Bacterial Community Diversity in the Rhizosphere of Nickel

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Community Diversity in the Rhizosphere of Nickel 1 Bacterial community diversity in the rhizosphere of nickel 2 hyperaccumulator plant species from Borneo Island (Malaysia) 3 4 Séverine Lopez,1 Antony van der Ent,1,2 Sukaibin Sumail,3 John B. Sugau,3 Matsain Mohd 5 Buang,4 Zarina Amin,5 Guillaume Echevarria,1,2 Jean Louis Morel1 and Emile Benizri1 6 7 1Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000, Nancy, France. 8 9 2Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of 10 Queensland, St Lucia, 4072, QLD, Australia. 11 12 3Sabah Parks, Kota Kinabalu, Sabah, Malaysia. 13 14 4Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia. 15 16 5Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 17 Malaysia. 18 19 20 SUMMARY 21 The Island of Borneo is a major biodiversity hotspot, and in the Malaysian state of Sabah, 22 ultramafic soils are extensive and home to more than 31 endemic nickel hyperaccumulator 23 plants. The aim of this study was to characterize the structure and the diversity of the 24 rhizosphere bacterial communities of several of these nickel hyperaccumulator plants and 25 factors that affect these bacterial communities in Sabah. The most abundant phyla were 26 Proteobacteria, Acidobacteria and Actinobacteria. At family level, Burkholderiaceae and 27 Xanthobacteraceae (Proteobacteria phylum) were the most abundant families in the 28 hyperaccumulator rhizospheres. Redundancy analysis based on soil chemical analyses and 29 relative abundances of the major bacterial phyla showed that abiotic factors of the studied sites 30 drove the bacterial diversity. For all R. aff. bengalensis rhizosphere soil samples, irrespective 31 of studied site, the bacterial diversity was similar. Moreover, the Saprospiraceae family showed 32 a high representativeness in the R. aff. bengalensis rhizosphere soils and was linked with the 33 nickel availability in soils. The ability of R. aff. bengalensis to concentrate nickel in its 34 rhizosphere appears to be the major factor driving the rhizobacterial community diversity unlike 35 for other hyperaccumulator species. 36 37 38 INTRODUCTION 39 Ultramafic soils cover 3% of the terrestrial surface (Guillot and Hattori, 2013; Echevarria, 40 2018). The largest areas are found in Cuba, New Caledonia, Philippines, Indonesia, Turkey and 41 Malaysia (van der Ent, 2015). Due to the nature of the ultramafic bedrock, they naturally contain 42 high metal concentrations, particularly nickel (Ni), cobalt (Co), chromium (Cr) and manganese 43 (Mn; Proctor and Woodell, 1975). They are also characterized by high concentrations of iron 44 (Fe) and magnesium (Mg), with a low calcium/magnesium ratio (Harrison and Rajakaruna, 45 2011). In addition, they have low levels of macronutrients such as nitrogen (N), phosphorus (P) 46 and potassium (K; Shallari et al., 1998; Boyd and Jaffré, 2009) and a low water holding capacity 47 (Kay et al., 2011). In the state of Sabah in Malaysia (Northern tip of Borneo Island), ultramafic 48 soils are extensive and cover an area of approximatively 3500 km2 (Proctor et al., 1988). This 49 region has a great floristic richness with about 8000 vascular plant species, including more than 50 5000 species inventoried in the Kinabalu Park (Beaman, 2005, van der Ent et al., 2015a). The 51 park was established in 1964 as the first fully protected area in Sabah, and has an area of 754 52 km2 around Mount Kinabalu, the highest mountain on the island of Borneo (4095 m a.s.l.). 53 54 Because of their extreme properties, ultramafic soils support a particular flora with high rates 55 of endemism which have evolved both morphological and physiological adaptations and allow 56 it to survive in these environments. Within this flora, hyperaccumulator plants have the ability 57 to concentrate metals in their aerial parts, whatever the concentration found in the soil (Baker, 58 1981). There are about 700 taxa of plants that are known to hyperaccumulate one or more 59 metals, and around 90% of these accumulate Ni (van der Ent et al., 2013; Pollard et al., 2014; 60 Galey et al., 2017; Reeves et al., 2017; van der Ent et al., 2017; Kidd et al., 2018; Nkrumah et 61 al., 2019). In the case of Ni hyperaccumulator plants, the threshold of Ni accumulation is at 62 least 1000 mg Ni kg-1 of dry weight in aerial parts (0.1% of plant biomass; Brooks et al., 1977). 63 Nickel hyperaccumulator plants occurring in Sabah mainly belong to the botanical families of 64 Phyllanthaceae, Rubiaceae, Salicaceae and Violaceae (Reeves, 2006). The known Ni 65 hyperaccumulators of this region are Rinorea aff. bengalensis and R. aff. javanica (Violaceae; 66 Brooks et al., 1977; Brooks and Wither, 1977), Phyllanthus balgooyi and Phyllanthus 67 rufuschaneyi (Phyllanthaceae; Baker et al., 1992; Hoffmann et al., 2003; MesjaszPrzybylowicz 68 et al., 2016; Bouman et al., 2018), Dichapetalum gelonioides (Dichapetalaceae; Baker et al., 69 1992; Nkrumah et al., 2018b), Psychotria sarmentosa (Rubiaceae; Reeves, 2003) and Shorea 70 tenuiramulosa (Dipterocarpaceae; Proctor et al., 1989). Since prospecting campaigns conducted 71 in Kinabalu Park, new nickel hyperaccumulator species have been discovered such as Actephila 72 alanbakeri (Phyllanthaceae; van der Ent et al., 2015a) in Kinabalu Park or Antidesma montis- 73 silam (Phyllanthaceae; Nkrumah et al., 2018c) at Mount Silam. 74 75 Due to the high concentrations of certain elements (Ni, Mg), ultramafic soils harbour specific 76 microbial communities (Schipper and Lee, 2004; Rajkumar et al., 2009; Branco, 2010; Lopez 77 et al., 2019a, 2019b). It has been shown that the presence of these elements can reduce microbial 78 biomass (Wang et al., 2008), affect microbial enzymatic activities (Kuperman and Carreiro, 79 1997; Kandeler et al., 2000) and consequently can alter the mineralization of soil organic matter 80 (Epelde et al., 2012). Based on highthroughput Illumina sequencing approaches, recent studies 81 have revealed that Proteobacteria, Actinobacteria and Acidobacteria are the major phyla in the 82 rhizosphere of Ni hyperaccumulator plants growing on ultramafic soils (Venter et al., 2018; 83 Visioli et al., 2019; Lopez et al., 2019a, 2019b). These phyla are commonly encountered as the 84 predominant taxa in agricultural, polluted or ultramafic soils (Janssen, 2006; Rastogi et al., 85 2010). Unlike other environments, Ni hyperaccumulator plant rhizospheres typically have a 86 high representation of the Chloroflexi phylum (Lopez et al., 2017). 87 88 The Island of Borneo is known to be one of the major hotspots of biodiversity for plants and 89 vertebrates (Myers et al., 2000), however there is a paucity of data available on the soil bacterial 90 diversity present in this region (Tripathi et al., 2012; Lee-Cruz et al., 2013). There is currently 91 no known study on the rhizobacterial diversity of Ni hyperaccumulator plants from Borneo 92 Island. The rhizobacterial communities can, on the one hand, provide mineral elements 93 necessary for the plant and, on the other hand, improve their resistance to stress such as those 94 induced by metals (Lebeau et al., 2008). Moreover, the bacteria can also affect mobility and the 95 availability of metals present in the soil, favouring or not their transfer from the rhizosphere to 96 the plant and therefore phytoextraction (Kidd et al., 2009; Sessitsch et al., 2013). The aims of 97 this study were to characterize the structure and the diversity of the rhizosphere bacterial 98 communities of Ni hyperaccumulator plants, and to highlight the physicochemical factors that 99 may influence the composition of these bacterial communities. 100 101 RESULTS 102 103 Study area and sample collection 104 During fieldwork, 52 Ni hyperaccumulator plants and their associated rhizosphere soil were 105 sampled from 10 different ultramafic sites (Table 1 and Fig. 1) around Mount Kinabalu Park. 106 The samples were collected associated with the following species: Flacourtia kinabaluensis 107 Sleumer (Salicaceae), Mischocarpus sundaicus Blume (Sapindaceae), Phyllanthus balgooyi 108 Petra Hoffm. & A.J.M. Baker, P. rufuschaneyi Welzen, R.W. Bouman & Ent (Phyllanthaceae), 109 Psychotria sarmentosa Blume (Rubiaceae), Rinorea aff. bengalensis (Wall.) Kuntze, R. aff. 110 javanica Kuntze, Rinorea sp. (Violaceae) and Walsura pinnata Hassk. (Meliaceae). The highest 111 plant diversity was found at sites 06 and 10, with six plant species harvested. Site 01, with the 112 highest elevation (1410 m a.s. l.) has only one species: P. balgooyi. Flacourtia kinabaluensis 113 and M. sundaicus showed a better geographical repartition (found in 6 of the 10 sites), followed 114 by P. balgooyi and P. sarmentosa (5 sites), R. aff. javanica (4 sites), R. aff. bengalensis, the 115 undetermined Rinorea sp. and W. pinnata (3 sites) and finally P. rufuschaneyi (2 sites). 116 117 Chemical analyses of rhizosphere soil samples from each site 118 Abiotic soil parameters were measured as seen in Tables 2–4. The mean pH ranged from 6.0 119 (Sites 01 and 05) to 7.4 (Site 07) with an average pH of 6.6 (Table 2). The C/N ratio of the 120 rhizosphere soils showed significant differences (P < 0.05) depending on the site. Sites 01 and 121 05 had statistically the highest C/N ratio (21 and 20 respectively) in comparison to sites 02, 03, 122 06, 07 and 09 (lower than 14). Due to its rhizosphere origin, the soil had an organic C content 123 corresponding to an average of 96% of the total C. The elements that were most extracted by 124 DTPA in the rhizosphere soils were Ni (193 μg g-1), Fe (140 μg g-1) and Mn (102 μg g-1) as 125 seen in Table 3. There were no significant differences for DTPA-extractable Ni and Zn among 126 the different rhizosphere soil samples. Although Cr was present in soil samples (total Cr), this 127 element was poorly available in the rhizosphere soils (<1 μg g-1). While site 09 had the highest 128 Co DTPA-extractable (29 μg g-1), Site 01 had the highest Cu (14 μg g-1) and Pb (5.8 μg g-1) 129 DTPA-extractable.
Recommended publications
  • Ultramafic Geocology of South and Southeast Asia
    Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafc geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafc outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafc regoliths are generally nutrient-defcient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafc regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specifc studies provide insights to the ultramafc geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafc regions difers substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafc mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafc species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafc-associated habitats in the region. The geoecology of the large ultramafc outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation.
    [Show full text]
  • Chapter 25. the Ecophysiology, Genetics, Adaptive Significance, And
    Chapter 25 The ecophysiology, genetics, adaptive significance, and biotechnology of nickel hyperaccumulation in plants Anthony L. Ferrero1, Peter R. Walsh1 and Nishanta Rajakaruna1,2 1Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States, 2Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa 25.1 Introduction Plants are challenged by various environmental stressors that interfere with their biochemical and physiological pro- cesses. Some heavy metals have critical physiological roles [1À3] in plants, but elevated concentrations of these essential heavy metals or exposure to other heavy metals, which lack any known physiological roles, may result in stress via interference with either the function of enzymes or information-coding DNA or RNA in cells [4À6].Some plants are more metal-tolerant than others, and thus heavy metal tolerance has been central to understanding adaptive evolution in plants [7À12] as well as the development of biotechnological fields such as phytoremediation and phyto- mining [13À16]. Some soils, including serpentine soils [17], have naturally high levels of heavy metals, and plants that can withstand these metal-rich soils are known as metallophytes [18,19]. Metallophytes tolerate metals via exclusion or accumulation. Most metallophytes exclude metals by chelation, binding ions to organic acids or other ligands, or by sequestration, storing metals within vacuoles of root cells where they cannot interrupt key cellular processes [20]. Accumulators, on the other hand, concentrate metals in plant parts, especially the epidermal tissues of leaves, whereas excluders generally keep shoot metal levels consistently low over a wide range of soil metal concentrations. Some metallophytes, termed “hyperaccumulators” [21À23], take up and sequester considerably high concentrations of metals in their aboveground tissues, often beyond thresholds that would be lethal to most plants [3].
    [Show full text]
  • X-Ray Fluorescence Elemental Mapping of Roots, Stems and Leaves of the Nickel Hyperaccumulators Rinorea Cf
    X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo Antony van der Ent, Martin D. de Jonge & Rachel Mak & Jolanta Mesjasz-Przybyłowicz & Wojciech J. Przybyłowicz & Alban D. Barnabas & Hugh H. Harris Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia Australian Synchrotron, ANSTO, Melbourne, Australia School of Chemistry, University of Sydney, Sydney, Australia Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Faculty of Physics & Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland Materials Research Department, iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129, South Africa Department of Chemistry, The University of Adelaide, Adelaide, Australia 1 ABSTRACT Aims There are major knowledge gaps in understanding the translocation leading from nickel uptake in the root to accumulation in other tissues in tropical nickel hyperaccumulator plant species. This study focuses on two species, Rinorea cf. bengalensis and Rinorea cf. javanica and aims to elucidate the similarities and differences in the distribution of nickel and physiologically relevant elements (potassium, calcium, manganese and zinc) in various organs and tissues. Methods High-resolution X-ray fluorescence microscopy (XFM) of frozen-hydrated and fresh- hydrated tissue samples and nuclear microprobe (micro-PIXE) analysis of freeze-dried samples were used to provide insights into the in situ elemental distribution in these plant species. Results This study has shown that the distribution pattern of nickel hyperaccumulation is typified by very high levels of accumulation in the phloem bundles of roots and stems.
    [Show full text]
  • The Potential Use of Indigenous Nickel Hyperaccumulators for Small-Scale Mining in the Philippines
    JOURNAL OF DEGRADED AND MINING LANDS MANAGEMENT ISSN: 2339-076X, Volume 1, Number 1 (October 2013): 21-26 Research Article The potential use of indigenous nickel hyperaccumulators for small-scale mining in The Philippines E.S. Fernando1, M.O. Quimado1, L.C. Trinidad2, A.I. Doronila3,* 1 Department of Forest Biological Sciences, College of Forestry and Natural Resources, The University of the Philippines – Los Baños College, 4031 Laguna, Philippines 2 Central Analytical Services Laboratory,National Institute of Molecular Biology and Biotechnology,The University of the Philippines – Los Baños College 3 School of Chemistry, University of Melbourne, Victoria 3010, Australia *corresponding author: [email protected] Abstract : Uptake of nickel and three other heavy metals (copper, cobalt, and chromium) was examined in 33 species of the common and rare native vascular plants growing in an ultramafic area currently subjected to mining in Zambales Province, Luzon, Philippines. Leaf tissue samples were initially screened in the field using filter paper impregnated with dimethylglyoxime (1% solution in 70% ethyl alcohol) and later analyzed by atomic absorption spectroscopy. One species was found to be a hypernickelophore (>10,000 µg/g), eight species were nickel hyperaccumulators (>1,000 µg/g), nineteen species were hemi-accumulators (>100-1,000 µg/g), and five species were non-accumulators (<100 µg/g). This paper significantly adds to the list of hyperaccumulator species first reported for the Philippines in 1992. The findings will be discussed in context of using indigenous species for post mining ecological restoration and nickel phytoextraction in small-scale mining in the Philippines.. Keywords: hyperaccumulator species, nickel laterites, Zambales Introduction hyperaccumulated, however over 70% of hyperaccumulators are specific to Ni (Brooks, 1998; Hyperaccumulators are a suite of plants with the rare Baker et al., 2000).
    [Show full text]
  • Phyllanthus Rufuschaneyi Roderick Bouman, Peter Van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D Erskine, Antony Van Der Ent
    Phyllanthus rufuschaneyi Roderick Bouman, Peter van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D Erskine, Antony van der Ent To cite this version: Roderick Bouman, Peter van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D Erskine, et al.. Phyllanthus rufuschaneyi: A new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Botanical Studies, Springer Verlag, 2018, 59 (1), 10.1186/s40529-018-0225-y. hal-01811437 HAL Id: hal-01811437 https://hal.archives-ouvertes.fr/hal-01811437 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Bouman et al. Bot Stud (2018) 59:9 https://doi.org/10.1186/s40529-018-0225-y ORIGINAL ARTICLE Open Access Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining Roderick Bouman1,2,3, Peter van Welzen1,3, Sukaibin Sumail4, Guillaume Echevarria5, Peter D. Erskine6 and Antony van der Ent5,6* Abstract Background: Nickel hyperaccumulator plants are of much interest for their evolution and unique ecophysiology, and also for potential applications in agromining—a novel technology that uses plants to extract valuable metals from soil.
    [Show full text]
  • Kenneth J. Wurdack 2,4 and Charles C. Davis
    American Journal of Botany 96(8): 1551–1570. 2009. M ALPIGHIALES PHYLOGENETICS: GAINING GROUND ON ONE OF THE MOST RECALCITRANT CLADES IN THE ANGIOSPERM TREE OF LIFE 1 Kenneth J. Wurdack 2,4 and Charles C. Davis3,4 2 Department of Botany, Smithsonian Institution, P.O. Box 37012 NMNH MRC-166, Washington, District of Columbia 20013-7012 USA; and 3 Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA The eudicot order Malpighiales contains ~16 000 species and is the most poorly resolved large rosid clade. To clarify phyloge- netic relationships in the order, we used maximum likelihood, Bayesian, and parsimony analyses of DNA sequence data from 13 gene regions, totaling 15 604 bp, and representing all three genomic compartments (i.e., plastid: atpB , matK , ndhF, and rbcL ; mitochondrial: ccmB , cob , matR , nad1B-C , nad6, and rps3; and nuclear: 18S rDNA, PHYC, and newly developed low-copy EMB2765 ). Our sampling of 190 taxa includes representatives from all families of Malpighiales. These data provide greatly in- creased support for the recent additions of Aneulophus , Bhesa , Centroplacus , Ploiarium , and Raffl esiaceae to Malpighiales; sister relations of Phyllanthaceae + Picrodendraceae, monophyly of Hypericaceae, and polyphyly of Clusiaceae. Oxalidales + Huaceae, followed by Celastrales are successive sisters to Malpighiales. Parasitic Raffl esiaceae, which produce the world’ s largest fl owers, are confi rmed as embedded within a paraphyletic Euphorbiaceae. Novel fi ndings show a well-supported placement of Ctenolopho- naceae with Erythroxylaceae + Rhizophoraceae, sister-group relationships of Bhesa + Centroplacus , and the exclusion of Medu- sandra from Malpighiales. New taxonomic circumscriptions include the addition of Bhesa to Centroplacaceae, Medusandra to Peridiscaceae (Saxifragales), Calophyllaceae applied to Clusiaceae subfamily Kielmeyeroideae, Peraceae applied to Euphorbi- aceae subfamily Peroideae, and Huaceae included in Oxalidales.
    [Show full text]
  • Ultramafic Geoecology of South and Southeast Asia M
    Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafic geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafic outcrops are renowned for hosting floras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafic regoliths are generally nutrient-deficient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafic regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specific studies provide insights to the ultramafic geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafic regions differs substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafic mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafic species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafic-associated habitats in the region. The geoecology of the large ultramafic outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation.
    [Show full text]
  • 4. Les Bactéries PGPR
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Thèse Présentée et soutenue publiquement pour l'obtention du titre de Docteur de l'Université de Lorraine Spécialité "Sciences Agronomiques" par Séverine Lopez Déterminisme de la diversité bactérienne rhizosphérique des hyperaccumulateurs de nickel Soutenue publiquement le 26 novembre 2018 Membres du jury : M. Thierry Lebeau Rapporteur Professeur, Université de Nantes, LPG, Nantes M. Yvan Moënne Loccoz Rapporteur Professeur, Université de Lyon, EM, Villeurbanne Mme Isabelle Laffont-Schwob Examinatrice Professeur, Aix-Marseille Université, LPED, Marseille Mme Corinne Leyval Examinatrice Directrice de recherche, Université de Lorraine, LIEC, Vandoeuvre-lès-Nancy M. Emile Benizri Directeur de thèse Professeur, Université de Lorraine, LSE, Vandœuvre-lès-Nancy M. Jean Louis Morel Co-directeur de thèse Professeur, Université de Lorraine, LSE, Vandœuvre-lès-Nancy Laboratoire Sols et Environnement 2, avenue de la forêt de Haye – BP 20163 54505 Vandoeuvre CEDEX Remerciements Remerciements Un grand homme m'a dit un jour que les protagonistes d'une thèse pouvaient être imagés en ingrédients d’une émulsion : parfois ça prend et parfois non.
    [Show full text]
  • Actephila Alanbakeri (Phyllanthaceae): a New Nickel
    Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia) Antony van der Ent, Max van Balgooy, Peter van Welzen To cite this version: Antony van der Ent, Max van Balgooy, Peter van Welzen. Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). Botanical Studies, Springer Verlag, 2015, 57 (1), pp.1-8. 10.1186/s40529-016-0122-1. hal-01280650 HAL Id: hal-01280650 https://hal.archives-ouvertes.fr/hal-01280650 Submitted on 29 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. van der Ent et al. Bot Stud (2016) 57:6 DOI 10.1186/s40529-016-0122-1 ORIGINAL ARTICLE Open Access Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia) Antony van der Ent1,2* , Max van Balgooy3 and Peter van Welzen3,4 Abstract The Malaysian state of Sabah on the Island of Borneo is emerging as a hotspot for nickel hyperaccumulator species with at least 25 such species discovered to date. New discoveries of the hyperaccumulation trait in described taxa, as well as taxonomical novelties that are nickel hyperaccumulators, continue to be made.
    [Show full text]
  • Rinorea Niccolifera (Violaceae), a New, Nickel-Hyperaccumulating Species from Luzon Island, Philippines
    A peer-reviewed open-access journal PhytoKeys 37: 1–13Rinorea (2014) niccolifera (Violaceae), a new, nickel-hyperaccumulating species... 1 doi: 10.3897/phytokeys.37.7136 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines Edwino S. Fernando1, Marilyn O. Quimado1, Augustine I. Doronila2 1 Department of Forest Biological Sciences, College of Forestry and Natural Resources, The University of the Philippines – Los Baños, College, 4031 Laguna, Philippines 2 Analytical and Environmental Chemistry Research Group, School of Chemistry, University of Melbourne, Victoria 3010, Australia Corresponding author: Edwino S. Fernando ([email protected]) Academic editor: H. Schaefer | Received 27 January 2014 | Accepted 2 April 2014 | Published 9 May 2014 Citation: Fernando ES, Quimado MO, Doronila AI (2014) Rinorea niccolifera (Violaceae), a new, nickel- hyperaccumulating species from Luzon Island, Philippines. PhytoKeys 37: 1–13. doi: 10.3897/phytokeys.37.7136 Abstract A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespreadRinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3–8 cm long × 2–3 cm wide), and smaller fruits (0.6–0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g-1 of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator.
    [Show full text]
  • Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G
    Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G. Ranil and D.K.N.G. Pushpakumara University of Peradeniya Introduction The recorded history of exploration of pteridophytes in Sri Lanka dates back to 1672-1675 when Poul Hermann had collected a few fern specimens which were first described by Linneus (1747) in Flora Zeylanica. The majority of Sri Lankan pteridophytes have been collected in the 19th century during the British period and some of them have been published as catalogues and checklists. However, only Beddome (1863-1883) and Sledge (1950-1954) had conducted systematic studies and contributed significantly to today’s knowledge on taxonomy and diversity of Sri Lankan pteridophytes (Beddome, 1883; Sledge, 1982). Thereafter, Manton (1953) and Manton and Sledge (1954) reported chromosome numbers and some taxonomic issues of selected Sri Lankan Pteridophytes. Recently, Shaffer-Fehre (2006) has edited the volume 15 of the revised handbook to the flora of Ceylon on pteridophyta (Fern and FernAllies). The local involvement of pteridological studies began with Abeywickrama (1956; 1964; 1978), Abeywickrama and Dassanayake (1956); and Abeywickrama and De Fonseka, (1975) with the preparations of checklists of pteridophytes and description of some fern families. Dassanayake (1964), Jayasekara (1996), Jayasekara et al., (1996), Dhanasekera (undated), Fenando (2002), Herat and Rathnayake (2004) and Ranil et al., (2004; 2005; 2006) have also contributed to the present knowledge on Pteridophytes in Sri Lanka. However, only recently, Ranil and co workers initiated a detailed study on biology, ecology and variation of tree ferns (Cyatheaceae) in Kanneliya and Sinharaja MAB reserves combining field and laboratory studies and also taxonomic studies on island-wide Sri Lankan fern flora.
    [Show full text]
  • Simultaneous Hyperaccumulation of Nickel and Cobalt in the Tree Glochidion Cf
    www.nature.com/scientificreports OPEN Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum Received: 9 October 2017 Accepted: 25 April 2018 (Phyllanthaceae): elemental Published: xx xx xxxx distribution and chemical speciation Antony van der Ent1,2, Rachel Mak3, Martin D. de Jonge 4 & Hugh H. Harris5 Hyperaccumulation is generally highly specifc for a single element, for example nickel (Ni). The recently-discovered hyperaccumulator Glochidion cf. sericeum (Phyllanthaceae) from Malaysia is unusual in that it simultaneously accumulates nickel and cobalt (Co) with up to 1500 μg g−1 foliar of both elements. We set out to determine whether distribution and associated ligands for Ni and Co complexation difer in this species. We postulated that Co hyperaccumulation coincides with Ni hyperaccumulation operating on similar physiological pathways. However, the ostensibly lower tolerance for Co at the cellular level results in the exudation of Co on the leaf surface in the form of lesions. The formation of such lesions is akin to phytotoxicity responses described for manganese (Mn). Hence, in contrast to Ni, which is stored principally inside the foliar epidermal cells, the accumulation response to Co consists of an extracellular mechanism. The chemical speciation of Ni and Co, in terms of the coordinating ligands involved and principal oxidation state, is similar and associated with carboxylic acids (citrate for Ni and tartrate or malate for Co) and the hydrated metal ion. Some oxidation to Co3+, presumably on the surface of leaves after exudation, was observed. Hyperaccumulators are rare plants that accumulate metal and metalloid elements to extraordinarily high con- centrations in their living biomass that may be hundreds or thousands of times greater than is normal for most plants1–3.
    [Show full text]