Revision of the International System of Units (Background Paper) Cite This: Anal

Total Page:16

File Type:pdf, Size:1020Kb

Revision of the International System of Units (Background Paper) Cite This: Anal Analytical Methods View Article Online AMC TECHNICAL BRIEFS View Journal | View Issue Revision of the International System of Units (Background paper) Cite this: Anal. Methods,2019,11,1577 Analytical Methods Committee AMCTB No 86 DOI: 10.1039/c9ay90028d www.rsc.org/methods The International System of Units (SI) is the The current International respect to ‘dening constants’; the only globally agreed practical system of ampere, the kelvin and the mole (Mills measurement units. Stemming from the System of Units (SI) and et al., 2006; I. A. Robinson and S. Metre Convention of 1875, which established the need for change Schlamminger, 2016). The metre was a permanent organisational structure for redened in 1983 with respect to the member governments to act in common Measurement units were originally speed of light, and the second has, since accord on all matters relating to units of dened by physical artefacts or properties 1967, depended on a material property – measurement, the SI was formalised in 1960 of specic materials. However such a spectroscopic transition of a caesium- and defined by the ‘SI Brochure’. The foun- physical artefacts have obvious draw- 133 atom. The candela, dependent on dation of the SI are the set of seven well backs in terms of their stability and the luminous efficacy technical constant defined base units: the metre, the kilogram, susceptibility to damage and decay. It is related to a spectral response of the the second, the ampere, the kelvin, the mole, preferable to have units dened in human eye, was not directly part of and the candela, from which all derived units terms of constants of nature – so called discussions to revise the SI. (such as metres per second) are formed. On ‘dening constants’–which can be In considering which constants could 16 November 2018 the 26th General Confer- assumed to be invariant and can provide have their numerical values† xed to Published on 13 March 2019. Downloaded 3/28/2019 5:35:31 PM. ence on Weights and Measures (CGPM) met, the greater accuracy demanded by today’s redene the kilogram it was important to at an open meeting at the Palais des Congr`es, technology. As a result all the original ensure the relationship between quanti- Versailles, to discuss and vote on the re- unique physical artefacts which dened ties remained unaltered regardless of the definition of four of the SI’s seven base units have now all been superseded, choice of unit denition. A key equation, units: the mole, the ampere, the kelvin, and apart from one, the kilogram. eqn (1), in these considerations, demon- the kilogram. This change, effective from The kilogram remained the only base strating how the Planck constant, h, and World Metrology Day (20 May) 2019, is unit de ned and realised as a single the Avogadro constant, NA, are closely perhaps the most fundamental change in the material artefact – the international linked, is given by rearranging the rela- SI since its inception. For the first time the SI prototype of the kilogram (IPK) – a plat- tionship that denes the Rydberg will be defined entirely in terms of funda- inum-iridium cylinder with a mass of constant (a physical constant relating to mental physical constants, instead of exactly 1 kg, by denition, to which all atomic spectra): requiring the maintenance of a physical mass measurements across the world are artefact. This technical brief explains why this ultimately traceable and have been since re-definition came about. No practical impli- 1889. For a long time metrologists have cations of the change are envisaged for been keen to redene the kilogram in † The value of a quantity, Q, is expressed as the analytical chemistry in the short term and terms of constants of nature. The devel- – product of a numerical value, {Q}, and a unit, [Q]. improvements in measurement may take opment of the Kibble balance a device Thus, Q ¼ {Q}[Q]. The speed of light is a constant of ’ some time to realise. invented by Dr Bryan Kibble (at the UK s nature with a value Qc which is xed, and is not for National Physical Laboratory) which us to choose. However, we are free to assign a xed allows mechanical and electrical force to numerical value to the speed of light {Qc}, which – thereby de nes the size of the unit [Qc] for speed, be accurately compared brought this À in m s 1, since both of the other terms in the possibility into sharper focus and also equation are xed. This approach is analogous to prompted additional proposals to rede- all other unit denitions based on xed numerical ne three other base units of the SI with values of ‘dening constants’. This journal is © The Royal Society of Chemistry 2019 Anal. Methods,2019,11,1577–1579 | 1577 View Article Online Analytical Methods AMC Technical Briefs Table 1 From 20 May 2019 the SI will be the system of units in which these defining constants have the exact numerical values shown, when expressed in the units given in the final column (Resolution 1 of the 26th CGPM, 2018) Symbol Name Numerical value SI unit Dn Cs Hyper ne transition frequency of Cs 9 192 631 770 Hz À c The speed of light in vacuum 299 792 458 m s 1 À h Planck constant 6.62607015 Â 10 34 Js À e Elementary charge 1.602176634 Â 10 19 C À À k Boltzmann constant 1.380649 Â 10 23 JK 1 23 À1 NA Avogadro constant 6.02214076 Â 10 mol À1 Kcd Luminous efficacy 683 lm W 2 h NAh ca and 2014) and by the behaviour of similar as there are atoms in 0.012 kilogram of ¼ ¼ ArðeÞ (1) mu Mu 2RN mass standards. These considerations carbon 12. Therefore currently we only resulted in international agreement that know implicitly how many elementary where, N is the Avogadro constant, h is A once three independent experiments (two entities this is by using a measure of an the Planck constant, m is the atomic u or more Kibble balances and the Avoga- exact mass of a known material as mass constant, M is the molar mass u dro experiment) provided consistent a surrogate. The new denition removes constant, c is the speed of light in results with an uncertainty of less than 5 this ambiguity, and reliance of the mole vacuum, a is the ne structure constant, parts in 108, a change would be bene- on the kilogram, by stating an exact RN is the Rydberg constant and A (e) is r cial. These conditions were met in time number of elementary entities explicitly: the relative atomic mass of the electron. for a resolution to be brought before the “The mole, symbol mol, is the SI unit The components of eqn (1) have either 26th CGPM to propose revision of the SI of amount of substance. One mole exact values or have uncertainties signif- according to xed numerical values of contains exactly 6.02214076 Â 1023 icantly smaller than the uncertainties in h seven ‘dening constants’ including elementary entities. This number is the and N prior to SI revision. A redenition of the kilogram, the mole, xed numerical value of the Avogadro Considering that h is related to the ampere and the kelvin in terms constant, NA, when expressed in the unit macroscopic mass via the Kibble balance À of a xed numerical value of the mol 1 and is called the Avogadro experiment, and N is related to macro- A Planck constant, Avogadro constant, the number. The amount of substance, scopic mass via the Avogadro elementary charge and the Boltzmann symbol n, of a system is a measure of the experiment‡ (Bartl, et al., 2017) it is constant, respectively. Whilst the deni- number of specied elementary entities. clearly possible to dene mass in terms of tions of the second, metre and ampere An elementary entity may be an atom, either of these constants. The corollary to Published on 13 March 2019. Downloaded 3/28/2019 5:35:31 PM. will not change, they will be written in a molecule, an ion, an electron, any other this was that a new denition of the mole, adifferent form to make them consistent particle or specied group of particles.” based on a xed numerical value of N , A with the new denitions for the units that This denition is worded in the was also likely. will change. The resolution was unani- ‘explicit constant’ format that all SI base mously approved on 16 November 2018, units will adopt following the revision of Time for change with an effective date of 20 May 2019. The the SI. The implications of the change for delay between decision and imple- the mole, shown in Fig. 1, are that the At the point of redenition of any unit it mentation allows more widespread uncertainty previously associated with is essential that the size of the unit does communication of the change to stake- the Avogadro constant will disappear, not change, and furthermore that the 12 holders, especially in the electrical area and the molar mass of C and the molar new denition is an improvement on the where there will be a small step change in mass constant – previously known exactly old denition. In the case of the kilogram the size of the ampere (about 1 part in 10 – will acquire a relative standard uncer- (and therefore the mole) the limitation in million). The seven de ning constants of tainty equal to that of NAh at the time of the old denition was the dri in the À10 the SI from 20 May 2019 are shown in redenition, namely 4.5 Â 10 , and mass of IPK over time.
Loading...
Loading...
Loading...

—— Preview end. ——

Recommended publications
  • The Kelvin and Temperature Measurements
    Volume 106, Number 1, January–February 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 105–149 (2001)] The Kelvin and Temperature Measurements Volume 106 Number 1 January–February 2001 B. W. Mangum, G. T. Furukawa, The International Temperature Scale of are available to the thermometry commu- K. G. Kreider, C. W. Meyer, D. C. 1990 (ITS-90) is defined from 0.65 K nity are described. Part II of the paper Ripple, G. F. Strouse, W. L. Tew, upwards to the highest temperature measur- describes the realization of temperature able by spectral radiation thermometry, above 1234.93 K for which the ITS-90 is M. R. Moldover, B. Carol Johnson, the radiation thermometry being based on defined in terms of the calibration of spec- H. W. Yoon, C. E. Gibson, and the Planck radiation law. When it was troradiometers using reference blackbody R. D. Saunders developed, the ITS-90 represented thermo- sources that are at the temperature of the dynamic temperatures as closely as pos- equilibrium liquid-solid phase transition National Institute of Standards and sible. Part I of this paper describes the real- of pure silver, gold, or copper. The realiza- Technology, ization of contact thermometry up to tion of temperature from absolute spec- 1234.93 K, the temperature range in which tral or total radiometry over the tempera- Gaithersburg, MD 20899-0001 the ITS-90 is defined in terms of calibra- ture range from about 60 K to 3000 K is billy.mangum@nist.gov tion of thermometers at 15 fixed points and also described.
    [Show full text]
  • The Kibble Balance and the Kilogram
    C. R. Physique 20 (2019) 55–63 Contents lists available at ScienceDirect Comptes Rendus Physique www.sciencedirect.com The new International System of Units / Le nouveau Système international d’unités The Kibble balance and the kilogram La balance de Kibble et le kilogramme ∗ Stephan Schlamminger , Darine Haddad NIST, 100 Bureau Drive, Gaithersburg, MD 20899, USA a r t i c l e i n f o a b s t r a c t Article history: Dr. Bryan Kibble invented the watt balance in 1975 to improve the realization of the unit Available online 25 March 2019 for electrical current, the ampere. With the discovery of the Quantum Hall effect in 1980 by Dr. Klaus von Klitzing and in conjunction with the previously predicted Josephson effect, Keywords: this mechanical apparatus could be used to measure the Planck constant h. Following a Unit of mass proposal by Quinn, Mills, Williams, Taylor, and Mohr, the Kibble balance can be used to Kilogram Planck constant realize the unit of mass, the kilogram, by fixing the numerical value of Planck’s constant. Kibble balance In 2017, the watt balance was renamed to the Kibble balance to honor the inventor, who Revised SI passed in 2016. This article explains the Kibble balance, its role in the redefinition of the Josephson effect unit of mass, and attempts an outlook of the future. Quantum Hall effect Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an open access article under the CC BY-NC-ND license Mots-clés : (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Draft 9Th Edition of the SI Brochure
    —————————————————————————— Bureau International des Poids et Mesures The International System of Units (SI) 9th edition 2019 —————————————————— 2 ▪ Draft of the ninth SI Brochure, 5 February 2018 The BIPM and the Metre Convention The International Bureau of Weights and Measures (BIPM) was set up by the Metre As of 20 May 2019, fifty Convention signed in Paris on 20 May 1875 by seventeen States during the final session of nine States were Members of this Convention: the diplomatic Conference of the Metre. This Convention was amended in 1921. Argentina, Australia, 2 Austria, Belgium, Brazil, The BIPM has its headquarters near Paris, in the grounds (43 520 m ) of the Pavillon de Bulgaria, Canada, Chile, Breteuil (Parc de Saint-Cloud) placed at its disposal by the French Government; its upkeep China, Colombia, Croatia, is financed jointly by the Member States of the Metre Convention. Czech Republic, Denmark, Egypt, Finland, The task of the BIPM is to ensure worldwide unification of measurements; its function is France, Germany, Greece, Hungary, India, Indonesia, thus to: Iran (Islamic Rep. of), • establish fundamental standards and scales for the measurement of the principal physical Iraq, Ireland, Israel, Italy, Japan, Kazakhstan, quantities and maintain the international prototypes; Kenya, Korea (Republic • carry out comparisons of national and international standards; of), Lithuania, Malaysia, • ensure the coordination of corresponding measurement techniques; Mexico, Montenegro, Netherlands, New • carry out and coordinate measurements of the fundamental physical constants relevant Zealand, Norway, to these activities. Pakistan, Poland, Portugal, Romania, The BIPM operates under the exclusive supervision of the International Committee for Russian Federation, Saudi Weights and Measures (CIPM) which itself comes under the authority of the General Arabia, Serbia, Singapore, Slovakia, Slovenia, South Conference on Weights and Measures (CGPM) and reports to it on the work accomplished Africa, Spain, Sweden, by the BIPM.
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • SI Traceability and Scales for Underpinning Atmospheric
    Metrologia PAPER Recent citations SI traceability and scales for underpinning - Amount of substance and the mole in the SI atmospheric monitoring of greenhouse gases Bernd Güttler et al - Advances in reference materials and To cite this article: Paul J Brewer et al 2018 Metrologia 55 S174 measurement techniques for greenhouse gas atmospheric observations Paul J Brewer et al - News from the BIPM laboratories—2018 Patrizia Tavella et al View the article online for updates and enhancements. This content was downloaded from IP address 205.156.36.134 on 08/07/2019 at 18:02 IOP Metrologia Bureau International des Poids et Mesures Metrologia Metrologia Metrologia 55 (2018) S174–SS181 https://doi.org/10.1088/1681-7575/aad830 55 SI traceability and scales for underpinning 2018 atmospheric monitoring of greenhouse © 2018 BIPM & IOP Publishing Ltd gases MTRGAU Paul J Brewer1,6 , Richard J C Brown1 , Oksana A Tarasova2, Brad Hall3, George C Rhoderick4 and Robert I Wielgosz5 S174 1 National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom 2 World Meteorological Organization, 7bis, avenue de la Paix, Case postale 2300, CH-1211 Geneva 2, Switzerland 3 National Oceanic and Atmospheric Administration, 325 Broadway, Mail Stop R.GMD1, Boulder, CO 80305, United States of America P J Brewer et al 4 National Institute of Standards and Technology, 100 Bureau Drive, MS-8393 Gaithersburg, MD 20899-8393, United States of America 5 Printed in the UK Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France E-mail: paul.brewer@npl.co.uk MET Received 21 June 2018, revised 2 August 2018 Accepted for publication 6 August 2018 10.1088/1681-7575/aad830 Published 7 September 2018 Abstract Paper Metrological traceability is the property of a measurement result whereby it can be related to a stated reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.
    [Show full text]
  • The Redefinition of the Ampere
    56TH INTERNATIONAL SCIENTIFIC COLLOQUIUM URN (Paper): urn:nbn:de:gbv:ilm1-2011iwk-151:3 Ilmenau University of Technology, 12 – 16 September 2011 URN: urn:nbn:gbv:ilm1-2011iwk:5 THE REDEFINITION OF THE AMPERE Franz Josef Ahlers, Uwe Siegner Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig ABSTRACT F/l = μ0·(I²/2πr) in vacuum. The numerical value of the magnetic constant μ0 is fixed through the -7 The ampere is one of the seven base units of the SI, definition of the ampere to μ0 = 4π·10 N/A² the international system of units. Its definition is Since the numerical value of the speed of light c linked to mechanical units, especially the unit of has been fixed through the definition of the meter, mass, the kilogram. In a future system of units, which also the numerical value of the electric constant ε0 is 2 will be based on the values of fundamental constants, fixed according to the Maxwell relation μ0·ε0·c = l. the ampere will be based on the value of the The practical implementation of this definition – elementary charge e. This paper describes the which, in metrology, is called realisation – must be technical background of the redefinition. performed with the aid of measuring arrangements that can be realised experimentally. One dis- Index Terms – SI units, Josephson effect, tinguishes between direct realisation – in which the quantum Hall effect, single electron effect current is related to a mechanical force – and indirect realisation. The latter is based on Ohm's law I = U/R and the ampere is realised through the realisation of 1.
    [Show full text]
  • The New Mise En Pratique for the Metre—A Review of Approaches for the Practical Realization of Traceable Length Metrology from 10−11 M to 1013 M
    Metrologia REVIEW • OPEN ACCESS The new mise en pratique for the metre—a review of approaches for the practical realization of traceable length metrology from 10−11 m to 1013 m To cite this article: René Schödel et al 2021 Metrologia 58 052002 View the article online for updates and enhancements. This content was downloaded from IP address 193.60.240.99 on 18/08/2021 at 10:04 Bureau International des Poids et Mesures Metrologia Metrologia 58 (2021) 052002 (20pp) https://doi.org/10.1088/1681-7575/ac1456 Review The new mise en pratique for the metre—a review of approaches for the practical realization of traceable length metrology from 10−11 mto1013 m Rene´ Schödel1,∗ , Andrew Yacoot2 and Andrew Lewis2 1 Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany 2 National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom E-mail: rene.schoedel@ptb.de Received 9 April 2021, revised 7 July 2021 Accepted for publication 14 July 2021 Published 5 August 2021 Abstract The revised International System of Units (SI) came into force on May 20, 2019. Simultaneously, updated versions of supporting documents for the practical realization of the SI base units (mises en pratique) were published. This review paper provides an overview of the updated mise en pratique for the SI base unit of length, the metre, that now gives practical guidance on realisation of traceable length metrology spanning 24 orders of magnitude. The review begins by showing how the metre may be primarily realized through time of flight and interferometric techniques using a variety of types of interferometer.
    [Show full text]
  • Recommendation of a Consensus Value of the Ozone Absorption Cross-Section at 253.65 Nm Based on a Literature Review J
    Recommendation of a consensus value of the ozone absorption cross-section at 253.65 nm based on a literature review J. Hodges, J. Viallon, P. Brewer, B. Drouin, V. Gorshelev, C. Janssen, S. Lee, A. Possolo, M. Smith, J. Walden, et al. To cite this version: J. Hodges, J. Viallon, P. Brewer, B. Drouin, V. Gorshelev, et al.. Recommendation of a consensus value of the ozone absorption cross-section at 253.65 nm based on a literature review. Metrologia, IOP Publishing, 2019, 56 (3), pp.034001. 10.1088/1681-7575/ab0bdd. hal-02108262 HAL Id: hal-02108262 https://hal.sorbonne-universite.fr/hal-02108262 Submitted on 24 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Metrologia PAPER • OPEN ACCESS Recommendation of a consensus value of the ozone absorption cross- section at 253.65 nm based on a literature review To cite this article: J T Hodges et al 2019 Metrologia 56 034001 View the article online for updates and enhancements. This content was downloaded from IP address 134.157.80.196 on 24/04/2019 at 08:46 IOP Metrologia Metrologia Metrologia Metrologia
    [Show full text]
  • Resolution of the Paradox of the Diamagnetic Effect on the Kibble Coil
    Durham Research Online Deposited in DRO: 09 March 2021 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Li, S. S and Schlamminger, S. and Marangoni, R. and Wang, Q. and Haddad, D. and Seifert, F. and Chao, L. and Newell, D. and Zhao, W. (2021) 'Resolution of the paradox of the diamagnetic eect on the Kibble Coil.', Scientic reports., 11 . p. 1048. Further information on publisher's website: https://doi.org/10.1038/s41598-020-80173-9 Publisher's copyright statement: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
    [Show full text]
  • The Impact of the Kelvin Redefinition and Recent Primary Thermometry on Temperature Measurements for Meteorology and Climatology
    The impact of the kelvin redefinition and recent primary thermometry on temperature measurements for meteorology and climatology. Michael de Podesta michael.depodesta@npl.co.uk National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom Submitted to the 2016 Technical Conference on Meteorological and Environmental Instruments and Methods (TECO) of The Commission for Instruments and Methods of Observation (CIMO) of the World Meteorological Organisation (WMO). ABSTRACT All calibrations of thermometers for meteorological or climatological applications are based on the International Temperature Scale of 1990, ITS-90. Based on the best science available in 1990, ITS-90 specifies procedures which enable cost-effective calibration of thermometers worldwide. In this paper we discuss the impact for meteorology of two recent developments: the forthcoming 2018 redefinition of the kelvin, and the emergence of techniques of primary thermometry that have revealed small errors in ITS-90. The kelvin redefinition. Currently, the International System Units, the SI, defines the kelvin (and the degree Celsius) in terms of the temperature of the triple point of water, which is assigned the exact value of 273.16 K (0.01 °C). From 2018, the SI definitions of these units will change such that the kelvin (and the degree Celsius) will be defined in terms of the average amount of energy that the atoms and molecules of a substance possess at a given temperature. This will be achieved by specifying an exact value of the Boltzmann constant, kB, in units of joules per kelvin. Thus after 2018, measurements of temperature will become fundamentally measurements of the energy of molecular motion.
    [Show full text]
  • Modernizing the SI – Implications of Recent Progress with the Fundamental Constants Nick Fletcher, Richard S
    Modernizing the SI – implications of recent progress with the fundamental constants Nick Fletcher, Richard S. Davis, Michael Stock and Martin J.T. Milton, Bureau International des Poids et Mesures (BIPM), Pavillon de Breteuil, 92312 Sèvres CEDEX, France. e-mail : nick.fletcher@bipm.org Abstract Recent proposals to re-define some of the base units of the SI make use of definitions that refer to fixed numerical values of certain constants. We review these proposals in the context of the latest results of the least-squares adjustment of the fundamental constants and against the background of the difficulty experienced with communicating the changes. We show that the benefit of a definition of the kilogram made with respect to the atomic mass constant (mu) may now be significantly stronger than when the choice was first considered 10 years ago. Introduction The proposal to re-define four of the base units of the SI with respect to fixed numerical values of four constants has been the subject of much discussion and many publications. Although the possibility had been foreseen in publications during the 1990’s [1] they were not articulated as a complete set of proposals until 2006 [2]. Subsequently, the General Conference on Weights and Measures, the forum for decision making between the Member States of the BIPM on all matters of measurement science and measurement units, addressed the matter at its 23rd meeting in 2007. It recognised the importance of considering such a re- definition, and invited the NMIs to “come to a view on whether it is possible”. More recently at its 24th meeting in 2011, it noted that progress had been made towards such a re-definition and invited a final proposal when the experimental data were sufficiently robust to support one.
    [Show full text]
  • Journal Impact Factor (JCR 2018)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323571463 2018 Journal Impact Factor (JCR 2018) Technical Report · March 2018 CITATIONS READS 0 36,968 1 author: Chunbiao Zhu Peking University 21 PUBLICATIONS 35 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Robust Saliency Detection via Fusing Foreground and Background Priors View project A Multilayer Backpropagation Saliency Detection Algorithm Based on Depth Mining View project All content following this page was uploaded by Chunbiao Zhu on 27 June 2018. The user has requested enhancement of the downloaded file. Journal Data Filtered By: Selected JCR Year: 2017 Selected Editions: SCIE,SSCI Selected Category Scheme: WoS Journal Eigenfactor Rank Full Journal Title Total Cites Impact Score 1 CA-A CANCER JOURNAL FOR CLINICIANS 28,839 244.585 0.066030 2 NEW ENGLAND JOURNAL OF MEDICINE 332,830 79.258 0.702000 3 LANCET 233,269 53.254 0.435740 4 CHEMICAL REVIEWS 174,920 52.613 0.265650 5 Nature Reviews Materials 3,218 51.941 0.015060 6 NATURE REVIEWS DRUG DISCOVERY 31,312 50.167 0.054410 7 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 148,774 47.661 0.299960 8 Nature Energy 5,072 46.859 0.020430 9 NATURE REVIEWS CANCER 50,407 42.784 0.079730 10 NATURE REVIEWS IMMUNOLOGY 39,215 41.982 0.085360 11 NATURE 710,766 41.577 1.355810 12 NATURE REVIEWS GENETICS 35,680 41.465 0.094300 13 SCIENCE 645,132 41.058 1.127160 14 CHEMICAL SOCIETY REVIEWS 125,900 40.182 0.275690 15 NATURE MATERIALS
    [Show full text]