Hemoglobin Bart's and Alpha Thalassemia Fact Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large Pink Inclusions in Multiple Myeloma Cells
Journal of Blood Disorders, Symptoms & Treatments Case Report Large Pink Inclusions in Multiple Myeloma Cells This article was published in the following Scient Open Access Journal: Journal of Blood Disorders, Symptoms & Treatments Received July 28, 2017; Accepted August 05, 2017; Published August 11, 2017 Juan Zhang1, Mingyong Li1*, Xianyong Jiang2 and Yuan He1 Abstract 1Clinical Laboratory of Sichuan Academy of Medical Objective: Several intracytoplasmic morphological changes in the plasma cells of Science & Sichuan Provincial People’s Hospital, multiple myeloma have been described previously, especially the Auer rod-like inclusions, Chengdu, Sichuan, China but large pink inclusions have not been reported yet. In this paper, we intend to report a rare 2 Haematology Bone Marrow Inspection laboratory case of inclusions in multiple myeloma. of Peking Union Medical College Hospital, Beijing, China Methods: Bone marrow aspiration from the right superior iliac spine was examined twice. Cells were stained with “Wright-Giemsa” method and also analyzed by flow cytometry, immunohistochemical staining and fluorescence in situ hybridization (FISH). Bone scan demonstrated bilateral ribs, thoracic vertebrae, with multiple low density shadows, which was confirmed subsequently as a lytic lesion on CT scanning. Complete blood count, serum chemistry and coagulation tests were also examined. Results: Bone marrow aspirate from the right superior iliac spine at the time of myeloma diagnosis showed about 58.5% of all nucleated cells being plasma cells, of which many had large pink intracytoplasmic inclusions. Repeat bone marrow biopsy later showed persistence of these morphological findings. All of Flow cytometry, immunohistochemistry and FISH examination support the diagnosis of multiple myeloma. Conclusion: This is the first time to report a multiple myeloma case with such giant pink inclusions. -
Non-Commercial Use Only
only use Non-commercial 14th International Conference on Thalassaemia and Other Haemoglobinopathies 16th TIF Conference for Patients and Parents 17-19 November 2017 • Grand Hotel Palace, Thessaloniki, Greece only use For thalassemia patients with chronic transfusional iron overload... Make a lasting impression with EXJADENon-commercial film-coated tablets The efficacy of deferasirox in a convenient once-daily film-coated tablet Please see your local Novartis representative for Full Product Information Reference: EXJADE® film-coated tablets [EU Summary of Product Characteristics]. Novartis; August 2017. Important note: Before prescribing, consult full prescribing information. iron after having achieved a satisfactory body iron level and therefore retreatment cannot be recommended. ♦ Maximum daily dose is 14 mg/kg body weight. ♦ In pediatric patients the Presentation: Dispersible tablets containing 125 mg, 250 mg or 500 mg of deferasirox. dosing should not exceed 7 mg/kg; closer monitoring of LIC and serum ferritin is essential Film-coated tablets containing 90 mg, 180 mg or 360 mg of deferasirox. to avoid overchelation; in addition to monthly serum ferritin assessments, LIC should be Indications: For the treatment of chronic iron overload due to frequent blood transfusions monitored every 3 months when serum ferritin is ≤800 micrograms/l. (≥7 ml/kg/month of packed red blood cells) in patients with beta-thalassemia major aged Dosage: Special population ♦ In moderate hepatic impairment (Child-Pugh B) dose should 6 years and older. ♦ Also indicated for the treatment of chronic iron overload due to blood not exceed 50% of the normal dose. Should not be used in severe hepatic impairment transfusions when deferoxamine therapy is contraindicated or inadequate in the following (Child-Pugh C). -
Predictors of Autoimmune Hemolytic Anemia in Beta-Thalassemia
Blood Cells, Molecules and Diseases 79 (2019) 102342 Contents lists available at ScienceDirect Blood Cells, Molecules and Diseases journal homepage: www.elsevier.com/locate/bcmd Predictors of autoimmune hemolytic anemia in beta-thalassemia patients with underlying red blood cells autoantibodies T ⁎ Monia Ben Khaleda,b, , Monia Ouedernia,b, Nessrine Sahlia,b, Nawel Dhouibb, Ahmed Ben Abdelazizc, Samia Rekayaa,b, Ridha Koukia,b, Houda Kaabid, Hmida Slamad, Fethi Melloulia,b, Mohamed Bejaouia,b a Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia b Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia c Information System Directions, Sahloul University Hospital, Sousse, Tunisia d National Center of Blood Transfusion, Tunis, Tunisia ARTICLE INFO ABSTRACT Editor: Mohandas Narla In beta-thalassemia patients, erythrocyte autoantibodies can remain silent or lead to Autoimmune Hemolytic Keywords: Anemia (AIHA).The aim of this study was to identify predictors of AIHA in beta-thalassemia patients with Autoimmune hemolytic anemia positive Direct Antiglobulin Test (DAT), in Tunisia. Thalassemia This longitudinal prognosis study was carried out on beta-thalassemia patients with a positive confirmed Transfusion DAT. Predictors of AIHA were identified the Kaplan-Meier method. A Cox model analysis was used to identify Autoantibodies independent predictors. Red blood cells Among 385 beta thalassemia patients, 87 developed positive DAT (22.6%). Autoimmune hemolytic anemia Direct antiglobulin test was occurred in 25 patients. Multivariate analysis showed that AIHA was independently associated with beta- thalassemia intermedia and similar family history of AIHA. Splenectomy in patients with positive DAT was independently associated with an increased risk of AIHA (HR = 6.175, CI: 2.049–18.612, p < 0.001). -
PATHOLOGY RESIDENT HEMATOLOGY ROTATION (North Florida/South Georgia Veterans Health Care System): Rotation Director: William L
PATHOLOGY RESIDENT HEMATOLOGY ROTATION (North Florida/South Georgia Veterans Health Care System): Rotation Director: William L. Clapp, M.D., Chief, Hematology Section, Gainesville VAMC; Consultants: Neil S. Harris, M.D., Director, Laboratory Hematology/Coagulation, University of Florida and Shands Hospital and Raul C. Braylan, M.D., Director, Hematopathology, University of Florida and Shands Hospital 1. Description of the Rotation: In this rotation, the resident will gain experience in laboratory hematology, which will include (1) peripheral blood studies to evaluate a variety of hematologic disorders, including anemias, lymphoproliferative and myeloproliferative disorders and leukemias. The emphasis on a multidisciplinary approach to diagnose hematologic disorders (including correlation of the peripheral blood studies with bone marrow and lymph node studies) provides an opportunity for the resident to also gain additional experience in (2) traditional histopathology, (3) immunohistochemistry, (4) electron microscopy, (5) protein electrophoresis, (6) flow cytometry, (7) cytogenetics and (8) molecular genetics which may be performed on the peripheral blood, bone marrow or lymph nodes of patients. The residents will acquire valuable experience by independently performing some bone marrow procedures. In addition, the resident will gain experience in coagulation testing. The residents will become familiar with the instrumentation in the hematology laboratory, including the operating principles and trouble-shooting (medical knowledge). The availability of assembled case study sets and reading materials (medical knowledge) will enhance the resident’s experience. Participation in CAP surveys, continuing education and hematology conferences is a component of the rotation (practice-based learning). Management issues and computer applications will be discussed (practice-based learning). As appropriate to the individual case or consultation under review, the ethical, socioeconomic, medicolegal and cost-containment issues will be reviewed and discussed. -
Section 8: Hematology CHAPTER 47: ANEMIA
Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited. -
Acquired Hemophilia A: Pathogenesis and Treatment
Bleeding disorders Acquired hemophilia A: pathogenesis and treatment P.W. Collins ABSTRACT Arthur Bloom Haemophilia Centre, Acquired hemophilia A is an autoimmune disease caused by an inhibitory antibody to factor VIII. The School of Medicine, severity of bleeding varies but patients remain at risk of life-threatening bleeding until the inhibitor Cardiff University, Heath Park, has been eradicated. The cornerstones of management are rapid and accurate diagnosis, control of Cardiff, UK bleeding, investigation for an underlying cause, and eradication of the inhibitor by immunosuppres - sion. Patients should be managed jointly with a specialist center even if they present without signifi - cant bleeding. Despite an extensive literature, few controlled data are available and management Hematology Education: guidelines are based on expert opinion. Recombinant factor VIIa and activated prothrombin complex the education program for the concentrate are equally efficacious for treating bleeds and both are superior to factor VIII or desmo - annual congress of the European pressin. Immunosuppression should be started as soon as the diagnosis is made. Commonly used reg - Hematology Association imens are steroids alone or combined with cytotoxic agents. Rituximab is being used more commonly but current evidence does not suggest that it improves outcomes or reduces side effects. 2012;6:65-72 Introduction Pathogenesis Acquired hemophilia A (AHA) is a bleed - AHA is associated with autoimmune dis - ing disorder caused by polyclonal IgG1 and eases, such as rheumatoid arthritis, polymyal - IgG4 autoantibodies to the factor VIII ( FVIII ) gia rheumatic, and systemic lupus erythe - A2 and C2 domain. Morbidity and mortality matosis; malignancy; pregnancy and dermato - are high secondary to age, underlying dis - logical disorders, such as pemphigoid. -
A Distant Gene Deletion Affects Beta-Globin Gene Function in an Atypical Gamma Delta Beta-Thalassemia
A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. P Curtin, … , A D Stephens, H Lehmann J Clin Invest. 1985;76(4):1554-1558. https://doi.org/10.1172/JCI112136. Research Article We describe an English family with an atypical gamma delta beta-thalassemia syndrome. Heterozygosity results in a beta-thalassemia phenotype with normal hemoglobin A2. However, unlike previously described cases, no history of neonatal hemolytic anemia requiring blood transfusion was obtained. Gene mapping showed a deletion that extended from the third exon of the G gamma-globin gene upstream for approximately 100 kilobases (kb). The A gamma-globin, psi beta-, delta-, and beta-globin genes in cis remained intact. The malfunction of the beta-globin gene on a chromosome in which the deletion is located 25 kb away suggests that chromatin structure and conformation are important for globin gene expression. Find the latest version: https://jci.me/112136/pdf A Distant Gene Deletion Affects ,8-Globin Gene Function in an Atypical '6y5-Thalassemia Peter Curtin, Mario Pirastu, and Yuet Wai Kan Howard Hughes Medical Institute and Department ofMedicine, University of California, San Francisco, California 94143 John Anderson Gobert-Jones Department ofPathology, West Suffolk County Hospital, Bury St. Edmunds IP33-2QZ, Suffolk, England Adrian David Stephens Department ofHaematology, St. Bartholomew's Hospital, London ECIA-7BE, England Herman Lehmann Department ofBiochemistry, University ofCambridge, Cambridge CB2-lQW, England Abstract tologic picture of f3-thalassemia minor in adult life. Globin syn- thetic studies reveal a ,3 to a ratio of -0.5, but unlike the usual We describe an English family with an atypical 'yS6-thalassemia fl-thalassemia heterozygote, the levels of HbA2 (and HbF) are syndrome. -
Clinical Pathology Interpretation Barbara Horney
CLINICAL PATHOLOGY PATHOLOGIE CLINIQUE Clinical pathology interpretation Barbara Horney History, physical examination, and Table 1. Hematologic findings from a lethargic, laboratory findings 4-year-old schipperke 4-year-old, spayed female, schipperke was pre- Blood cell count Reference range A sented because of mild lethargy. Pale mucous mem- White blood cells branes were observed on physical examination. Table 1 (WBC) gives the results of the hematological examination of Total 6.0 X 109/L 6.0-17.1 X 109/L blood at Differential samples taken this time. No significant abnor- segmented 65% 3.85 X 109/L 3.6-11.5 X 109/L malities were identified on the serum biochemical neutrophils profile. eosinophils 2% 0.12 X 109/L 0.01-1.25 X 109/L lymphocytes 27% 1.59 X 109/L 1.0-4.8 X 109/L Interpretation and discussion monocytes 6% 0.35 X 109/L 0.15-1.35 X 109/L Red blood cells The hematology results can be summarized as severe, Total 1.2 X 1012/L 5.5-8.5 X 109/L microcytic, normochromic, nonregenerative anemia nucleated 1/100 WBC <1-2 per 100 WBC associated with marked spherocytosis. spherocytes 4+ microcytosis 2+ The presence of spherocytes is often associated with immune-mediated hemolytic disease [1,2], although Platelets estimated normal hereditary membrane defects [3] and zinc toxicosis [4] in number can also result in spherocyte formation. A direct antibody Reticulocytes 0 X 109/L up to 120 X 109/L test (Coomb's test) was weakly positive. This finding can Hemoglobin 22 g/L 120-180 g/L support the tentative diagnosis of anemia of immune- Hematocrit 0.068 L/L 0.37-0.55 L/L mediated etiology, although this test is subject to both Mean corpuscular false positive and false negative results [2,5]. -
Anemia in Heart Failure - from Guidelines to Controversies and Challenges
52 Education Anemia in heart failure - from guidelines to controversies and challenges Oana Sîrbu1,*, Mariana Floria1,*, Petru Dascalita*, Alexandra Stoica1,*, Paula Adascalitei, Victorita Sorodoc1,*, Laurentiu Sorodoc1,* *Grigore T. Popa University of Medicine and Pharmacy; Iasi-Romania 1Sf. Spiridon Emergency Hospital; Iasi-Romania ABSTRACT Anemia associated with heart failure is a frequent condition, which may lead to heart function deterioration by the activation of neuro-hormonal mechanisms. Therefore, a vicious circle is present in the relationship of heart failure and anemia. The consequence is reflected upon the pa- tients’ survival, quality of life, and hospital readmissions. Anemia and iron deficiency should be correctly diagnosed and treated in patients with heart failure. The etiology is multifactorial but certainly not fully understood. There is data suggesting that the following factors can cause ane- mia alone or in combination: iron deficiency, inflammation, erythropoietin levels, prescribed medication, hemodilution, and medullar dysfunc- tion. There is data suggesting the association among iron deficiency, inflammation, erythropoietin levels, prescribed medication, hemodilution, and medullar dysfunction. The main pathophysiologic mechanisms, with the strongest evidence-based medicine data, are iron deficiency and inflammation. In clinical practice, the etiology of anemia needs thorough evaluation for determining the best possible therapeutic course. In this context, we must correctly treat the patients’ diseases; according with the current guidelines we have now only one intravenous iron drug. This paper is focused on data about anemia in heart failure, from prevalence to optimal treatment, controversies, and challenges. (Anatol J Cardiol 2018; 20: 52-9) Keywords: anemia, heart failure, intravenous iron, ferric carboxymaltose, quality of life Introduction g/dL in men) (2). -
Research Article
z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 8, Issue, 12, pp.42994-42999, December, 2016 ISSN: 0975-833X RESEARCH ARTICLE PLASMA CELLS IN HEALTH AND DISEASE *Karuna Kumari, Shwetha Nambiar, K., Vanishree C Haragannavar, Dominic Augustine, Sowmya, S. V. and Roopa S Rao Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka ARTICLE INFO ABSTRACT Article History: Plasma cells are the only cells that sustain antibody production and hence are an essential part of immune system. In the bone marrow plasma cells produce immunoglobulins which assure long-term Received 03rd September, 2016 Received in revised form humoral immune protection and in the mucosa-associated lymphoid tissues (MALT) plasma cells 16th October, 2016 secrete IgA which protect the individual from pathogens invasion. This review illustrates plasma cell Accepted 25th November, 2016 development and their role in both health and disease. Published online 30th December, 2016 Key words: Plasma cell, Immunoglobulin, B cells. Copyright©2016, Karuna Kumari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Karuna Kumari, Shwetha Nambiar, K., Vanishree C Haragannavar, Dominic Augustine, Sowmya, S. V. and Roopa S Rao, 2016. “Plasma cells in health and disease”, International Journal of Current Research, 8, (12), 42994-42999. INTRODUCTION cytoplasm of the PCs contains large amount of rough endoplasmic reticulum (rER) and Golgi apparatus. The Plasma Cells (PCs) are non-dividing, effectors cells that cytoplasm of PC displays strong basophilia due to presence of represent the final stage of B cell differentiation. -
Clinical Usefulness of Serum Procalcitonin Level in Distinguishing Between Kawasaki Disease and Other Infections in Febrile Children
Original article LeeKorean NY, Jet Pediatr al. • Serum 2017;60(4):112-117 procalcitonin level between Kawasaki disease and other infections https://doi.org/10.3345/kjp.2017.60.4.112 pISSN 1738-1061•eISSN 2092-7258 Korean J Pediatr Clinical usefulness of serum procalcitonin level in distinguishing between Kawasaki disease and other infections in febrile children Na Hyun Lee, MD1, Hee Joung Choi, MD1, Yeo Hyang Kim, MD2 1Department of Pediatrics, Keimyung University School of Medicine, Daegu, 2Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea Purpose: The aims of this study were to compare serum procalcitonin (PCT) levels between febrile Corresponding author: Yeo Hyang Kim, MD, PhD children with Kawasaki disease (KD) and those with bacterial or viral infections, and assess the clinical Department of Pediatrics, Kyungpook National Uni- versity School of Medicine, 680 Gukchaebosang-ro, usefulness of PCT level in predicting KD. Jung-gu, Daegu 41944, Korea Methods: Serum PCT levels were examined in febrile pediatric patients admitted between August 2013 Tel: +82-53-200-5720, and August 2014. The patients were divided into 3 groups as follows: 49 with KD, 111 with viral infec- Fax: +82-53-425-6683, tions, and 24 with bacterial infections. E-mail: [email protected] Results: The mean PCT level in the KD group was significantly lower than that in the bacterial infection Received: 26 August, 2016 group (0.82±1.73 ng/mL vs. 3.11±6.10 ng/mL, P=0.002) and insignificantly different from that in Revised: 27 October, 2016 the viral infection group (0.23±0.34 ng/mL,P=0.457). -
Hereditary Spherocytosis: Clinical Features
Title Overview: Hereditary Hematological Disorders of red cell shape. Disorders Red cell Enzyme disorders Disorders of Hemoglobin Inherited bleeding disorders- platelet disorders, coagulation factor Anthea Greenway MBBS FRACP FRCPA Visiting Associate deficiencies Division of Pediatric Hematology-Oncology Duke University Health Service Inherited Thrombophilia Hereditary Disorders of red cell Disorders of red cell shape (cytoskeleton): cytoskeleton: • Mutations of 5 proteins connect cytoskeleton of red cell to red cell membrane • Hereditary Spherocytosis- sphere – Spectrin (composed of alpha, beta heterodimers) –Ankyrin • Hereditary Elliptocytosis-ellipse, elongated forms – Pallidin (band 4.2) – Band 4.1 (protein 4.1) • Hereditary Pyropoikilocytosis-bizarre red cell forms – Band 3 protein (the anion exchanger, AE1) – RhAG (the Rh-associated glycoprotein) Normal red blood cell- discoid, with membrane flexibility Hereditary Spherocytosis: Clinical features: • Most common hereditary hemolytic disorder (red cell • Neonatal jaundice- severe (phototherapy), +/- anaemia membrane) • Hemolytic anemia- moderate in 60-75% cases • Mutations of one of 5 genes (chromosome 8) for • Severe hemolytic anaemia in 5% (AR, parents ASx) cytoskeletal proteins, overall effect is spectrin • fatigue, jaundice, dark urine deficiency, severity dependant on spectrin deficiency • SplenomegalSplenomegaly • 200-300:million births, most common in Northern • Chronic complications- growth impairment, gallstones European countries • Often follows clinical course of affected