No Rationale for a Redefinition of the Mole

Total Page:16

File Type:pdf, Size:1020Kb

No Rationale for a Redefinition of the Mole 616 CHIMIA 2009, 63, No. 10 METROLOGY IN CHEMISTRY doi:10.2533/chimia.2009.616 Chimia 63 (2009) 616–618 © Schweizerische Chemische Gesellschaft No Rationale for a Redefinition of the Mole Hanspeter Andres*, Hans-Peter Haerri, Bernhard Niederhauser, Samuel Wunderli, and Ulrich Feller Abstract: In the wake of the redefinition of the kilogram, the last unit of the International System of Units (SI) that is still based on a man-made artefact, discussions were launched on the necessity of redefining other units, amongst other the unit mole. Since 1971 the mole is defined as the amount of substance of a system that contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. The symbol of the unit is ‘mol’. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. The definition is based on the pre-existing choice to set the relative atomic mass of carbon 12 equal to 12 exactly. In the proposed new definition the mole is the amount of substance containing exactly 6.022 141 79 × 1023 atoms or molecules, ions, electrons, other particles, or specified groups of such particles, i.e. the Avogardo constant would have a fixed value without an uncertainty.This contri- bution critically examines the submitted arguments to justify the proposed redefinition of the unit mole by 2011 for their persuasive power to change a scientific and cultural good such as a unit of measurement. As shown, there are no convincing scientific arguments for a redefinition of the mole that stand a closer examination. The current definition is well understood, established in science and technology for almost 50 years and is still up to date. Keywords: Avogadro’s constant . Base unit . International System of Units . Mole . Redefinition 1. Introduction Mills and coworkers have brought for- Units of measurements are scien- ward a series of arguments to justify a re- tific and cultural goods that must not be The continuous improvement of the units definition of the mole, e.g.[2,5,11,12] changed without convincing arguments. of measurement is a task that evolves in – quantum metrology; In the following chapters we subject the parallel with the evolution of science and – lack of comprehensibility of the current arguments cited above to closer examina- technology. The early man-made units definition; tion. have been replaced in the course of time – the desire to establish base units on true one by one by more stable units that are invariants of nature, i.e. on fundamen- preferentially based on constants given by tal constants; 2. Is There any Misunderstanding in nature. The last unit of the International – dependence of the mole on the kilo- the Concepts? System of Units (SI) that is still based gram. on a man-made artefact is the unit of the In ref. [11] we read: “This follows from The argument ‘quantum metrology’ is mass, the kilogram. There is no dispute our desire to define each of the base units not applicable to the mole and needs no that this 19th century artefact of the SI in relation to one of the fundamental con- further discussion. What about the com- should be removed. The work on that is stants of physics, or the properties of a prehensibility of the terms ‘amount of sub- ongoing. In the wake of the redefinition of simple atom, because we believe these to stance’ and mole? The current definition the kilogram discussions on the necessity be the most stable and reliable constants of the unit mole is given in the Table.[13] of a redefinition of other units have been of nature available. Specifically, new defi- The quantity ‘amount of substance’ and launched, amongst others a possible new nitions are being considered for the kilo- its unit mole are concepts that have a long definition of the mole.[1–12] The proposed gram, ampere, Kelvin, and mole. This is the tradition. Scientists like Dalton, Avogadro new definition is based on a fixed value for subject known as quantum metrology, and and others established these concepts in the Avogadro’s constant. the proposals are discussed in detail else- the nineteenth century. It is therefore where.” and eventually “It is something surprising that in publications and pres- of a paradox that such concepts as the entations promoting a redefinition of the quantity ‘amount of substance’and its unit mole it is repeatedly claimed that there ‘mole’, so widely used by practical chem- should be a misunderstanding in the con- ists, are also the subjects of widespread cepts.[5,11] misunderstanding.” The evoked ‘problem’ in the compre- In ref. [12] the authors quote: “As dis- hensibility of the quantity ‘amount of sub- cussed below, it is now being proposed that stance’ is in fact a very simple problem: the link between the quantity amount of When the amount of apples has to be speci- substance and the underlying concept of a fied, two pieces of information have to be number of entities should be strengthened given: *Correspondence: Dr. H. Andres by the introduction of a definition for the 1. What is the substance under consider- Federal Office of Metrology METAS Section Analytical Chemistry unit of amount of substance framed direct- ation? apples; e.g. Golden delicious. Lindenweg 50 ly in terms of a fixed number of entities. 2. How many apples are there? number CH-3003 Bern-Wabern This would break the direct link that exists (of apples). Tel.: +41 31 32 33 370 at present between the unit of amount of That’s all. The same concept is valid in Fax: + 41 31 32 33 210 E-mail: [email protected] substance and the unit of mass.” chemistry: METROLOGY IN CHEMISTRY CHIMIA 2009, 63, No. 10 617 Table. Current definitions of the units mole and second. 3. Is Avogadro’s Constant a Term Definition ‘True Invariant of Nature,’ i.e. a Fundamental Constant? mole 1. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol Avogadro’s constant is an arbitrary is ‘mol’. number that has nothing to do with a ‘true 2. When the mole is used, the elementary entities must be specified and may be invariant of nature’ or a fundamental con- atoms, molecules, ions, electrons, other particles, or specified groups of such stant. A fundamental constant in physics is particles. understood as a constant that is given by It follows that the molar mass of carbon 12 is exactly 12 grams per mole, M(12C) = nature and which is free of any human con- 12 g/mol. structs, e.g. Planck’s constant, the speed of light, the electronic charge or the rest mass second The second is the duration of 9 192 631 770 periods of the radiation corresponding of a fundamental particle. These constants to the transition between the two hyperfine levels of the ground state of the caesium are given by nature and can be measured. 133 atom. It follows that the hyperfine splitting in the ground state of the caesium The Avogadro constant N is nowhere pro- 133 A 133 atom is exactly 9 192 631 770 hertz, ν(hfs Cs) = 9 192 631 770 Hz. vided by nature, we have to prepare this number by using a balance. The mole defi- nition tells us how we have to proceed. 1. What is the substance under consid- That the Avogadro number cannot be For a comprehensive explanation of eration? chemical substance; e.g. ‘counted’ in a normal way, but can be re- Avogadro’s constant the reader is referred methane. alised by weighing poses no problem in to the cited introductory textbooks.[14,15] 2. How many atoms or molecules are comprehension (see Figure). It is a com- The status of the Avogadro constant is there? number (of atoms or mol- mon procedure in trade and industry to comparable with the number of periods ecules). count large numbers of identical, small used for the definition of the second, s. The In principle the only relevant difference items using balances. For instance, coins current definition of unit ‘second’ is given between apples and atoms or molecules are routinely counted by precision balanc- in the Table.[13] This number tells us how with respect to the quantity ‘amount of’ is es, and people understand the difference many exactly fixed periods of the caesium their size; but that hardly hampers the com- between ‘number of coins’ and mass well. radiation we have to sum up to get a sec- prehensibility: When we speak of apples, it That among scientists and technicians ‘the ond. In mass measurement of substances may be adequate to state their numbers in name mole has been – and still is – the the Avogadro constant tells us how many units of one. If there’s a grocer trading with cause of some confusion’ we consider as atoms or molecules are contained in a mass a lot of eggs, it may be adequate for him an assertion that is in contradiction to the with a value near the exactly fixed mass of to trade them in units of dozen. And since rich textbook literature.[11] the prototype of the kilogram. atoms or molecules are very small, it is ad- Summarising: equate to express their numbers in a much 1. The concepts of the quantity ‘amount of larger counting unit, namely in N , the substance’ and its unit mole are easily A 4.
Recommended publications
  • Avogadro Number, Boltzmann Constant, Planck Constant, Information Theory, Comparative and Relative Uncertainties
    American Journal of Computational and Applied Mathematics 2018, 8(5): 93-102 DOI: 10.5923/j.ajcam.20180805.02 h, k, NA: Evaluating the Relative Uncertainty of Measurement Boris Menin Mechanical & Refrigeration Consultation Expert, Beer-Sheba, Israel Abstract For verification of the measurement accuracy of fundamental physical constants, the CODATA unique technique is used. This procedure is a complex process based on a careful discussion of the input data, and the justification and construction of tables of values sufficient for the direct use of the relative uncertainty are conducted using modern advanced statistical methods and powerful computers. However, at every stage of data processing, researchers must rely on common sense, that is, an expert conclusion. In this article, the author proposes a theoretical and informational grounded justification for calculating the relative uncertainty by using the comparative uncertainty. A detailed description of the data and the processing procedures do not require considerable time. Examples of measurements results of three fundamental constants are analysed, applying information-oriented approach. Comparison of the achieved relative and comparative uncertainties is introduced and discussed. Keywords Avogadro number, Boltzmann constant, Planck constant, Information theory, Comparative and relative uncertainties theories of physics can be proved by carefully studying the 1. Introduction numerical values of these constants, determined from different experiments in different fields of physics. It is expected that in 2018 that the International System of One needs to note the main feature of the CODATA Units (SI) will be redefined on the basis of certain values of technique in determining the relative uncertainty of one some fundamental constants [1].
    [Show full text]
  • X-Ray Crystal Density Method to Determine the Avogadro and Planck Constants
    X-ray Crystal Density Method to Determine the Avogadro and Planck Constants Horst Bettin Physikalisch-Technische Bundesanstalt Braunschweig, Germany Proposed New Definition of the Kilogram The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 040 x 10 -34 when expressed in the unit J s, which is equal to kg m2 s-1, where the metre and the second c ∆ν are defined in terms of and Cs . *) X represents one or more digits to be added at the time the new definition is finally adopted. α 2 - = M (e )c NAh 2 R∞ N h −10 A = 3.990 312 7110(18) × 10 Js/mol, Amedeo Avogadro Max Planck with relative uncertainty of 0.45 × 10 -9 (1776-1856) (1858-1947) Page 2 of 19 Avogadro Constant Definition of Avogadro constant NA • Number of molecules per mol • 6.022... x 10 23 mol -1 Amedeo Avogadro Current definition of mol (1776-1856) • Number “entities” like 12 C atoms in 12 g • i. e. 6.022... x 10 23 12 C atoms have a mass of 12 g 12 12 g/mol = NA m( C ) Faraday constant F = NA e (e: elementary charge) Molar gas constant R = NA k (k: Boltzmann constant) Page 3 of 19 Counting Atoms: XRCD Method 3 Use of a silicon crystal! 1. Volume a0 of the unit cell 3 2. Volume of an atom: a0 /8 3. Volume V of a sphere 4. Number N of the atoms 8 V8 VM N = = ⋅ mol A N 3 3 a0 a0msphere Page 4 of 19 Lattice parameter measurement (INRIM) d220 (2011)=192014712.67(67) am d220 (2014)=192014711.98(34) am -9 ur(2014) = 1.8 x 10 Page 5 of 19 Lattice parameter set-up at PTB S M1 M M2 AL AA OH Page 6 of 19 Sphere Interferometer of PTB mK-temperature stabilisation Camera 1 Camera 2 Fizeau- Fizeau- Collimator Objective 1 Objective 2 Diode laser Page 7 of 19 Diameter results (2014) Relative Mean apparent Sphere Lab.
    [Show full text]
  • 2 Weighing and Preparation of Aqueous Solutions
    2 WEIGHING AND PREPARATION OF AQUEOUS SOLUTIONS Theory In chemistry, a solution is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is dissolved in another substance, known as a solvent. An aqueous solution is a solution in which the solvent is water. Concentration is the measure of how much of a given substance (solute) there is mixed with another substance (solvent). This can apply to any sort of chemical mixture, but most frequently the concept is limited to homogeneous solutions, where it refers to the amount of solute in a solution. For scientific or technical applications, concentration is expressed in a quantitative way. There are a number of different ways to quantitatively express concentration; the most common are listed below. They are based on mass or volume or both. Depending on what they are based on it is not always trivial to convert one measure to the other, because knowledge of the density might be needed to do so. At times this information may not be available, particularly if the temperature varies. Mass can be determined at a precision of ~ 0.1 mg on a routine basis with an analytical balance. Both solids and liquids are easily quantified by weighing. Some units of concentration - particularly the most popular one (molarity) - require to express the mass of substance in the moles. The mol is the SI basic unit that measures an amount of substance. „One mole contains exactly 6.022 140 76 × 1023 elementary entities. This number is the −1 fixed numerical value of the Avogadro constant, NA, when expressed in the unit mol and is called the Avogadro number.“ The previous definition was based on the number of carbon atoms in 12 g of material and was the following; a mol is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram (or 12 g) of carbon-12 (12C), where the carbon – 12 atoms are unbound, at rest and in their ground state.
    [Show full text]
  • The Kelvin and Temperature Measurements
    Volume 106, Number 1, January–February 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 105–149 (2001)] The Kelvin and Temperature Measurements Volume 106 Number 1 January–February 2001 B. W. Mangum, G. T. Furukawa, The International Temperature Scale of are available to the thermometry commu- K. G. Kreider, C. W. Meyer, D. C. 1990 (ITS-90) is defined from 0.65 K nity are described. Part II of the paper Ripple, G. F. Strouse, W. L. Tew, upwards to the highest temperature measur- describes the realization of temperature able by spectral radiation thermometry, above 1234.93 K for which the ITS-90 is M. R. Moldover, B. Carol Johnson, the radiation thermometry being based on defined in terms of the calibration of spec- H. W. Yoon, C. E. Gibson, and the Planck radiation law. When it was troradiometers using reference blackbody R. D. Saunders developed, the ITS-90 represented thermo- sources that are at the temperature of the dynamic temperatures as closely as pos- equilibrium liquid-solid phase transition National Institute of Standards and sible. Part I of this paper describes the real- of pure silver, gold, or copper. The realiza- Technology, ization of contact thermometry up to tion of temperature from absolute spec- 1234.93 K, the temperature range in which tral or total radiometry over the tempera- Gaithersburg, MD 20899-0001 the ITS-90 is defined in terms of calibra- ture range from about 60 K to 3000 K is [email protected] tion of thermometers at 15 fixed points and also described.
    [Show full text]
  • The Kibble Balance and the Kilogram
    C. R. Physique 20 (2019) 55–63 Contents lists available at ScienceDirect Comptes Rendus Physique www.sciencedirect.com The new International System of Units / Le nouveau Système international d’unités The Kibble balance and the kilogram La balance de Kibble et le kilogramme ∗ Stephan Schlamminger , Darine Haddad NIST, 100 Bureau Drive, Gaithersburg, MD 20899, USA a r t i c l e i n f o a b s t r a c t Article history: Dr. Bryan Kibble invented the watt balance in 1975 to improve the realization of the unit Available online 25 March 2019 for electrical current, the ampere. With the discovery of the Quantum Hall effect in 1980 by Dr. Klaus von Klitzing and in conjunction with the previously predicted Josephson effect, Keywords: this mechanical apparatus could be used to measure the Planck constant h. Following a Unit of mass proposal by Quinn, Mills, Williams, Taylor, and Mohr, the Kibble balance can be used to Kilogram Planck constant realize the unit of mass, the kilogram, by fixing the numerical value of Planck’s constant. Kibble balance In 2017, the watt balance was renamed to the Kibble balance to honor the inventor, who Revised SI passed in 2016. This article explains the Kibble balance, its role in the redefinition of the Josephson effect unit of mass, and attempts an outlook of the future. Quantum Hall effect Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an open access article under the CC BY-NC-ND license Mots-clés : (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Draft 9Th Edition of the SI Brochure
    —————————————————————————— Bureau International des Poids et Mesures The International System of Units (SI) 9th edition 2019 —————————————————— 2 ▪ Draft of the ninth SI Brochure, 5 February 2018 The BIPM and the Metre Convention The International Bureau of Weights and Measures (BIPM) was set up by the Metre As of 20 May 2019, fifty Convention signed in Paris on 20 May 1875 by seventeen States during the final session of nine States were Members of this Convention: the diplomatic Conference of the Metre. This Convention was amended in 1921. Argentina, Australia, 2 Austria, Belgium, Brazil, The BIPM has its headquarters near Paris, in the grounds (43 520 m ) of the Pavillon de Bulgaria, Canada, Chile, Breteuil (Parc de Saint-Cloud) placed at its disposal by the French Government; its upkeep China, Colombia, Croatia, is financed jointly by the Member States of the Metre Convention. Czech Republic, Denmark, Egypt, Finland, The task of the BIPM is to ensure worldwide unification of measurements; its function is France, Germany, Greece, Hungary, India, Indonesia, thus to: Iran (Islamic Rep. of), • establish fundamental standards and scales for the measurement of the principal physical Iraq, Ireland, Israel, Italy, Japan, Kazakhstan, quantities and maintain the international prototypes; Kenya, Korea (Republic • carry out comparisons of national and international standards; of), Lithuania, Malaysia, • ensure the coordination of corresponding measurement techniques; Mexico, Montenegro, Netherlands, New • carry out and coordinate measurements of the fundamental physical constants relevant Zealand, Norway, to these activities. Pakistan, Poland, Portugal, Romania, The BIPM operates under the exclusive supervision of the International Committee for Russian Federation, Saudi Weights and Measures (CIPM) which itself comes under the authority of the General Arabia, Serbia, Singapore, Slovakia, Slovenia, South Conference on Weights and Measures (CGPM) and reports to it on the work accomplished Africa, Spain, Sweden, by the BIPM.
    [Show full text]
  • Topic720 Composition: Mole Fraction: Molality: Concentration a Solution Comprises at Least Two Different Chemical Substances
    Topic720 Composition: Mole Fraction: Molality: Concentration A solution comprises at least two different chemical substances where at least one substance is in vast molar excess. The term ‘solution’ is used to describe both solids and liquids. Nevertheless the term ‘solution’ in the absence of the word ‘solid’ refers to a liquid. Chemists are particularly expert at identifying the number and chemical formulae of chemical substances present in a given closed system. Here we explore how the chemical composition of a given system is expressed. We consider a simple system prepared using water()l and urea(s) at ambient temperature and pressure. We designate water as chemical substance 1 and urea as chemical substance j, so that the closed system contains an aqueous solution. The amounts of the two substances are given by n1 = = ()wM11 and nj ()wMjj where w1 and wj are masses; M1 and Mj are the molar masses of the two chemical substances. In these terms, n1 and nj are extensive variables. = ⋅ + ⋅ Mass of solution, w n1 M1 n j M j (a) = ⋅ Mass of solvent, w1 n1 M1 (b) = -1 For water, M1 0.018 kg mol . However in reviewing the properties of solutions, chemists prefer intensive composition variables. Mole Fraction The mole fractions of the two substances x1 and xj are given by the following two equations: =+ =+ xnnn111()j xnnnjj()1 j (c) += Here x1 x j 10. In general terms for a system comprising i - chemical substances, the mole fraction of substance k is given by equation (d). ji= = xnkk/ ∑ n j (d) j=1 ji= = Hence ∑ x j 10.
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • SI Traceability and Scales for Underpinning Atmospheric
    Metrologia PAPER Recent citations SI traceability and scales for underpinning - Amount of substance and the mole in the SI atmospheric monitoring of greenhouse gases Bernd Güttler et al - Advances in reference materials and To cite this article: Paul J Brewer et al 2018 Metrologia 55 S174 measurement techniques for greenhouse gas atmospheric observations Paul J Brewer et al - News from the BIPM laboratories—2018 Patrizia Tavella et al View the article online for updates and enhancements. This content was downloaded from IP address 205.156.36.134 on 08/07/2019 at 18:02 IOP Metrologia Bureau International des Poids et Mesures Metrologia Metrologia Metrologia 55 (2018) S174–SS181 https://doi.org/10.1088/1681-7575/aad830 55 SI traceability and scales for underpinning 2018 atmospheric monitoring of greenhouse © 2018 BIPM & IOP Publishing Ltd gases MTRGAU Paul J Brewer1,6 , Richard J C Brown1 , Oksana A Tarasova2, Brad Hall3, George C Rhoderick4 and Robert I Wielgosz5 S174 1 National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom 2 World Meteorological Organization, 7bis, avenue de la Paix, Case postale 2300, CH-1211 Geneva 2, Switzerland 3 National Oceanic and Atmospheric Administration, 325 Broadway, Mail Stop R.GMD1, Boulder, CO 80305, United States of America P J Brewer et al 4 National Institute of Standards and Technology, 100 Bureau Drive, MS-8393 Gaithersburg, MD 20899-8393, United States of America 5 Printed in the UK Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France E-mail: [email protected] MET Received 21 June 2018, revised 2 August 2018 Accepted for publication 6 August 2018 10.1088/1681-7575/aad830 Published 7 September 2018 Abstract Paper Metrological traceability is the property of a measurement result whereby it can be related to a stated reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.
    [Show full text]
  • Avogadro's Constant
    Avogadro's Constant Nancy Eisenmenger Question Artem, 8th grade How \Avogadro constant" was invented and how scientists calculated it for the first time? Answer What is Avogadro's Constant? • Avogadros constant, NA: the number of particles in a mole • mole: The number of Carbon-12 atoms in 0.012 kg of Carbon-12 23 −1 • NA = 6:02214129(27) × 10 mol How was Avogadro's Constant Invented? Avogadro's constant was invented because scientists were learning about measuring matter and wanted a way to relate the microscopic to the macroscopic (e.g. how many particles (atoms, molecules, etc.) were in a sample of matter). The first scientists to see a need for Avogadro's constant were studying gases and how they behave under different temperatures and pressures. Amedeo Avogadro did not invent the constant, but he did state that all gases with the same volume, pressure, and temperature contained the same number of gas particles, which turned out to be very important to the development of our understanding of the principles of chemistry and physics. The constant was first calculated by Johann Josef Loschmidt, a German scientist, in 1865. He actually calculated the Loschmidt number, a constant that measures the same thing as Avogadro's number, but in different units (ideal gas particles per cubic meter at 0◦C and 1 atm). When converted to the same units, his number was off by about a factor of 10 from Avogadro's number. That may sound like a lot, but given the tools he had to work with for both theory and experiment and the magnitude of the number (∼ 1023), that is an impressively close estimate.
    [Show full text]
  • The Redefinition of the Ampere
    56TH INTERNATIONAL SCIENTIFIC COLLOQUIUM URN (Paper): urn:nbn:de:gbv:ilm1-2011iwk-151:3 Ilmenau University of Technology, 12 – 16 September 2011 URN: urn:nbn:gbv:ilm1-2011iwk:5 THE REDEFINITION OF THE AMPERE Franz Josef Ahlers, Uwe Siegner Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig ABSTRACT F/l = μ0·(I²/2πr) in vacuum. The numerical value of the magnetic constant μ0 is fixed through the -7 The ampere is one of the seven base units of the SI, definition of the ampere to μ0 = 4π·10 N/A² the international system of units. Its definition is Since the numerical value of the speed of light c linked to mechanical units, especially the unit of has been fixed through the definition of the meter, mass, the kilogram. In a future system of units, which also the numerical value of the electric constant ε0 is 2 will be based on the values of fundamental constants, fixed according to the Maxwell relation μ0·ε0·c = l. the ampere will be based on the value of the The practical implementation of this definition – elementary charge e. This paper describes the which, in metrology, is called realisation – must be technical background of the redefinition. performed with the aid of measuring arrangements that can be realised experimentally. One dis- Index Terms – SI units, Josephson effect, tinguishes between direct realisation – in which the quantum Hall effect, single electron effect current is related to a mechanical force – and indirect realisation. The latter is based on Ohm's law I = U/R and the ampere is realised through the realisation of 1.
    [Show full text]
  • 2.1 Relative Atomic and Molecular Masses, the Avogadro Constant, and the Mole Calculations AQA Chemistry
    2.1 Relative atomic and molecular AQA Chemistry masses, the Avogadro constant, and the mole Calculations The Avogadro constant Specification reference 3.1.2.2 MS 0.1 Recognise and use expressions in decimal and ordinary form MS 0.4 Use calculators to find and use power, exponential, and logarithmic functions MS 1.1Use an appropriate number of significant figures. Learning objectives After completing the worksheet you should be able to: carry out calculations using the Avogadro constant carry out calculations using numbers in standard and ordinary form substitute numerical values into algebraic equations, and change the subject of equations report calculations to an appropriate number of significant figures. Introduction One mole of any substance contains the same number of particles as the number of atoms in 12 g of carbon-12. This number of particles is a huge number and is called the Avogadro constant. It has a value of 6.02 1023 and is given the units of mol−1 (per mole). The relative atomic mass of an element in grams contains 6.02 1023 atoms or one mole of that element. The relative formula mass of a compound in grams contains 6.02 1023 particles (molecules or ions) or one mole of that compound. Therefore we use the term molar mass to describe the relative atomic or formula mass of a substance in grams and give it the unit g mol−1. To calculate the number of particles in a certain mass of a substance we can use the following equation. mass m (g) Number of particles = ´ 6.02 ´ 1023(mol-1) molar mass M (g mol-1) Worked example Question 1 How many molecules are there in 42.5 g of ammonia, NH3? Answer © Oxford University Press 2015 www.oxfordsecondary.co.uk/acknowledgements This resource sheet may have been changed from the original 1 2.1 Relative atomic and molecular AQA Chemistry masses, the Avogadro constant, and the mole Calculations Step 1 Calculate the molar mass of ammonia using the relative atomic masses of nitrogen and hydrogen from the periodic table.
    [Show full text]