Anemia in Children JOSEPH J

Total Page:16

File Type:pdf, Size:1020Kb

Anemia in Children JOSEPH J Anemia in Children JOSEPH J. IRWIN, M.D., and JEFFREY T. KIRCHNER, D.O., Lancaster General Hospital, Lancaster, Pennsylvania Anemia in children is commonly encountered by the family physician. Multiple causes exist, but with a thorough history, a physical examination and limited laboratory evaluation a specific diagnosis can usually be established. The use of the mean corpuscular volume to classify the ane- mia as microcytic, normocytic or macrocytic is a standard diagnostic approach. The most common form of microcytic anemia is iron deficiency caused by reduced dietary intake. It is easily treat- able with supplemental iron and early intervention may prevent later loss of cognitive function. Less common causes of microcytosis are thalassemia and lead poisoning. Normocytic anemia has many causes, making the diagnosis more difficult. The reticulocyte count will help narrow the differential diagnosis; however, additional testing may be necessary to rule out hemolysis, hemoglobinopathies, membrane defects and enzymopathies. Macrocytic anemia may be caused by a deficiency of folic acid and/or vitamin B12, hypothyroidism and liver disease. This form of anemia is uncommon in children. (Am Fam Physician 2001;64:1379-86.) nemia is a frequent laboratory in developing humans: the embryonic, abnormality in children. As Gower-I, Gower-II, Portland, fetal hemoglo- many as 20 percent of children bin (HbF) and normal adult hemoglobin in the United States and 80 per- (HbA and HbA2). HbF is the primary hemo- cent of children in developing globin found in the fetus. It has a higher affin- Acountries will be anemic at some point by the ity for oxygen than adult hemoglobin, thus age of 18 years.1 increasing the efficiency of oxygen transfer to the fetus. The relative quantities of HbF Physiology of Hemoglobin Production rapidly decrease to trace levels by the age of six Erythropoietin is the primary hormone to 12 months and are ultimately replaced by regulator of red blood cell (RBC) production. the adult forms, HbA and HbA2. In the fetus, erythropoietin comes from the monocyte/macrophage system of the liver. General Approach to Management Postnatally, erythropoietin is produced in the Most children with anemia are asymptomatic peritubular cells of the kidneys. Key steps in and have an abnormal hemoglobin or hemat- red blood cell differentiation include conden- ocrit level on routine screening (Table 1).2 Infre- sation of red cell nuclear material, production quently, a child with anemia may have pallor, of hemoglobin until it amounts to 90 percent fatigue and jaundice but may or may not be of the total red blood cell mass and the extru- critically ill. Key historical points and findings sion of the nucleus that causes loss of RBC on physical examination can reveal the under- synthetic ability. Normal RBCs survive an lying cause of the anemia. average of 120 days, while abnormal RBCs can The newborn’s body reclaims and stores survive as little as 15 days.1 iron as the hematocrit levels decrease during The hemoglobin molecule is a heme-pro- the first few months of life. Therefore, in full- tein complex of two pairs of similar polypep- term infants, iron deficiency is rarely the cause tide chains. There are six types of hemoglobin of anemia until after six months of age. In pre- mature infants, iron deficiency can occur only after the birth weight has been doubled. Iron deficiency anemia is rarely found in full-term infants X-linked causes of anemia, such as glucose-6- phosphate dehydrogenase (G6PD) deficiency, younger than six months and in premature infants before should be considered in males. Pyruvate they have doubled their birth weight. kinase deficiency is autosomal recessive and associated with chronic hemolytic anemia of OCTOBER 15, 2001 / VOLUME 64, NUMBER 8 www.aafp.org/afp AMERICAN FAMILY PHYSICIAN 1379 TABLE 1 Screening Recommendations for Anemia in Children 1. U.S. Preventive Services Task Force recommends screening hemoglobin or hematocrit between the ages of six to 12 months in high-risk infants. High- risk includes the following: blacks, Native Americans, Alaska natives, infants living in poverty, immigrants from developing countries, preterm and lowbirth- weight infants and infants whose principle dietary intake is unfortified cow’s Laboratory Evaluation milk. Newborns should be screened for hemoglobinopathies with hemoglobin Anemia is defined as a decreased concentra- electrophoresis. Selective screening is appropriate in areas of low prevalence. tion of hemoglobin and RBC mass compared 2. The recommendations of the American Academy of Family Physicians are with that in age-matched controls. In screen- the same as the U.S. Preventive Services Task Force. ing situations, such as the one-year check-up, 3. American Academy of Pediatrics recommends screening hemoglobin or only a hemoglobin level is usually obtained. hematocrit at the six-, nine-, or 12-month visit for all infants. Universal When anemia is encountered during this screening for anemia in newborns is not warranted. screening, the specimen should be upgraded to a complete blood cell count (CBC), because Information from U.S. Preventive Services Task Force. Guide to clinical preventive services: report of the U.S. Preventive Services Task Force. 2d ed. Baltimore, Md.: some laboratories store blood samples for up Williams & Wilkins, 1996; American Academy of Family Physicians. Summary of to seven days. Physicians should first look at AAFP policy recommendations and age charts. Retrieved October 2000, from: the mean corpuscular volume (MCV), which http://www.aafp.org/exam; and the American Academy of Pediatrics. AAP policy allows placement of the anemia into one of statements, clinical practice guidelines, and model bills. Retrieved October 2000, the standard classifications of microcytic, nor- from: http://www.aap.org/policy/pcyhome.cfm. mocytic and macrocytic (Table 2).3,4 After narrowing the differential diagnosis based on the MCV,the clinician can proceed with addi- variable severity. A history of nutritional defi- tional diagnostic work-up. ciency, pica or geophagia suggests iron defi- The next step of the anemia work-up should ciency. Recent prescription drug use may sug- include a peripheral smear and a measurement gest G6PD deficiency or aplastic anemia. A of the reticulocyte count. Pathologic findings recent viral illness may suggest red cell aplasia. on the peripheral smear can indicate the etiol- Recurrent diarrhea raises suspicion of malab- ogy of the anemia based on red cell morphol- sorption and occult blood loss occurring in ogy. Basophilic stippling (Figure 1a) represent- celiac sprue and inflammatory bowel disease. ing aggregated ribosomes can be seen in The physical examination is important thalassemia syndromes, iron deficiency and but will be unremarkable in most children lead poisoning. Howell-Jolly bodies (Figure 1b) with anemia. Findings that suggest chronic are nuclear remnants seen in asplenia, perni- anemia include irritability, pallor (usually not cious anemia and severe iron deficiency. seen until hemoglobin levels are less than 7 g Cabot’s ring bodies (Figure 1c) are also nuclear per dL [70 g per L]), glossitis, a systolic mur- remnants and are seen in lead toxicity, perni- mur, growth delay and nail bed changes. Chil- cious anemia and hemolytic anemias. Heinz’s dren with acute anemia often present more bodies (Figure 1d) are from denatured aggre- dramatically with clinical findings including gated hemoglobin and can be seen in tha- jaundice, tachypnea, tachycardia, splenomeg- lassemia, asplenia and chronic liver disease. aly, hematuria and congestive heart failure. The reticulocyte count (or percentage) helps distinguish a hypoproductive anemia (de- creased RBC production) from a destructive The Authors process (increased RBC destruction). A low JOSEPH J. IRWIN, M.D., is in private practice in Ephrata, Pa. Dr. Irwin is a graduate of reticulocyte count may indicate bone marrow the University of Pennsylvania School of Medicine, Philadelphia, and completed a res- disorders or aplastic crisis, while a high count idency in family practice at Lancaster (Pa.) General Hospital. generally indicates a hemolytic process or active JEFFREY T. KIRCHNER, D.O., is associate director of the family practice residency pro- blood loss. The corrected reticulocyte count gram at Lancaster General Hospital. Dr. Kirchner is a graduate of the Philadelphia Col- corrects for differences in the hematocrit and is lege of Osteopathic Medicine and completed a residency in family practice at Abington (Pa.) Memorial Hospital. He is a former associate editor of American Family Physician. a more accurate indicator of erythropoietic activity. To calculate corrected reticulocyte Address correspondence to Joseph J. Irwin, M.D., Lancaster General Hospital, 555 W. Trout Run Rd., Ephrata, PA 17522 (e-mail: [email protected]). Reprints are not available count, multiply the patient’s reticulocyte count from the authors. (or percentage) by the result of dividing the 1380 AMERICAN FAMILY PHYSICIAN www.aafp.org/afp VOLUME 64, NUMBER 8 / OCTOBER 15, 2001 TABLE 2 Classification of Anemias Based on Size of Red Blood Cells A C The rightsholder did not B D grant rights to reproduce FIGURE 1. Depiction of red blood cell mor- phologies that may appear on a peripheral this item in electronic smear, showing: (A) basophilic stippling, (B) media. For the missing Howell-Jolly bodies, (C) Cabot’s ring bodies and (D) Heinz’s bodies. item, see the original print version of this publication. patient’s hematocrit level by the normal hema- tocrit level. A corrected reticulocyte count above 1.5 suggests increased RBC production. In the case of decreased RBC survival, the bone marrow normally responds with increased reticulocyte production, usually greater than 2 percent or with an absolute count of greater than 100,000 cells per mm3 (100 ϫ 106 per L). This is presumptive evidence of chronic hemolysis if the reticulocytosis is sustained. If, after analysis of the initial laboratory find- ings, the diagnosis is still unclear, other confir- matory studies may be required. Tests to deter- mine if the MCV is too low include serum iron level, total iron binding capacity (TIBC) and lead level.
Recommended publications
  • Section 8: Hematology CHAPTER 47: ANEMIA
    Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited.
    [Show full text]
  • Hematopoiesis/RBC Disorders
    Neonatal Hematopoiesis and RBC Disorders Vandy Black, MD, MSc Pediatric Hematology June 2, 2016 Objectives • Review normal erytHropoiesis in tHe fetus and neonate and regulation of fetal hemoglobin • Outline tHe differential diagnosis of neonatal RBC disorders witH a focus on tHe clinical and laboratory findings • Discuss common presentations of intrinsic red cell disorders in neonates WhicH of tHe following infants is most likely to be diagnosed with a primary hematologic disorder (i.e. need ongoing follow-up in my office)? A. A full-term male with a Hb of 7.5 gm/dL at birth (MCV 108) B. A one week old witH a newborn screen tHat shows Hb FAS C. A full-term Caucasian male with a peak bilirubin of 21 mg/dL whose mom is AB+ D. A 26 week AA female wHose fatHer Has a history of G6PD deficiency RBC Disorders in tHe NICU • Anemia is a common finding in tHe NICU • Differential is broad • Hospitalized preterm infants receive more PRBC transfusions tHan any otHer patient group • >80% of ELBW infants receive at least one PRBC transfusion How RBC Disorders Present? • Anemia on a CBC – May be an expected or incidental finding • Abnormal RBC indices • Abnormal newborn screens • Hyperbilirubinemia • Screening because of family History What is Normal? CHristensen et al, Semin Perinatol 2009 What is Normal? CHristensen et al, Semin Perinatol 2009 Hemoglobin SwitcHing How to ApproacH Anemia • Are otHer cell lines involved? • What is tHe MCV? • What is tHe reticulocyte count? • What does tHe peripHeral blood smear sHow? Microcytic Anemia • Iron Deficiency – Iron supplementation for preterm infants • Thalassemia – Beta-thalassemia less likely in the neonatal period • Chronic Inflammation – Disorders of iron transport (e.g.
    [Show full text]
  • Clinical Pathology Interpretation Barbara Horney
    CLINICAL PATHOLOGY PATHOLOGIE CLINIQUE Clinical pathology interpretation Barbara Horney History, physical examination, and Table 1. Hematologic findings from a lethargic, laboratory findings 4-year-old schipperke 4-year-old, spayed female, schipperke was pre- Blood cell count Reference range A sented because of mild lethargy. Pale mucous mem- White blood cells branes were observed on physical examination. Table 1 (WBC) gives the results of the hematological examination of Total 6.0 X 109/L 6.0-17.1 X 109/L blood at Differential samples taken this time. No significant abnor- segmented 65% 3.85 X 109/L 3.6-11.5 X 109/L malities were identified on the serum biochemical neutrophils profile. eosinophils 2% 0.12 X 109/L 0.01-1.25 X 109/L lymphocytes 27% 1.59 X 109/L 1.0-4.8 X 109/L Interpretation and discussion monocytes 6% 0.35 X 109/L 0.15-1.35 X 109/L Red blood cells The hematology results can be summarized as severe, Total 1.2 X 1012/L 5.5-8.5 X 109/L microcytic, normochromic, nonregenerative anemia nucleated 1/100 WBC <1-2 per 100 WBC associated with marked spherocytosis. spherocytes 4+ microcytosis 2+ The presence of spherocytes is often associated with immune-mediated hemolytic disease [1,2], although Platelets estimated normal hereditary membrane defects [3] and zinc toxicosis [4] in number can also result in spherocyte formation. A direct antibody Reticulocytes 0 X 109/L up to 120 X 109/L test (Coomb's test) was weakly positive. This finding can Hemoglobin 22 g/L 120-180 g/L support the tentative diagnosis of anemia of immune- Hematocrit 0.068 L/L 0.37-0.55 L/L mediated etiology, although this test is subject to both Mean corpuscular false positive and false negative results [2,5].
    [Show full text]
  • Simultaneous Pure Red Cell Aplasia and Auto-Immune Hemolytic Anemia in a Previously Healthy Infant
    Simultaneous Pure Red Cell Aplasia and Auto-immune Hemolytic Anemia in a Previously Healthy Infant Robert P. Sanders, MD July 16, 2002 Case Presentation Patient Z.H. • Previously Healthy 7 month old WM • Presented to local ER 6/30 with 1 wk of decreased activity and appetite, low grade temp, 2 day h/o pallor. • Noted to have severe anemia, transferred to LeBonheur • Review of Systems – ? Single episode of dark urine – 4 yo sister diagnosed with Fifth disease 1 wk prior to onset of symptoms, cousin later also diagnosed with Fifth disease – Otherwise negative ROS •PMH – Term, no complications – Normal Newborn Screen – Hospitalized 12/01 with RSV • Medications - None • Allergies - NKDA • FH - Both parents have Hepatitis C (pt negative) • SH - Lives with Mom, 4 yo sister • Development Normal Physical Exam • 37.2 167 33 84/19 9.3kg • Gen - Alert, pale, sl yellow skin tone, NAD •HEENT -No scleral icterus • CHEST - Clear • CV - RRR, II/VI SEM at LLSB • ABD - Soft, BS+, no HSM • SKIN - No Rash • NEURO - No Focal Deficits Labs •CBC – WBC 20,400 • 58% PMN 37% Lymph 4% Mono 1 % Eo – Hgb 3.4 • MCV 75 MCHC 38.0 MCH 28.4 – Platelets 409,000 • Retic 0.5% • Smear - Sl anisocytosis, Sl hypochromia, Mod microcytes, Sl toxic granulation • G6PD Assay 16.6 U/g Hb (nl 4.6-13.5) • DAT, Broad Spectrum Positive – IgG negative – C3b, C3d weakly positive • Chemistries – Total Bili 2.0 – Uric Acid 4.8 –LDH 949 • Urinalysis Negative, Urobilinogen 0.2 • Blood and Urine cultures negative What is your differential diagnosis? Differential Diagnosis • Transient Erythroblastopenia of Childhood • Diamond-Blackfan syndrome • Underlying red cell disorder with Parvovirus induced Transient Aplastic Crisis • Immunohemolytic anemia with reticulocytopenia Hospital Course • Admitted to ICU for observation, transferred to floor 7/1.
    [Show full text]
  • Objectives Case
    James H. Nichols, Ph.D., DABCC, FACB Vanderbilt University School of Medicine Nashville, TN Neonatal Anemia: Recognizing Thalassemia and Hemoglobin Variants James H. Nichols, PhD, DABCC, FACB Professor of Pathology, Microbiology, and Immunology Medical Director, Clinical Chemistry Associate Medical Director of Clinical Operations Vanderbilt University School of Medicine Nashville, TN 37232‐5310 [email protected] Objectives • Describe hemoglobin genetics • Interpret hemoglobin chromatograms and IEF • Recognize common hemoglobin variants Case • 4 mo male, African American, abnormal newborn screen, seen for follow‐up testing • Newborn screen shows hemoglobin FS at birth 1 James H. Nichols, Ph.D., DABCC, FACB Vanderbilt University School of Medicine Nashville, TN HbF = 33.8% HbA = <1% HbA2 = 2.7% HbS = 62.5% SickleDex = Positive C S F A NB Audience Poll • What do these results indicate? A. Normal profile B. Abnormal amounts of hemoglobin F C. Sickle cell disease D. Sickle cell trait Hemoglobin Tetramer 2 James H. Nichols, Ph.D., DABCC, FACB Vanderbilt University School of Medicine Nashville, TN Chromosomal Organization of Globin Genes Normal Hemoglobins in Adults Globin Chain Expression Reasons for Requesting Hemoglobin Variant Analysis • Follow‐up to abnormal newborn screen • Adoption • Prenatal screening –patients of ethnic origin • Anemia of unknown origin in ethnic patient • Athletic exam for competitive sports 3 James H. Nichols, Ph.D., DABCC, FACB Vanderbilt University School of Medicine Nashville, TN Hemoglobinopathies 1. Structural – substitution, addition or deletion of one or more AAs in the globin chain i.e HbS, HbC, HbE, HbD, HbO, etc… 2. Thalassemia‐ quantitative defect in globin chain production i.e. alpha and Beta Thalassemia 3.
    [Show full text]
  • Study on Clinical Profile of Beta Thalassemia Major Children
    STUDY ON CLINICAL PROFILE OF BETA THALASSEMIA MAJOR CHILDREN DISSERTATION SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF DOCTOR OF MEDICINE BRANCH – VII (PAEDIATRICS) APRIL – 2013 THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY CHENNAI - TAMILNADU CERTIFICATE This is to certify that this dissertation titled “STUDY ON CLINICAL PROFILE OF BETA THALASSEMIA MAJOR CHILDREN” submitted by DR.M.S.NISHA to the Tamilnadu DR. M.G.R medical university, Chennai in partial fulfilment of the requirement for the award of MD degree branch VII, is a bonafide research work carried out by her under direct supervision and guidance. DR.CHITRA AYYAPPAN DR.G.MATHEVAN Professor of paediatrics, Director i/c, Madurai medical college, Institute of child health & Madurai research centre Madurai medical college, Madurai. DECLARATION I, DR.M.S.NISHA, solemnly declare that the dissertation titled - study on clinical profile of beta thalassemia major children has been prepared by me. This is submitted to The Tamilnadu Dr.M.G.R medical university, Chennai in partial fulfilment of the regulations for the award of MD degree branch – VII Paediatrics. Madurai medical college, Madurai. DR.M.S.NISHA. ACKNOWLEDGEMENT At the outset, I thank our DEAN Dr.N.Mohan M.S.,F.I.C.S for permitting me to use the facilities of Madurai Medical college and Government Rajaji hospital to conduct this study. I wish to express my respect and sincere gratitude to my beloved teacher and Director of Institute of child health and research centre, Government Rajaji hospital DR. G.MATHEVAN for his valuable guidance and encouragement throughout the study and also during my post graduate course.
    [Show full text]
  • SEED Haematology Sysmex Educational Enhancement and Development October 2012
    SEED Haematology Sysmex Educational Enhancement and Development October 2012 The red blood cell indices The full blood count has been used in conjunction with the traditional red The complete blood count (CBC) is central to clinical deci- cell indices in order to narrow down the possible causes sion making. This makes it one of the commonest laboratory of anaemia in an individual patient. investigations performed worldwide. Whilst the definition of what constitutes an CBC is influenced by the number Impedance technology and type of parameters measured by different haematology The RBC, HCT and MCV are all closely interrelated as they analysers, the traditional red cell indices that are widely are derived from information obtained from the passage used to classify anaemias are common to all. of cells through the aperture of the impedance channel of an automated haematology analyser. The impedance The laboratory approach to anaemia technology is based on the principle that an electrical field, Anaemia is an extremely common global healthcare prob- created between two electrodes of opposite charge, can lem. However, anaemia is merely a symptom which can be used to count and determine the size of cells. Blood result from a multitude of causes. Effective treatment is cells are poor conductors of electricity. The diluent in which only possible if the underlying cause is correctly identified. they are suspended as they pass through the aperture To this end, several classification systems have been devis- during counting is an isotonic solution which is a good ed. The most useful and widely used classification system conductor of electricity.
    [Show full text]
  • A Case of Hemolysis and Methemoglobinemia Following Amyl Nitrite Use in an Individual with G6PD Deficiency
    Available online at www.sciencedirect.com Journal of Acute Medicine 3 (2013) 23e25 www.e-jacme.com Case Report A case of hemolysis and methemoglobinemia following amyl nitrite use in an individual with G6PD deficiency Anselm Wong*, Zeff Koutsogiannis, Shaun Greene, Shona McIntyre Victorian Poisons Information Centre, Austin Hospital, Heidelberg 3084, Victoria, Australia Received 28 August 2012; accepted 26 December 2012 Available online 5 March 2013 Abstract A 34-year-old man presented feeling generally unwell with dark urine 3 days after inhaling amyl nitrite. His initial heart rate was 118/min, blood pressure 130/85 mmHg, O2 saturation 85% on 15 L/min oxygen, and Glasgow coma score 15. He was pale, with clear chest sounds on auscultation. His hemoglobin was 60 g/L, bilirubin 112 mM, and methemoglobin concentration 6.9% on an arterial blood gas. Amyl nitrite- induced hemolysis and methemoglobinemia were diagnosed. Methylene blue was not administered because of the relatively low methemo- globin concentration and the possibility of inducing further hemolysis. He was subsequently confirmed as having glucose-6-phosphate dehy- drogenase deficiency, which had originally been diagnosed in childhood. Amyl nitrite toxicity may include concurrent methemoglobinemia and hemolysis. Administration of methylene blue for clinically significant methemoglobinemia can induce further hemolysis. Copyright Ó 2013, Taiwan Society of Emergency Medicine. Published by Elsevier Taiwan LLC. All rights reserved. Keywords: Amyl nitrite; Glucose-6-phosphate dehydrogenase deficiency; Hematology; Toxicology 1. Introduction dark urine for 3 days following his return from Vanuatu 4 weeks earlier. He had drunk 100 half-coconut shells of kava Amyl nitrite is one of a number of alkyl nitrites otherwise while there.
    [Show full text]
  • Acoi Board Review 2019 Text
    CHERYL KOVALSKI, DO FACOI NO DISCLOSURES ACOI BOARD REVIEW 2019 TEXT ANEMIA ‣ Hemoglobin <13 grams or ‣ Hematocrit<39% TEXT ANEMIA MCV RETICULOCYTE COUNT Corrected retic ct = hematocrit/45 x retic % (45 considered normal hematocrit) >2%: blood loss or hemolysis <2%: hypoproliferative process TEXT ANEMIA ‣ MICROCYTIC ‣ Obtain and interpret iron studies ‣ Serum iron ‣ Total iron binding capacity (TIBC) ‣ Transferrin saturation ‣ Ferritin-correlates with total iron stores ‣ can be normal or increased if co-existent inflammation TEXT IRON DEFICIENCY ‣ Most common nutritional problem in the world ‣ Absorbed in small bowel, enhanced by gastric acid ‣ Absorption inhibited by inflammation, phytates (bran) & tannins (tea) TEXT CAUSES OF IRON DEFICIENCY ‣ Blood loss – most common etiology ‣ Decreased intake ‣ Increased utilization-EPO therapy, chronic hemolysis ‣ Malabsorption – gastrectomy, sprue ‣ ‣ ‣ TEXT CLINICAL MANIFESTATIONS OF IRON DEFICIENCY ‣ Impaired psychomotor development ‣ Fatigue, Irritability ‣ PICA ‣ Koilonychiae, Glossitis, Angular stomatitis ‣ Dysphagia TEXT IRON DEFICIENCY LAB FINDINGS ‣ Low serum iron, increased TIBC ‣ % sat <20 TEXT MANAGEMENT OF IRON DEFICIENCY ‣ MUST LOOK FOR SOURCE OF BLEED: ie: GI, GU, Regular blood donor ‣ Replacement: 1. Oral: Ferrous sulfate 325 mg TID until serum iron, % sat, and ferritin mid-range normal, 6-12 months 2. IV TEXT SIDEROBLASTIC ANEMIAS Diverse group of disorders of RBC production characterized by: 1. Defect involving incorporation of iron into heme molecule 2. Ringed sideroblasts in
    [Show full text]
  • Approach to Anemia
    APPROACH TO ANEMIA Mahsa Mohebtash, MD Medstar Union Memorial Hospital Definition of Anemia • Reduced red blood mass • RBC measurements: RBC mass, Hgb, Hct or RBC count • Hgb, Hct and RBC count typically decrease in parallel except in severe microcytosis (like thalassemia) Normal Range of Hgb/Hct • NL range: many different values: • 2 SD below mean: < Hgb13.5 or Hct 41 in men and Hgb 12 or Hct of 36 in women • WHO: Hgb: <13 in men, <12 in women • Revised WHO/NCI: Hgb <14 in men, <12 in women • Scrpps-Kaiser based on race and age: based on 5th percentiles of the population in question • African-Americans: Hgb 0.5-1 lower than Caucasians Approach to Anemia • Setting: • Acute vs chronic • Isolated vs combined with leukopenia/thrombocytopenia • Pathophysiologic approach • Morphologic approach Reticulocytes • Reticulocytes life span: 3 days in bone marrow and 1 day in peripheral blood • Mature RBC life span: 110-120 days • 1% of RBCs are removed from circulation each day • Reticulocyte production index (RPI): Reticulocytes (percent) x (HCT ÷ 45) x (1 ÷ RMT): • <2 low Pathophysiologic approach • Decreased RBC production • Reduced effective production of red cells: low retic production index • Destruction of red cell precursors in marrow (ineffective erythropoiesis) • Increased RBC destruction • Blood loss Reduced RBC precursors • Low retic production index • Lack of nutrients (B12, Fe) • Bone marrow disorder => reduced RBC precursors (aplastic anemia, pure RBC aplasia, marrow infiltration) • Bone marrow suppression (drugs, chemotherapy, radiation)
    [Show full text]
  • The Red Cell Histogram and the Dimorphic Red Cell Population
    CE Update Submitted 4.30.10 | Revision Received 9.27.10 | Accepted 9.27.10 The Red Cell Histogram and The Dimorphic Red Cell Population Benie T. Constantino, SH, I; ART, MLT(CSMLS) (CML Healthcare Inc., Mississauga, Ontario, Canada) DOI: 10.1309/LMF1UY85HEKBMIWO Abstract conditions and may provide major clues in some morphological features of dimorphism The RBC histogram is an integral part of the diagnosis and management of significant and the ensuing characteristic changes in their automated hematology analysis and is now red cell disorders. In addition, it is frequently RBC histograms. routinely available on all automated cell used, along with the peripheral blood film, as counters. This histogram and other associated an aid in monitoring and interpreting abnormal Keywords: histogram, dimorphic red cells, red complete blood count (CBC) parameters have morphological changes, particularly dimorphic blood cell distribution width been found abnormal in various hematological red cell populations. This article discusses After reading this article, readers should be able to correlate a RBC Hematology exam 51102 questions and corresponding answer form histogram and red blood cell distribution width with microscopical are located after this CE Update on page 309. findings. Table 1_Conditions Associated With Dimorphic To paraphrase an adage, 1 histogram graph is worth 5-12 1000 numbers. A large collection of data, displayed as a visual Red Cells image, can convey information with far more impact than the numbers alone. In hematology, these data take on several Early iron developing microcytic population forms, 1 of which is the RBC histogram. Visual scanning Folate/vitamin B12 developing macrocytic population Post-iron treatment of iron deficiency anemia of the histogram gives a good initial sense of the range, size, Post-iron treatment of iron deficiency with megaloblastic anemia shape, and other salient features of the red cell morphology.
    [Show full text]
  • Complete Blood Count in Primary Care
    Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document.
    [Show full text]