Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pharmacognostical Studies of Leaf, Stem, Root and Flower of Abutilon Hirtum (Lam.) Sweet
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2016; 8(1); 199-216 ISSN: 0975-4873 Research Article Pharmacognostical studies of leaf, stem, root and flower of Abutilon hirtum (Lam.) Sweet Alshymaa Abdel-Rahman Gomaa, *Mamdouh Nabil Samy, Samar Yehia Desoukey, Mohamed Salah Kamel Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt Available Online: 31st January, 2016 ABSTRACT Abutilon hirtum (Lam.) Sweet, is a perennial herb or shrub, commonly known as Florida Keys Indian mallow and distributed in tropical regions. The present study deals with macro and micromorphological investigations of leaf, stem, root and flower of A. hirtum, which assists in identification and standardization of the plant in both entire and powdered forms. Keywords: Malvaceae, Abutilon hirtum, macro and micromorphology. INTRODUCTION Malvaceae (the mallow family) is the family of flowering plants containing about 243 genera and 4225 species. It is distributed all over the world in tropical regions and includes the economically important plants such as cotton, okra and other ornamental shrubs.1 Abutilon is a large genus belonging to this family, comprising about 150 annual or perennial herbs, shrubs or even small trees. It is native to tropical and subtropical countries of America, Africa, Asia and Australia.2,3 The genus has a significant importance which is attributed to valuable fibers obtained from different species of the genus such as A. theophrastii and also due to several species grown as garden ornamentals such as A. ochsenii and A. vitifolium.4 Phytochemical studies of the genus revealed the presence of flavonoids, sterols, triterpenes, anthocyanins and fatty acids.5 Abutilon hirtum is a perennial herb or shrub, 0.5-2.5m in height [Synonym: A. -
Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem. -
Anamirta Cocculus (Linn.)
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2016; 8(4); 619-622 ISSN: 0975-4873 Research Article Isolation and Characterization of Compounds from Fruits of Anamirta cocculus (Linn.) Satya V1*, Paridhavi M 1Research Scholar, Karpagam University, Coimbatore, Tamilnadu, India -641021 2Rajiv Gandhi Institute of Pharmacy, Trikaripur, Kasaragod, Kerala, India - 670310 Available Online:31st March, 2016 ABSTRACT Compounds from fruits of Anamirta cocculus were isolated and characterized. The phytoconstituents present in fruits were isolated by soxhlet extraction with methanol. The compounds were separated by column chromatography and characterized by chemical and spectroscopic methods. These compounds were identified as sesquiterpenoids and aliphatic amides containing carbonyl and hydroxyl functionalities namely,5,8‐dihydroxy‐12‐methyl‐2‐oxo‐6‐(prop‐1'‐en‐2'‐yl)‐3,11‐ dioxatetracyclo,dodecane‐7carboxylicacid(CompoundA1),1-hydroxy-14 (2'‐hydroxypropan‐2'‐yl)‐13‐methyl‐4,7,10‐ trioxapentacyclo,tetradecane‐6,11‐dione (CompoundA2) & Methyl 1, 6 – dihydroxy‐2‐methyl‐5‐oxo‐10‐(prop‐1'‐en‐2'‐ yl)‐4,8‐dioxatetracyclo,dodecane‐11‐carboxylate (CompoundA3) and two aliphatic amides namely (2Z,4Z)‐N‐ methyltetracosa‐2, 4‐dienamide (Compound A4)& N –Ethyl-5-O -훽-d –Glucopyranosyl pentanamide (CompoundA5) were isolated and characterized. Keywords: Anamirta cocculus, Column chromatography, Spectroscopic methods, Sesquiterpene lactones, aliphatic amides. INTRODUCTION Anamirta cocculus is found in South East Asian and Indian recorded on Spectrum 400 Perkin Elmer. λmax values were Subcontinent and belongs to the family measured on UV-1800 Shimadzu spectrophotometer. 1H Menispermaceae1.The seeds are known as Cocculus NMR and 13C NMR spectra were recorded on Brucker indicus (Fructuscocculi) and Indian berries. -
FL0107:Layout 1.Qxd
S. M. El Naggar & N. Sawady Pollen Morphology of Malvaceae and its taxonomic significance in Yemen Abstract El Naggar, S. M. & Sawady N.: Pollen Morphology of Malvaceae and its taxonomic signifi- cance in Yemen. — Fl. Medit. 18: 431-439. 2008. — ISSN 1120-4052. The pollen morphology of 20 species of Malvaceae growing in Yemen was investigated by light (LM) and scanning electron microscope (SEM). The studied taxa belong to 9 genera and three different tribes. These taxa are: Abelmoschus esculentus, Hibiscus trionum, H. micranthus, H. deflersii, H. palmatus, H. vitifolius, H. rosa-sinensis, H. ovalifolius, Gossypium hirsutum, Thespesia populnea (L.) Solander ex Correa and Senra incana (Cav.) DC. (Hibiscieae); Malva parviflora and Alcea rosea (Malveae); Abutilon fruticosum, A. figarianum, A. bidentatum, A. pannosum, Sida acuta, S. alba and S. ovata (Abutileae). Pollen shape, size, aperture, exine structure and sculpturing as well as the spine characters proved that they are of high taxonom- ic value. Pollen characters with some other morphological characters are discussed in the light of the recent classification of the family in Yemen. Key words: Malvaceae, Morphology, Yemen. Introduction Malvaceae Juss. (s. str.) is a large family of herbs, shrubs and trees; comprising about 110 genera and 2000 species. It is a globally distributed family with primary concentrations of genera in the tropical and subtropical regions (Hutchinson 1967; Fryxell 1975, 1988 & 1998; Heywood 1993; La Duke & Doeby 1995; Mabberley 1997). Due to the high economic value of many taxa of Malvaceae (Gossypium, Hibiscus, Abelmoschus and Malva), several studies of different perspective have been carried out, such as those are: Edlin (1935), Bates and Blanchard (1970), Krebs (1994a, 1994b), Ray (1995 & 1998), Hosni and Araffa (1999), El Naggar (1996, 2001 & 2004), Pefell & al. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
Phylogeny of the SE Australian Clade of Hibbertia Subg. Hemistemma (Dilleniaceae)
Phylogeny of the SE Australian clade of Hibbertia subg. Hemistemma (Dilleniaceae) Ihsan Abdl Azez Abdul Raheem School of Earth and Environmental Sciences The University of Adelaide A thesis submitted for the degree of Doctor of Philosophy of the University of Adelaide June 2012 The University of Adelaide, SA, Australia Declaration I, Ihsan Abdl Azez Abdul Raheem certify that this work contains no materials which has been accepted for the award of any other degree or diploma in any universities or other tertiary institution and, to the best of my knowledge and belief, contains no materials previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engine, unless permission has been granted by the University to restrict access for a period of time. ii This thesis is dedicated to my loving family and parents iii Acknowledgments The teacher who is indeed wise does not bid you to enter the house of his wisdom but rather leads you to the threshold of your mind--Khalil Gibran First and foremost, I wish to thank my supervisors Dr John G. Conran, Dr Terry Macfarlane and Dr Kevin Thiele for their support, encouragement, valuable feedback and assistance over the past three years (data analyses and writing) guiding me through my PhD candidature. -
Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year. -
Arborescent Angiosperms of Mundanthurai Range in The
Check List 8(5): 951–962, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Arborescent Angiosperms of Mundanthurai Range in PECIES S the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the OF southern Western Ghats, India ISTS L Paulraj Selva Singh Richard 1* and Selvaraj Abraham Muthukumar 2 1 Madras Christian College, Department of Botany, Chennai – 600 059, Tamil Nadu, India. 2 St. John’s College, Department of Botany, Tirunelveli, 627 002, Tamil Nadu, India. [email protected] * Corresponding author. E-mail: Abstract: The present study was carried out to document the diversity of arborescent angiosperm taxa of Mundanthurai representingRange in the 175Kalakad-Mundanthurai genera in 65 families Tiger were Reserve recorded. (KMTR) The most of the speciose southern families Western are Euphorbiaceae Ghats in India. (27 During spp.), the Rubiaceae floristic survey carried out from January 2008 to December 2010, a total of 247 species and intraspecific taxa of trees and shrubs to this region which includes Agasthiyamalaia pauciflora, Elaeocarpus venustus, Garcinia travancorica, Gluta travancorica, (17Goniothalamus spp.), Myrtaceae rhynchantherus, (14 spp.), Lauraceae Homalium (13 travancoricum, spp.) and Annonaceae Homaium (11 jainii, spp.). OropheaOf the 247 uniflora, taxa, 27 Phlogacanthus species are endemic albiflorus, only Polyalthia shendurunii, Symplocos macrocarpa and Symplocos sessilis . This clearly signifies that this range is relevant to the conservation of the local flora. Introduction India for conserving global biological diversity and also The Western Ghats is one of the biodiversity hotspots declared as Regional Centre of Endemism in the Indian of the world (Myers et al. -
ICAR-NBPGR Bridging Science and Service (2012-2018)
ICAR-NBPGR Bridging Science and Service (2012-2018) Editorial Team: Kavita Gupta, Sunil Archak, K Pradheep, Sandeep Kumar, Sherry R Jacob, Vandana Tyagi, Mukesh Kumar Rana, Sandhya Gupta, Jyoti Kumari, Gurinderjit Randhawa and Kuldeep Singh ICAR-National Bureau of Plant Genetic Resources Pusa Campus, New Delhi- 110 012 Published by : The Director ICAR-National Bureau of Plant Genetic Resources Pusa Campus, New Delhi-110 012 Citation : Kavita Gupta, Sunil Archak, K. Pradheep, Sandeep Kumar, Sherry R. Jacob, Vandana Tyagi, Mukesh Kumar Rana, Sandhya Gupta, Jyoti Kumari, Gurinderjit Randhawa and Kuldeep Singh (2019). ICAR-NBPGR Bridging Science and Service (2012-2018). ICAR-National Bureau of Plant Genetic Resources, New Delhi, India, 74 p. ©ICAR-NBPGR, 2019 ISBN No. 978-81-937111-3-2 All the researchers who have contributed information to this publication are duly acknowledged. This report includes unprocessed or semi-processed data, which would form the basis of scientific papers in due course. The material contained in the report, therefore, may not be made use of without the written permission of the Director, ICAR-National Bureau of Plant Genetic Resources, New Delhi except for quoting it for scientific reference. Printed at : Malhotra Publishing House B-6, DSIDC Complex, Kirti Nagar, New Delhi - 110 015 Phone: 011-41420246 E-mail: [email protected] CONTENTS 1. Establishment and Growth of NBPGR 1 2. Plant Genetic Resources Management Network 5 3. Focused Augmentation of Germplasm 8 4. Conserving Diversity for Today and Tomorrow 15 5. Safeguarding Agriculture from Exotic Pests 17 6. Enhancing Germplasm Utilization 21 7. Genomics for PGR 30 8. -
Regional Expert Consultation on Underutilized Crops for Food and Nutritional Security in Asia and the Pacific
Regional Expert Consultation on Underutilized Crops for Food and Nutritional Security in Asia and the Pacific Bangkok, Thailand, November 13-15, 2017 Thematic, Strategic Papers and Country Status Reports Citation: R.K. Tyagi, A. Pandey, A. Agrawal, K.S. Varaprasad, R.S. Paroda, R.K. Khetarpal (2018) Regional Expert Consultation on Underutilized Crops for Food and Nutritional Security in Asia and the Pacific – Thematic, Strategic Papers and Country Status Reports. Asia-Pacific Association for Agricultural Research Institutions (APAARI), Bangkok, Thailand, November 13-15, 2017, x+349 p. Cover page photo identity: Front cover page: Amaranthus caudatus (chaulai) Back cover page: Carissa carandas (karonda) (Photo credit: Dr K.C. Bhatt, NBPGR, New Delhi, India) Editors: Rishi Kumar Tyagi, Anjula Pandey, Anuradha Agrawal, K.S. Varaprasad, Raj S. Paroda, Ravi K. Khetarpal Disclaimer: The information contained in this publication is provided on an “as is” basis with full responsibility or liability for any errors or omissions with the authors and not on the editors. Some contents of chapters have been sourced by the authors from their prior publications, and APAARI is not liable for any copyright infringement whatsoever. Published by: Asia-Pacific Association of Agricultural Research Institutions (APAARI) 2nd and 4th Floor, FAO Annex Building 202/1 Larn Luang Road Pomprab Sattrupai District, Bangkok 10100, Thailand ISBN: 978-616-7101-10-1 Copyright © APAARI For copies, please contact: The Executive Secretary Asia-Pacific Association of Agricultural Research Institutions (APAARI) 2nd and 4th Floor, FAO Annex Building 202/1 Larn Luang Road Pomprab Sattrupai District, Bangkok 10100, Thailand Phone: +662-2822918; Fax: +662-2822920 Email: [email protected]; Website: http://www.apaari.org Contents Foreword iii Acknowledgements v The Organizers vii Thematic Papers 1. -
Chapter 6 ENUMERATION
Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi. -
Download E-Book (PDF)
African Journal of Biotechnology Volume 13 Number 48, 26 November, 2014 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N.