Simultaneous Pure Red Cell Aplasia and Auto-Immune Hemolytic Anemia in a Previously Healthy Infant

Total Page:16

File Type:pdf, Size:1020Kb

Simultaneous Pure Red Cell Aplasia and Auto-Immune Hemolytic Anemia in a Previously Healthy Infant Simultaneous Pure Red Cell Aplasia and Auto-immune Hemolytic Anemia in a Previously Healthy Infant Robert P. Sanders, MD July 16, 2002 Case Presentation Patient Z.H. • Previously Healthy 7 month old WM • Presented to local ER 6/30 with 1 wk of decreased activity and appetite, low grade temp, 2 day h/o pallor. • Noted to have severe anemia, transferred to LeBonheur • Review of Systems – ? Single episode of dark urine – 4 yo sister diagnosed with Fifth disease 1 wk prior to onset of symptoms, cousin later also diagnosed with Fifth disease – Otherwise negative ROS •PMH – Term, no complications – Normal Newborn Screen – Hospitalized 12/01 with RSV • Medications - None • Allergies - NKDA • FH - Both parents have Hepatitis C (pt negative) • SH - Lives with Mom, 4 yo sister • Development Normal Physical Exam • 37.2 167 33 84/19 9.3kg • Gen - Alert, pale, sl yellow skin tone, NAD •HEENT -No scleral icterus • CHEST - Clear • CV - RRR, II/VI SEM at LLSB • ABD - Soft, BS+, no HSM • SKIN - No Rash • NEURO - No Focal Deficits Labs •CBC – WBC 20,400 • 58% PMN 37% Lymph 4% Mono 1 % Eo – Hgb 3.4 • MCV 75 MCHC 38.0 MCH 28.4 – Platelets 409,000 • Retic 0.5% • Smear - Sl anisocytosis, Sl hypochromia, Mod microcytes, Sl toxic granulation • G6PD Assay 16.6 U/g Hb (nl 4.6-13.5) • DAT, Broad Spectrum Positive – IgG negative – C3b, C3d weakly positive • Chemistries – Total Bili 2.0 – Uric Acid 4.8 –LDH 949 • Urinalysis Negative, Urobilinogen 0.2 • Blood and Urine cultures negative What is your differential diagnosis? Differential Diagnosis • Transient Erythroblastopenia of Childhood • Diamond-Blackfan syndrome • Underlying red cell disorder with Parvovirus induced Transient Aplastic Crisis • Immunohemolytic anemia with reticulocytopenia Hospital Course • Admitted to ICU for observation, transferred to floor 7/1. • 7/2 - Hgb 6.8 post transfusion. • 7/3 - Hgb 4.3, Bili 9.2 – Repeat DAT weakly positive for IgG and C3b,d – Indirect Coombs negative Hospital Course • Required repeat transfusions on 7/3, 7/4, 7/5, 7/7, and 7/8 to maintain Hgb > 7.0 • Solu-Medrol 2mg/kg/day started 7/3 • IVIG 1g/kg infused 7/8 • By 7/10 Hb stable at 9.3, Retic 4.8%, patient discharged on 1mg/kg/day prednisolone • Nasal swab culture positive for enterovirus Pure Red Cell Aplasia (PRCA) What are the forms of pure red cell aplasia found in pediatrics? Congenital PRCA (Diamond-Blackfan Anemia) • Normocytic to Macrocytic Anemia • 90% present in 1st year of life • Normocellular marrow with selective deficiency of erythroid precursors • Normal to increased leukocytes and platelets • Elevated erythropoietin, red cell adenosine deaminase, fetal hemoglobin Diamond-Blackfan • Physical Abnormalities in 24-30% – Short Stature – Craniofacial – Upper limb – Cardiac • 80% of cases sporadic • Pathophysiology – reduced or absent BFU-E or CFU-E – hyporesponsiveness to EPO • Leukemia develops in 2% Diamond - Blackfan • Treatment – Steroids • Rapid response without relapse 5% • Intermittent response 5% • Response with steroid dependence 60% • Response with subsequent failure 5% • No response 30-40% –BMT –IL-3 Transient Erythroblastopenia of Childhood (TEC) • Gradual onset of pallor in previously healthy children age 1-4 years (85%) • Normochromic-Normocytic anemia with reticulocytopenia • Marrow erythroid hypoplasia, aplasia, or recovery • Spontaneous recovery in 4-8 weeks • May have transient neurological features or neutropenia Pathogenesis of TEC • More than half of patients with TEC have viral illness in preceding 2 months • No single viral etiology – Parvovirus leading theoretical candidate – Parvovirus IgM positive in ¢ 12% of cases – Parvovirus DNA detected in 0/16 cases of TEC2 • Several studies1 have demonstrated inhibitory effect of TEC serum and IgG on erythroid colony growth . 1 Freedman, MH Br J Hem. 1993 (85): 246-253 2 Rogers BB, Ped Path Lab Med1996;16(3):471-8 Pathogenesis of TEC • “Thus, TEC is likely to have an immune aetiology. The transient nature of TEC is similar to other autoimmune haemotological disorders of childhood such as idiopathic thrombocytopenic purpura and autoimmune hemolytic anemia.” Freedman, MH Br J Hem. 1993 (85): 246-253 Parvovirus and PRCA • Pathophysiology – Small, non-enveloped, single stranded DNA virus – Transmitted by respiratory tract or blood products – Attacks erythroid progenitor cell via the cellular receptor globoside, aka P antigens • Pathology – Gigantoproerythoblasts in bone marrow – appear toward end of aplastic phase • Fig2.Typical gigantoproerythroblasts in parvovirus B19-associated PRCA. (A) Bone marrow histology with several gigantoproerythroblasts (marked by asterisks) that resemble Hodgkin cells. A small regressive erythroblast (marked with an arrow) typically contains the immunoreactive B19-antigen. (B) Bone marrow cytology of another patient with B19 infection showing two gigantoproerythroblasts (marked by asterisks). (Fig 2A, magnification 750; Fig 2B, magnification 400). • Fisch, Paul, Handgretinger, Rupert & Schaefer, Hans-Eckart Pure red cell aplasia. British Journal of Haematology 111 (4), 1010-1022. Parvovirus PRCA - Clinical Syndromes • Healthy volunteers – 5-10 days of erythroid hypoplasia – No significant anemia with normal RBC lifespan • Transient Aplastic Crisis (TAC) in patients with shortened red cell survival – Sickle cell disease, Thalassemia, Hereditary Spherocytosis, Auto-immune Hemolytic Anemia – Resolves in 1-2 weeks as antibodies against parvovirus produced Parvovirus PRCA - Clinical Syndromes • Prolonged PRCA in immunocompromised hosts – Congenital immunodeficiency –HIV – Leukemia patients on chemotherapy • May be successfully treated with IVIG PRCA in patient ZH • DBA unlikely •TEC • Transient aplastic crisis with underlying red cell abnormality, but – Initial peripheral smear, RBC indices normal – Peripheral smear from mother normal – No evidence of active hemolysis at presentation Auto-Immune Hemolytic Anemia (AIHA) Classification of AIHA • Primary – Warm-reactive autoantibodies, usually IgG – Paroxysmal cold hemoglobinuria, usually IgG – Cold-agglutinin disease, usually IgM • Secondary – Identified infection – Auto-immune disease – Malignancy – Drug-induced Diagnosis of AIHA • Clinical Features – Typically present with signs and symptoms of anemia • Pallor • Fatigue • Weakness – Occasionally present with jaundice – May have intravascular hemolysis with hemoglobinuria Laboratory Findings in AIHA • Anemia with normal WBC and platelets • MCV usually not helpful • Peripheral smear – Spherocytes – Polychromasia • Typically have reticulocytosis – Reticulocytopenia well described (up to 20%) – Autoantibody may react with reticulocytes in marrow Direct Antiglobulin Test (Coombs) (From Foerster J. In: Lee G, et al, editors. Wintrobe's Clinical Hematology, ed 9. Philadelphia: Lea & Febiger, 1993, Ch 40.) DAT (Coombs) • Red Cells collected in EDTA, washed • Polyspecific anti-human sera added, centrifuged to enhance agglutination • Cells resuspended, agglutination noted • Positive tests repeated with specific anti- IgG and anti-C3 sera (anti-IgM, IgA available in research labs) Warm Reacting AIHA • 50-70% of AIHA Cases • Usually preceded by viral infection in children • Onset after infection may be acute, but usually short-lived • RBC destroyed in spleen (extravascular hemolysis) • Usually respond to steroids Warm AIHA Lab Features • Usually IgG antibody • DAT positive for IgG +/- C3 – IgG only 20-66% – IgG and C3 24-63% – C3 only 7-14% • Indirect AT positive in 80% • Antibody reacts at 37º, fixes complement • Antibody panspecific, typically binds Rh • Usually produces difficulty with crossmatch Cold-Agglutinin Syndrome • Typically produces chronic mild hemolytic anemia exacerbated by cold exposure in older adults • Transient secondary form is associated with Mycoplasma infection in adolescents, young adults – symptoms appear 2-3 weeks after infection starts – resolves spontaneously in 2-3 weeks – also reported with CMV,VZV,EBV,Rubella Cold Agglutinins: Laboratory Features • Typically IgM antibody, reacts at 4º • Antibody reacts to polysaccharide antigens, especially I/i group • DAT positive for C3 only • IgM fixes complement efficiently, causing intravascular hemolysis Paroxysmal Cold Hemoglobinuria • Most cases occur in children after infection – Viral - measles, mumps, EBV,CMV, VZV, adenovirus, influenza A – Bacterial - Mycoplasma, H. influenzae, E. coli • Causes acute intravascular hemolysis – High fever – Hemoglobinuria – Exposure to cold temperature often identified retrospectively (cold water for fever) • Symptoms typically resolve in hours Paroxysmal Cold Hemoglobinuria: Laboratory Features • Caused by biphasic IgG antibody (Donath- Landsteiner Ab) – Bind RBCs efficiently at 0-4º, fixes complement C1, Ab dissociates with warming – Other complement components bind and cause lysis at higher temperatures – Selective for P antigen • DAT positive for C3 only unless performed at cold temperature Mixed-Type AIHA • Patients with Warm-type AIHA may also have a cold agglutinin • Most of these cold antibodies are not clinically significant AIHA in Patient ZH • DAT initially positive for C3 only, later IgG and C3, weak in both cases • Differential Dx – Warm Antibody AIHA with low IgG titer – Mixed Type AIHA – PCH with high thermal amplitude ZH Revisited • Underlying Red Cell Disorder with TAC – Would not explain positive DAT • Pre-existing AIHA with superimposed TAC • New onset AIHA with severe reticulocytopenia – No significant evidence of hemolysis at presentation • Viral illness causing simultaneous AIHA and PRCA
Recommended publications
  • Hematopoiesis/RBC Disorders
    Neonatal Hematopoiesis and RBC Disorders Vandy Black, MD, MSc Pediatric Hematology June 2, 2016 Objectives • Review normal erytHropoiesis in tHe fetus and neonate and regulation of fetal hemoglobin • Outline tHe differential diagnosis of neonatal RBC disorders witH a focus on tHe clinical and laboratory findings • Discuss common presentations of intrinsic red cell disorders in neonates WhicH of tHe following infants is most likely to be diagnosed with a primary hematologic disorder (i.e. need ongoing follow-up in my office)? A. A full-term male with a Hb of 7.5 gm/dL at birth (MCV 108) B. A one week old witH a newborn screen tHat shows Hb FAS C. A full-term Caucasian male with a peak bilirubin of 21 mg/dL whose mom is AB+ D. A 26 week AA female wHose fatHer Has a history of G6PD deficiency RBC Disorders in tHe NICU • Anemia is a common finding in tHe NICU • Differential is broad • Hospitalized preterm infants receive more PRBC transfusions tHan any otHer patient group • >80% of ELBW infants receive at least one PRBC transfusion How RBC Disorders Present? • Anemia on a CBC – May be an expected or incidental finding • Abnormal RBC indices • Abnormal newborn screens • Hyperbilirubinemia • Screening because of family History What is Normal? CHristensen et al, Semin Perinatol 2009 What is Normal? CHristensen et al, Semin Perinatol 2009 Hemoglobin SwitcHing How to ApproacH Anemia • Are otHer cell lines involved? • What is tHe MCV? • What is tHe reticulocyte count? • What does tHe peripHeral blood smear sHow? Microcytic Anemia • Iron Deficiency – Iron supplementation for preterm infants • Thalassemia – Beta-thalassemia less likely in the neonatal period • Chronic Inflammation – Disorders of iron transport (e.g.
    [Show full text]
  • Aplastic Crisis Caused by Parvovirus B19 in an Adult Patient with Sickle-Cell Disease
    Revista da Sociedade Brasileira de Medicina Tropical RELATO DE CASO 33(5):477-481, set-out, 2000. Aplastic crisis caused by parvovirus B19 in an adult patient with sickle-cell disease Crise aplástica por parvovírus B19 em um paciente adulto com doença falciforme Sérgio Setúbal1, Adelmo H.D. Gabriel2, Jussara P. Nascimento3 e Solange A. Oliveira1 Abstract We describe a case of aplastic crisis caused by parvovirus B19 in an adult sickle-cell patient presenting with paleness, tiredness, fainting and dyspnea. The absence of reticulocytes lead to the diagnosis. Anti-B19 IgM and IgG were detected. Reticulocytopenia in patients with hereditary hemolytic anemia suggests B19 infection. Key-words: Human parvovirus B19. Sickle-cell disease. Transient aplastic crisis. Reticulocytopenia. Resumo Descreve-se um caso de crise aplástica devida ao parvovírus B19 num paciente adulto, manifestando-se por palidez, cansaço, lipotímias e dispnéia. A ausência de reticulócitos chamou a atenção para o diagnóstico. Detectaram-se IgM e IgG anti-B19. Reticulocitopenia em pacientes com anemia hemolítica hereditária sugere infecção por B19. Palavras-chaves: Parvovírus B19. Doença falciforme. Crise aplástica transitória. Reticulocitopenia. Parvovirus B19 is the only pathogenic and the virus was labeled serum-parvovirus-like parvovirus in humans. It is a DNA virus that infects particle. Retesting the sera from their panels, which and destroys erythroid cell progenitors. Cossart and were obtained mainly from British adults, Cossart coworkers3 discovered parvovirus B19 fortuitously and coworkers demonstrated that 30% of them in 1974, when they were trying to detect HBsAg had antibodies to the virus. in panels of human sera. Unexpectedly, the serum The virus was identified again two years later numbered 19 in panel B showed an anomalous in two blood donors12, and six years later in two precipitin line in a counter immunoelectrophoresis British soldiers returning from Africa15, all of which (CIE) employing another human immune serum.
    [Show full text]
  • Aplastic Anemia Pre-HSCT Data (Form 2028)
    Instructions for Aplastic Anemia Pre-HSCT Data (Form 2028) This section of the CIBMTR Forms Instruction Manual is intended to be a resource for completing the Aplastic Anemia Pre-HSCT Data Form. E-mail comments regarding the content of the CIBMTR Forms Instruction Manual to: [email protected]. Comments will be considered for future manual updates and revisions. For questions that require an immediate response, please contact your transplant center’s CIBMTR liaison. TABLE OF CONTENTS Key Fields ............................................................................................................. 2 Disease Assessment at Diagnosis ........................................................................ 2 Laboratory Studies at Diagnosis ........................................................................... 5 Transfusion Status from Diagnosis to the Start of the Preparative Regimen ........ 7 Laboratory Findings Prior to the Start of the Preparative Regimen ....................... 8 Aplastic Anemia Pre-HSCT Data Aplastic Anemia is a disease in which the bone marrow does not produce enough red blood cells, white blood cells, or platelets for the body. The disease can be idiopathic, or can be caused by environmental exposure, pharmaceutical or drug exposure, or exposure to viral hepatitis. Symptoms of aplastic anemia include, but are not limited to pallor, weakness, frequent infection, and/or easy bruising. The Aplastic Anemia Pre-HSCT Data Form is one of the Comprehensive Report Forms. This form captures aplastic
    [Show full text]
  • Approach to Anemia
    APPROACH TO ANEMIA Mahsa Mohebtash, MD Medstar Union Memorial Hospital Definition of Anemia • Reduced red blood mass • RBC measurements: RBC mass, Hgb, Hct or RBC count • Hgb, Hct and RBC count typically decrease in parallel except in severe microcytosis (like thalassemia) Normal Range of Hgb/Hct • NL range: many different values: • 2 SD below mean: < Hgb13.5 or Hct 41 in men and Hgb 12 or Hct of 36 in women • WHO: Hgb: <13 in men, <12 in women • Revised WHO/NCI: Hgb <14 in men, <12 in women • Scrpps-Kaiser based on race and age: based on 5th percentiles of the population in question • African-Americans: Hgb 0.5-1 lower than Caucasians Approach to Anemia • Setting: • Acute vs chronic • Isolated vs combined with leukopenia/thrombocytopenia • Pathophysiologic approach • Morphologic approach Reticulocytes • Reticulocytes life span: 3 days in bone marrow and 1 day in peripheral blood • Mature RBC life span: 110-120 days • 1% of RBCs are removed from circulation each day • Reticulocyte production index (RPI): Reticulocytes (percent) x (HCT ÷ 45) x (1 ÷ RMT): • <2 low Pathophysiologic approach • Decreased RBC production • Reduced effective production of red cells: low retic production index • Destruction of red cell precursors in marrow (ineffective erythropoiesis) • Increased RBC destruction • Blood loss Reduced RBC precursors • Low retic production index • Lack of nutrients (B12, Fe) • Bone marrow disorder => reduced RBC precursors (aplastic anemia, pure RBC aplasia, marrow infiltration) • Bone marrow suppression (drugs, chemotherapy, radiation)
    [Show full text]
  • Immune-Mediated Hemolytic Anemia and Thrombocytopenia in Clonal B-Cell Disorders: a Review
    Immune-Mediated Hemolytic Anemia and Thrombocytopenia in Clonal B-Cell Disorders: A Review Urshila Durani, MD, MPH, Ronald S. Go, MD, and Neil E. Kay, MD The authors are affiliated with the Abstract: Autoimmune hemolytic anemia (AIHA) and immune Division of Hematology in the Depart- thrombocytopenia purpura (ITP) have been associated with B-cell ment of Medicine at the Mayo Clinic lymphoproliferative disorders. Here, we review the epidemiology, in Rochester, Minnesota. Dr Durani pathogenesis, diagnosis, and treatment of these autoimmune disor- is a fellow, Dr Go is an associate ders, specifically in the setting of B-cell malignancies. AIHA and ITP professor of medicine, and Dr Kay is a professor of medicine. are classically associated with chronic lymphocytic leukemia (CLL) but have also been reported in plasmacytic and lymphoprolifera- tive disorders. AIHA includes both warm AIHA and cold agglutinin Corresponding author: disease, the latter of which is strongly associated with Walden- Neil E. Kay, MD ström macroglobulinemia. The pathogenesis of these cytopenias Mayo Clinic varies with the underlying disease, but malignant cells serving as 200 First St SW Rochester, MN 55905 antigen-presenting cells to T lymphocytes, with the generation of Tel: (507) 284-2511 autoreactive lymphocytes, may be involved. The diagnosis requires E-mail: [email protected] the presence of hemolysis and a positive direct antiglobulin test result. In a minority of cases, the direct antiglobulin test result is negative, and more specialized testing may be required. Data on the prognostic effect of these comorbidities are conflicting, and the prognosis may vary depending on when in the B-cell malignant process the cytopenia(s) develops.
    [Show full text]
  • Asymmetrical Periflexural Exanthem, Papular-Purpuric Gloves and Socks Syndrome, Eruptive Pseudoangiomatosis, and Eruptive Hypomelanosis
    Eur. J. Pediat. Dermatol. 26, 25-9, 2016 Managements of the less common paraviral exanthems in children – asymmetrical periflexural exanthem, papular-purpuric gloves and socks syndrome, eruptive pseudoangiomatosis, and eruptive hypomelanosis Chuh A.1, Fölster-Holst R.2, Zawar V.3 1School of Public Health and Primary Care, The Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong 2Universitätsklinikum Schleswig-Holstein, Campus Kiel, Dermatologie, Venerologie und Allergologie, Germany 3Department of Dermatology, Godavari Foundation Medical College and Research Center, DUPMCJ, India Summary Although all paraviral exanthems in children are self-remitting, clinicians should be awa- re of the underlying viral infections leading to complications. Many reports covered the commonest paraviral exanthems, namely pityriasis rosea and Gianotti-Crosti syndrome. We reviewed here the managements of the less common paraviral exanthems in children. For asymmetrical periflexural exanthem/unilateral laterothoracic exanthem treatments should be tailored to the stages of the rash. For children with papular purpuric gloves and socks syndrome, important differential diagnoses such as Kawasaki disease should be ex- cluded. Where this exanthem is related to parvovirus B19 infection, the risk of aplastic reticulocytopenia should be monitored for. Clinicians should also be aware of ongoing in- fectivity of parvovirus B19 infection upon rash eruption, and possible exposure to pregnant women. For children with eruptive pseudoangiomatosis, important differential diagnoses should be excluded. For eruptive hypomelanosis, the prime concern is that virological investiga- tions should be contemplated where available, as there exists only clinical and epidemiolo- gical evidence for this novel exanthem being caused by an infectious microbe. Key words Acyclovir, Gianotti-Crosti syndrome, human herpesvirus-7, human herpesvirus-6, papu- lar acrodermatitis, pityriasis rosea.
    [Show full text]
  • A Child with Pancytopenia and Optic Disc Swelling Justin Berk, MD, MPH, MBA,A,B Deborah Hall, MD,B Inna Stroh, MD,C Caren Armstrong, MD,D Kapil Mishra, MD,C Lydia H
    A Child With Pancytopenia and Optic Disc Swelling Justin Berk, MD, MPH, MBA,a,b Deborah Hall, MD,b Inna Stroh, MD,c Caren Armstrong, MD,d Kapil Mishra, MD,c Lydia H. Pecker, MD,e Bonnie W. Lau, MD, PhDe A previously healthy 16-year-old adolescent boy presented with pallor, blurry abstract vision, fatigue, and dyspnea on exertion. Physical examination demonstrated hypertension and bilateral optic nerve swelling. Laboratory testing revealed pancytopenia. Pediatric hematology, ophthalmology and neurology were consulted and a life-threatening diagnosis was made. aDivision of Intermal Medicine and Pediatrics, bDepartment c d CASE HISTORY 1% monocytes, 1% metamyelocytes, of Pediatrics; and Divisions of Ophthalmology, Pediatric Neurology, and ePediatric Hematology, School of Medicine, 1% atypical lymphocytes, 1% plasma Dr Berk, Moderator, General Johns Hopkins University, Baltimore, Maryland Pediatrics cells), absolute neutrophil count (ANC) of 90/mm3, hemoglobin level of Dr Berk was the initial author and led the majority of A previously healthy 16-year-old the writing; Dr Hall contributed to the Hematology 3.7 g/dL (mean corpuscular volume: section; Drs Stroh and Mishra contributed to the adolescent boy presented to his local 119 fL; red blood cell distribution Ophthalmology section; Dr Armstrong contributed to emergency department because his width: 15%; reticulocyte: 1.5%), and the Neurology section; Drs Pecker and Lau served as mother thought he looked pale. For 2 platelet count of 29 000/mm3. The senior authors, provided guidance, and contributed weeks, the patient had experienced to the genetic discussion, as well as to the overall laboratory results raised concern for fi occasional blurred vision (specifically, paper; and all authors approved the nal bone marrow dysfunction, particularly manuscript as submitted.
    [Show full text]
  • EMA Medical Terms Simplifier
    EMA medical terms simplifier Plain-language description of medical terms related to medicines use polyuria petechiae tophi trismus idiopathic immunoglobulins acute antagonist An agency of the European Union 19 March 2021 EMA/158473/2021 EMA Medical Terms Simplifier Plain-language description of medical terms related to medicines use This compilation gives plain-language descriptions of medical terms commonly used in information about medicines. Communication specialists at EMA use these descriptions for materials prepared for the public. In our documents, we often adjust the description wordings to fit the context so that the writing flows smoothly without distorting the meaning. Since the main purpose of these descriptions is to serve our own writing needs, some also include alternative or optional wording to use as needed; we use ‘<>’ for this purpose. Our list concentrates on side effects and similar terms in summaries of product characteristics and public assessments of medicines but omits terms that are used only rarely. It does not include descriptions of most disease states or those that relate to specialties such as regulation, statistics and complementary medicine or, indeed, broader fields of medicine such as anatomy, microbiology, pathology and physiology. This resource is continually reviewed and updated internally, and we will publish updates periodically. If you have comments or suggestions, you may contact us by filling in this form. EMA Medical Terms Simplifier EMA/158473/2021 Page 1/76 A│B│C│D│E│F│G│H│I│J│K│L│M│N│O│P│Q│R│S│T│U│V│W│X│Y│Z
    [Show full text]
  • An Incidental Case of Transient Erythroblastopenia of Childhood
    Clinical Pediatrics: Open Access Case Report An Incidental Case of Transient Erythroblastopenia of Childhood Allen Mao1*, Brian Gavan2, Curtis Turner3 1University of South Alabama, College of Medicine, Mobile, Alabama, USA;2Department of Pediatrics, University of South Alabama Children’s and Women’s Hospital, Mobile, Alabama, USA;3Department of Pediatrics, University of South Alabama Children’s and Women’s Hospital, Mobile, Alabama, USA ABSTRACT We highlight a pediatric case of Transient Erythroblastopenia of Childhood (TEC) and compare with published reports and contrast TEC with other causes of anemia, most notably Diamond Blackfan Anemia (DBA). Secondly, many of the business. The development of anemia may be subtle, and TEC is a diagnosis of exclusion. The broad differential diagnoses of anemia include decreased RBC production (erythropoiesis) or increased RBC destruction (hemolytic anemias). Decreased RBC production includes viral suppression and bone marrow failure (congenital or acquired). Keywords: Hepatosplenomegaly; Anemia; Erythroblastopenia; Echovirus INTRODUCTION CASE PRESENTATION Transient Erythroblastopenia of Childhood (TEC) is Our patient was a healthy 12 month old African American male characterized by a temporary cessation of erythrocyte production with no significant past medical history who presented for a well- with continued production of white blood cells and platelets in child checkup. Screening CBC and lead level were obtained. His previously healthy children. This is the most common Pediatric vital signs were temperature 36.6°C, pulse 136, and respiratory Pure Red Cell Aplasia (PRCA), an isolated anemia with rate 28. The physical exam was significant for mild conjunctival reticulocytopenia [1]. The etiology is unknown, yet suspected pallor, his height was in the 89th percentile, weight in 42nd causes of Transient Erythroblastopenia of Childhood (TEC) percentile, and he had no abnormal facies, digit abnormalities, include preceding viral illnesses (e.g.
    [Show full text]
  • General Refugee Health Guidelines
    GENERAL REFUGEE HEALTH GUIDELINES U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases Division of Global Migration and Quarantine August 6, 2012 Background On average, more than 50,000 refugees relocate to the United States annually. 1 They come from diverse regions of the world and bring with them health risks and diseases common to all refugee populations as well as some that may be unique to specific populations. The purpose of this document is to describe general and optional testing components that do not fall into the specific disease categories of these guidelines. These guidelines are based upon principles of best practices, with references to primary published reports when available. This document differs from others in the guidelines, which recommend screening for specific disorders. The guidelines in this document include testing for abnormalities or clinical conditions that are not specific disorders but are suggestive of underlying disorders. The tests in this document may indicate either acute or chronic disorders and generally indicate the need for further testing and evaluation to identify the condition causing the abnormality. Testing for chronic health conditions is important, since these conditions are common in newly arriving refugees, both children and adults. 2 Since refugee populations are diverse and are predisposed to diseases that may differ from those found in the U.S. population, the differential diagnosis and initial evaluation of abnormalities are discussed to assist the clinician. General and Optional Tests Many disorders may be detected by using general, nonspecific testing modalities.
    [Show full text]
  • Neurological Complications of Paroxysmal Nocturnal Hemoglobinuria
    PEER REVIEWED LETTER Neurological Complications of Paroxysmal Nocturnal Hemoglobinuria N. Jewel Samadder, Leanne Casaubon, Frank Silver, Rodrigo Cavalcanti Can. J. Neurol. Sci. 2007; 34: 368-371 Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired stem cell disorder characterized by three cardinal clinical manifestations: 1) hemolysis and hemoglobinuria, 2) thrombosis, and 3) bone marrow failure indistinguishable from aplastic anemia.1 Paroxysmal nocturnal hemoglobinuria is a rare disease with an incidence of 2-6 per million persons. Only 220 reported cases of PNH were found in one of the largest retrospective epidemiological studies in France from 1946 to 1995.2 CASE REPORT A 54-year-old woman presented to the Emergency Department complaining of sudden onset of right-sided tinnitus followed by dizziness, dysarthria, nausea, and vomiting. Her only additional complaint was that of “cola” colored urine and dysuria. The patient denied a history of fever, seizures, focal weakness or sensory abnormalities. There was no history of cough, night sweats, weight loss or diarrhea. The patient’s neurologic symptoms resolved within minutes, followed only by a self-limiting bi-frontal headache. Her past medical history was significant for a diagnosis of paroxysmal nocturnal hemoglobinuria made at age 27 when she Figure 1. Cardiac catheterization (angiogram) showing occlusive presented to hospital with symptoms of anemia. Investigations thrombus in circumflex artery. The thrombus is indicated. at that time, including a HAMs test, confirmed the diagnosis of PNH. After her initial management, she had not been followed by a haematologist. Four years prior to the current admission she presented to hospital with a seizure and severe left hemiparesis.
    [Show full text]
  • Normocytic Anemia
    NORMOCYTIC ANEMIA DR. SOAD KHALIL AL JAOUNI FRCP(C) Associate Professor Consultant Hematologist Consultant Pediatrics Hematology/Oncolo gy Hematology Department College of Medicine King Abdulaziz University KAU, ALJAOUNI CLASSIFICATION OF ANEMIA Microcytic Normocytic Macrocytic normochromic MCV<80 fl MCV 80-95 fl MCV>95 fl MCV<27 pg MCV>26 pg Megaloblastic: vitamin B12 or deficiency Iron deficiency Many haemolytic anaemias Non-megaloblastic alcohol, liver disease Thalassaemia Anaemia of chronic disease Aplastic anemia (some cases) Anaemia of chronic After acute blood loss Myelodysplastic anemia(MDS) disease (some case) Renal disease Lead Poisoning Mixed deficiencies Sideroblastic anaemia Bone marrow failure, (some cases) post-chemotherapy, infiltration by carcinoma, etc. KAU, ALJAOUNI Normocytic, Normochronic Anemia MCV 80-95 fl MCH>26 pg •Many haemolytic anaemias •Anaemia of chronic disease (some cases) •After acute blood loss •Renal disease •Mixed deficiencies e.g. (iron deficiency and megaloblastic anemia) •Bone marrow failure, e.g. post-chemotherapy, infiltration by carcinoma, etc. KAU, ALJAOUNI ANAEMIA OF CHRONIC DISORDERS One of the most common anaemias occurs in patients with a variety of chronic inflammatory and malignant diseases. The characteristic features are: 1. Normochromic, normocytic or mildly hypochromic (MCV rarely <75 fl) indices and red cell morphology; 2. Mild and non-progressive anaemia (haemoglobin rarely less than 9.0g/dl)- the severity being related to the severity of the disease; 3. Both the serum iron and TIBC are reduced; sTfR levels are normal. 4. Bone marrow storage (reticuloendothelial) iron is normal but erythro blas t iron isreddduced. KAU, ALJAOUNI CLASSIFICATION OF ANAEMIA Macrocytic MCV>95 fl •Megaloblastic: vitamin B12 or folate deficiency •Non-megaloblastic:alcohol, liver disease, •Myelodysplasia, •Aplastic anaemia, etc.
    [Show full text]