*, maternal toxemia, paternal zygosity (D/D rather than D/d), feto-maternal compatibility in ABO system and antigen load. (2) Clinical presentation of HDN varies from mild jaundice and anemia to hydrops fetalis (with ascites, pleural and pericardial effusions). Because the placenta clears bilirubin, the chief risk to the fetus is anemia. Extramedullary hematopoiesis (due to anemia) results in hepatosplenomegaly.
    [Show full text]
  • Section 8: Hematology CHAPTER 47: ANEMIA
    Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited.
    [Show full text]
  • SEED Haematology Sysmex Educational Enhancement and Development October 2012
    SEED Haematology Sysmex Educational Enhancement and Development October 2012 The red blood cell indices The full blood count has been used in conjunction with the traditional red The complete blood count (CBC) is central to clinical deci- cell indices in order to narrow down the possible causes sion making. This makes it one of the commonest laboratory of anaemia in an individual patient. investigations performed worldwide. Whilst the definition of what constitutes an CBC is influenced by the number Impedance technology and type of parameters measured by different haematology The RBC, HCT and MCV are all closely interrelated as they analysers, the traditional red cell indices that are widely are derived from information obtained from the passage used to classify anaemias are common to all. of cells through the aperture of the impedance channel of an automated haematology analyser. The impedance The laboratory approach to anaemia technology is based on the principle that an electrical field, Anaemia is an extremely common global healthcare prob- created between two electrodes of opposite charge, can lem. However, anaemia is merely a symptom which can be used to count and determine the size of cells. Blood result from a multitude of causes. Effective treatment is cells are poor conductors of electricity. The diluent in which only possible if the underlying cause is correctly identified. they are suspended as they pass through the aperture To this end, several classification systems have been devis- during counting is an isotonic solution which is a good ed. The most useful and widely used classification system conductor of electricity.
    [Show full text]
  • Acoi Board Review 2019 Text
    CHERYL KOVALSKI, DO FACOI NO DISCLOSURES ACOI BOARD REVIEW 2019 TEXT ANEMIA ‣ Hemoglobin <13 grams or ‣ Hematocrit<39% TEXT ANEMIA MCV RETICULOCYTE COUNT Corrected retic ct = hematocrit/45 x retic % (45 considered normal hematocrit) >2%: blood loss or hemolysis <2%: hypoproliferative process TEXT ANEMIA ‣ MICROCYTIC ‣ Obtain and interpret iron studies ‣ Serum iron ‣ Total iron binding capacity (TIBC) ‣ Transferrin saturation ‣ Ferritin-correlates with total iron stores ‣ can be normal or increased if co-existent inflammation TEXT IRON DEFICIENCY ‣ Most common nutritional problem in the world ‣ Absorbed in small bowel, enhanced by gastric acid ‣ Absorption inhibited by inflammation, phytates (bran) & tannins (tea) TEXT CAUSES OF IRON DEFICIENCY ‣ Blood loss – most common etiology ‣ Decreased intake ‣ Increased utilization-EPO therapy, chronic hemolysis ‣ Malabsorption – gastrectomy, sprue ‣ ‣ ‣ TEXT CLINICAL MANIFESTATIONS OF IRON DEFICIENCY ‣ Impaired psychomotor development ‣ Fatigue, Irritability ‣ PICA ‣ Koilonychiae, Glossitis, Angular stomatitis ‣ Dysphagia TEXT IRON DEFICIENCY LAB FINDINGS ‣ Low serum iron, increased TIBC ‣ % sat <20 TEXT MANAGEMENT OF IRON DEFICIENCY ‣ MUST LOOK FOR SOURCE OF BLEED: ie: GI, GU, Regular blood donor ‣ Replacement: 1. Oral: Ferrous sulfate 325 mg TID until serum iron, % sat, and ferritin mid-range normal, 6-12 months 2. IV TEXT SIDEROBLASTIC ANEMIAS Diverse group of disorders of RBC production characterized by: 1. Defect involving incorporation of iron into heme molecule 2. Ringed sideroblasts in
    [Show full text]
  • The Red Cell Histogram and the Dimorphic Red Cell Population
    CE Update Submitted 4.30.10 | Revision Received 9.27.10 | Accepted 9.27.10 The Red Cell Histogram and The Dimorphic Red Cell Population Benie T. Constantino, SH, I; ART, MLT(CSMLS) (CML Healthcare Inc., Mississauga, Ontario, Canada) DOI: 10.1309/LMF1UY85HEKBMIWO Abstract conditions and may provide major clues in some morphological features of dimorphism The RBC histogram is an integral part of the diagnosis and management of significant and the ensuing characteristic changes in their automated hematology analysis and is now red cell disorders. In addition, it is frequently RBC histograms. routinely available on all automated cell used, along with the peripheral blood film, as counters. This histogram and other associated an aid in monitoring and interpreting abnormal Keywords: histogram, dimorphic red cells, red complete blood count (CBC) parameters have morphological changes, particularly dimorphic blood cell distribution width been found abnormal in various hematological red cell populations. This article discusses After reading this article, readers should be able to correlate a RBC Hematology exam 51102 questions and corresponding answer form histogram and red blood cell distribution width with microscopical are located after this CE Update on page 309. findings. Table 1_Conditions Associated With Dimorphic To paraphrase an adage, 1 histogram graph is worth 5-12 1000 numbers. A large collection of data, displayed as a visual Red Cells image, can convey information with far more impact than the numbers alone. In hematology, these data take on several Early iron developing microcytic population forms, 1 of which is the RBC histogram. Visual scanning Folate/vitamin B12 developing macrocytic population Post-iron treatment of iron deficiency anemia of the histogram gives a good initial sense of the range, size, Post-iron treatment of iron deficiency with megaloblastic anemia shape, and other salient features of the red cell morphology.
    [Show full text]
  • Complete Blood Count in Primary Care
    Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document.
    [Show full text]
  • Red Blood Cell Morphology in Patients with Β-Thalassemia Minor
    J Lab Med 2017; 41(1): 49–52 Short Communication Carolin Körber, Albert Wölfler, Manfred Neubauer and Christoph Robier* Red blood cell morphology in patients with β-thalassemia minor DOI 10.1515/labmed-2016-0052 Keywords: β-thalassemia minor; erythrocytes; red blood Received July 11, 2016; accepted October 20, 2016; previously published cells; red blood cell morphology. online December 10, 2016 Abstract In β-thalassemias, the examination of a peripheral blood (PB) smear may provide relevant clues to initial diagnosis. Background: A systematic analysis of the occurrence of Complete laboratory investigation consists of the determina- red blood cell (RBC) abnormalities in β-thalassemia minor tion of the complete blood count, assessment of red blood has not been performed to date. This study aimed to iden- cell (RBC) morphology, high performance liquid chroma- tify and quantify the frequency of RBC abnormalities in tography (HPLC), hemoglobin electrophoresis and, where patients with β-thalassemia minor. necessary, DNA analysis [1]. Especially in the clinically Methods: We examined blood smears of 33 patients with severe forms referred to as β-thalassemia major and interme- β-thalassemia minor by light microscopy for the occur- dia, RBC abnormalities are often markedly apparent [2]. In rence of 15 defined RBC abnormalities. In the case of posi- β-thalassemia minor, also called β-thalassemia trait, the car- tivity, the abnormal cells/20 high power fields (HPF) at riers are usually clinically asymptomatic, showing persistent 1000-fold magnification were counted. microcytosis and hypochromia or mild microcytic anemia [1, Results: Anisocytosis, poikilocytosis and target cells 3]. The PB smear may show microcytosis, hypochromia and, (median 42/20 HPF) were observed in all, and ovalocytes infrequently, poikilocytosis [2].
    [Show full text]
  • Vitamin D Insufficiency Is a Frequent Finding in Pediatric and Adult
    al Dis ion ord rit e t rs u N & f T o h l e a r n a Winters et al., J Nutr Disorders Ther 2014, 4:2 r p u y o Journal of Nutritional Disorders & Therapy J DOI: 10.4172/2161-0509.1000140 ISSN: 2161-0509 Research Article Open Access Vitamin D Insufficiency is a Frequent Finding in Pediatric and Adult Patients with Sickle Cell Disease and Correlates with Markers of Cell Turnover Winters AC1, Kethman W2, Kruse-Jarres R3 and Kanter J4* 1Cincinnati Children's Hospital, Burnet Ave, Cincinnati, OH 45229, USA 2Stanford University, Serra Mall, Stanford, CA 94305, USA 3Tulane University, St Charles Ave, New Orleans, LA 70118, USA 4Medical University of South Carolina, Charleston, SC, USA *Corresponding author: Julie Kanter, Director, Sickle Cell Disease Research, MUSC, 135 Rutledge Avenue, MSC 558, Charleston, SC, 29425, USA, Tel: (843) 876-8483; E-mail: [email protected] Rec Date: April 14, 2014, Acc Date: Jun 16, 2014, Pub Date: Jun 18, 2014 Copyright: © 2014 Winters AC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Vitamin D insufficiency affects 33%-78% of children and 60-100% of adults with sickle cell disease (SCD). There are no previous reports demonstrating a correlation between vitamin D insufficiency and cell turnover in patients with SCD. We hypothesized that vitamin D insufficiency was prevalent in our SCD population (ages 0-60 years) and would correlate with reticulocyte counts in these patients.
    [Show full text]
  • A Study of the Neonatal Haematology of Children with Down Syndrome
    A study of the neonatal haematology of children with Down syndrome Rebecca James submitted in accordance with the requirements for the degree of Doctor of Philosophy Department of Health Sciences University of York, March 2011 Abstract This thesis describes the establishment and initial findings of the Children with Down Syndrome Study, a birth cohort of children with DS. The Children with Down Syndrome Study was set up in order to characterise the haematology of neonates with Down syndrome and specifically to test the hypothesis that that this differed in this population. The study was carried out with the support of the Down Syndrome Association and the Down Syndrome Medical Interest Group, and through consultation with clinicians and families. Following a pilot study in the Yorkshire region it was established in over 60 hospitals across the north of England. The Children with Down Syndrome Study is the largest birth cohort of children with Down syndrome established to date, and this is the largest reported analysis of the haematology of neonates with Down syndrome. The results confirm that neonates with Down syndrome have a distinct haematological profile. Means and ranges for haematological parameters throughout the neonatal period are provided. The effects of gestational age, birth weight, postnatal age and the venepuncture to processing interval on the neonatal full blood count were examined, and this is the first report of factors that influence the haematological parameters in neonates with Down syndrome. In order to analyse the blood cell morphology a new approach to morphology was developed and validated. Morphological review of samples from neonates with Down syndrome demonstrated that blasts were common.
    [Show full text]
  • Clinical and Subclinical Iron-Deficiency Among Inner-City Adolescent Girls Eric Donald Wells Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1982 Clinical and subclinical iron-deficiency among inner-city adolescent girls Eric Donald Wells Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Wells, Eric Donald, "Clinical and subclinical iron-deficiency among inner-city adolescent girls" (1982). Yale Medicine Thesis Digital Library. 3303. http://elischolar.library.yale.edu/ymtdl/3303 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. VALE MEDICAL LIBRARY TII3 Y12 3 9002 08676 1443 5109 MEDICAL LIBRARY • >-> . • •• ts • • -tV ‘ • t , Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/clinicalsubcliniOOwell Permission for photocopying or microfilming of 11 -, A II (Title of thesis) for the purpose of individual scholarly consultation or refer ence is hereby granted by the author. This permission is not to be interpreted as affecting publication of this work or otherwise placing it in the public domain, and the author re¬ serves all rights of ownership
    [Show full text]
  • 16 Microcytic Hypochromic Anemia
    Microcytic Hypochromic Anemia MODULE Hematology and Blood Bank Technique 16 MICROCYTIC HYPOCHROMIC Notes ANEMIA 16.1 INTRODUCTION Microcytic hypochromic anemia is characterized by decreased haemoglobin, Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Haemoglobin (MCH), Mean Corpuscular Haemoglobin Concentration (MCHC) and normal to increased Red Cell Distribution Width (RDW). RBC count is normal to increased depending upon the cause of anemia. The peripheral blood smear shows red cells which are smaller in size (microcytes) containing less haemoglobin (hypochromic). OBJECTIVES After reading this lesson, you will be able to: z describe the basics of normal iron metabolism z explain the biochemical parameters to measure iron in the body z describe the causes of iron deficiency anemia z discuss the laboratory diagnosis of iron deficiency anemia z explain the differential diagnosis of hypochromic microcytic anemia 16.2 DEFINITION Microcytic hypochromic anemia is characterized by decreased hemoglobin, PCV, MCV, MCH, MCHC and normal to increased RDW. RBC count is normal to increased depending upon the cause of anemia. The peripheral blood smear shows red cells which are smaller in size (microcytes) containing less hemoglobin (hypochromic). HEMATOLOGY AND BLOOD BANK TECHNIQUE 133 MODULE Microcytic Hypochromic Anemia Hematology and Blood Examples Bank Technique Iron deficiency anemia Anemia of chronic disorders Disorders of globin synthesis (eg. Thalassemia minor) Sideroblastic anemias Notes Lead intoxication 16.3 IRON DEFICIENCY ANEMIA 16.3.1 Incidence This is the most common type of anemia found worldwide and in India. It is seen in all age groups but is more common in women of the child bearing age and in children.
    [Show full text]
  • Hemoglobin Bart's and Alpha Thalassemia Fact Sheet
    Health Care Provider Hemoglobinopathy Fact Sheet Hemoglobin Bart’s & Alpha Thalassemia Hemoglobin Bart’s is a tetramer of gamma (fetal) globin chains seen during the newborn period. Its presence indicates that one or more of the four genes that produce alpha globin chains are dysfunctional, causing alpha thalassemia. The more alpha genes affected, the more significant the thalassemia and clinical symptoms. Alpha thalassemia occurs in individuals of all ethnic backgrounds and is one of the most common genetic diseases worldwide. However, the clinically significant forms (Hemoglobin H disease, Hemoglobin H Constant Spring, and Alpha Thalassemia Major) occur predominantly among Southeast Asians. Summarized below are the manifestations associated with the different levels of Hemoglobin Bart’s detected on the newborn screen, and recommendations for follow-up. The number of dysfunctional genes is estimated by the percentage of Bart’s seen on the newborn screen. Silent Carrier- Low Bart’s If only one alpha gene is affected, the other three genes can compensate nearly completely and only a low level of Bart’s is detected, unless hemoglobin Constant Spring is identified (see below). Levels of Bart’s below a certain percentage are not generally reported by the State Newborn Screening Program as these individuals are likely to be clinically and hematologically normal. However, a small number of babies reported as having possible alpha thalassemia trait will be silent carriers. Alpha Thalassemia or Hemoglobin Constant Spring Trait- Moderate Bart’s Alpha thalassemia trait produces a moderate level of Bart’s and typically results from the dysfunction of two alpha genes-- either due to gene deletions or a specific change in the alpha gene that produces elongated alpha globin and has a thalassemia-like effect: hemoglobin Constant Spring.
    [Show full text]